Abstract
The dimetallacyclic complex H2C(Me2SiC≡CAuPMe2)2CH2 has been synthesized, in which the two gold centers are bridged by the diphosphine dmpme (= bis(dimethylphosphino)methane) and a diethynyl ligand providing “full support” for the possible transannular Au–Au contact (3). This compound and its “semi-” and “unsupported” analogues (2, 1) have been characterized by NMR spectroscopy and elemental analysis. The monomeric nature of complex 3 in solution has been established using diffusion coefficients measured by DOSY-NMR spectroscopy and comparing the data with those of complexes 1 and 2 as references.
Acknowledgements
The authors thank Barbara Teichner for performing the CHN analyses and Dr. Jens Spross for measuring the accurate mass.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflict of interest regarding this article.
References
1. Schmidbaur, H., Wohlleben, A., Schubert, U., Frank, A., Huttner, G. Chem. Ber. 1977, 110, 2751–2757; https://doi.org/10.1002/cber.19771100810.Suche in Google Scholar
2. Gupta, A. K., Orthaber, A. Chem. Eur. J. 2018, 24, 7536–7559; https://doi.org/10.1002/chem.201704667.Suche in Google Scholar PubMed
3. Ahrland, S., Dreisch, K., Norén, B., Oskarsson, Å., Kankaanperä, A. Acta Chem. Scand. 1987, 41a, 173–177; https://doi.org/10.3891/acta.chem.scand.41a-0173.Suche in Google Scholar
4. Dyson, D. B., Parish, R. V., McAuliffe, C. A., Pritchard, R. G., Fields, R., Beagley, B. J. Chem. Soc., Dalton Trans. 1989, 907–914.10.1039/DT9890000907Suche in Google Scholar
5. Bates, P. A., Waters, J. M. Inorg. Chim. Acta 1985, 98, 125–129; https://doi.org/10.1016/s0020-1693(00)84921-x.Suche in Google Scholar
6. Ahrland, S., Aurivillius, B., Dreisch, K., Norén, B., Oskarsson, Å., Carcanague, D. R., Chao, I., Houk, K. N. Acta Chem. Scand. 1992, 46, 262–265; https://doi.org/10.3891/acta.chem.scand.46-0262.Suche in Google Scholar
7. Gil-Rubio, J., Vicente, J. Chem. Eur. J. 2018, 24, 32–46; https://doi.org/10.1002/chem.201703574.Suche in Google Scholar PubMed
8. Bunaciu, A. A., Udriştioiu, E. G., Aboul-Enein, H. Y. Crit. Rev. Anal. Chem. 2014, 45, 289–299; https://doi.org/10.1080/10408347.2014.949616.Suche in Google Scholar PubMed
9. Balzano, F., Cuzzola, A., Diversi, P., Ghiotto, F., Uccello‐Barretta, G. Eur. J. Inorg. Chem. 2007, 2007, 5556–5562; https://doi.org/10.1002/ejic.200700798.Suche in Google Scholar
10. Kiesilä, A., Beyeh, N. K., Moilanen, J. O., Puttreddy, R., Götz, S., Rissanen, K., Barran, P., Lützen, A., Kalenius, E. Org. Biomol. Chem. 2019, 17, 6980–6984; https://doi.org/10.1039/c9ob01383k.Suche in Google Scholar PubMed
11. Macchioni, A., Ciancaleoni, G., Zuccaccia, C., Zuccaccia, D. Chem. Soc. Rev. 2008, 37, 479–489; https://doi.org/10.1039/b615067p.Suche in Google Scholar PubMed
12. Lamm, J.-H., Niermeier, P., Mix, A., Chmiel, J., Neumann, B., Stammler, H.-G., Mitzel, N. W. Angew. Chem. Int. Ed. 2014, 53, 7938–7942; https://doi.org/10.1002/anie.201402145.Suche in Google Scholar PubMed
13. Canovese, L., Levi, C., Visentin, F., Santo, C., Bertolasi, V. Inorg. Chim. Acta 2013, 404, 105–112; https://doi.org/10.1016/j.ica.2013.04.026.Suche in Google Scholar
14. Claridge, T. D. W. High-Resolution NMR Techniques in Organic Chemistry; Elsevier: Amsterdam, 2016.10.1016/B978-0-08-099986-9.00002-6Suche in Google Scholar
15. Zhao, Y. H., Abraham, M. H., Zissimos, A. M. J. Org. Chem. 2003, 68, 7368–7373; https://doi.org/10.1021/jo034808o.Suche in Google Scholar PubMed
16. Price, W. S., Ide, H., Arata, Y. J. Phys. Chem. A 1999, 103, 448–450; https://doi.org/10.1021/jp9839044.Suche in Google Scholar
17. Mills, R. J. Phys. Chem. 1973, 77, 685–688; https://doi.org/10.1021/j100624a025.Suche in Google Scholar
18. Toyama, H., Nakamura, M., Nakamura, M., Matsumoto, Y., Nakagomi, M., Hashimoto, Y. Bioorg. Med. Chem. 2014, 22, 1948–1959; https://doi.org/10.1016/j.bmc.2014.01.023.Suche in Google Scholar PubMed
19. Yam, V. W.-W., Choi, S. W.-K. J. Chem. Soc., Dalton Trans. 1994, 2057–2059.10.1039/dt9940002057Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/znb-2023-0022).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- Cobalt(II) and nickel(II) complexes based on 2,5-di(pyridine-4-yl)thiazolo[5,4-d]thiazole and dicarboxylate ligands: synthesis, structures and properties
- Crystal structure of the oxidotechnetate(V) complex Na2[(TcVO)(OTf)5] · 2(TfOH) with TfOH = trifluoromethanesulfonic acid
- Design, synthesis, and in-silico study of new letrozole derivatives as prospective anticancer and antioxidant agents
- Understanding formation of the InPd3 polymorphs: a DFT study
- Aminosilyl-substituted cyclopentadienyl complexes of alkali metals
- Constitution of the fully supported gold(I)alkynyl (dmpme)·bis[gold(I)ethynyldimethylsilyl]methane in solution
- About the pseudo-ternary alkali metal-thallium(I) dicyanamide systems
- Tb2Co(B2O5)2 and Tb2Cu(B2O5)2 – two new borates with gadolinite-type structures
- SrMg2Ga2 with ThCr2Si2-type structure
- Note
- Synthesis and characterization of diphenyl(pentachlorophenyl)phosphanegold(I) chloride
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- Cobalt(II) and nickel(II) complexes based on 2,5-di(pyridine-4-yl)thiazolo[5,4-d]thiazole and dicarboxylate ligands: synthesis, structures and properties
- Crystal structure of the oxidotechnetate(V) complex Na2[(TcVO)(OTf)5] · 2(TfOH) with TfOH = trifluoromethanesulfonic acid
- Design, synthesis, and in-silico study of new letrozole derivatives as prospective anticancer and antioxidant agents
- Understanding formation of the InPd3 polymorphs: a DFT study
- Aminosilyl-substituted cyclopentadienyl complexes of alkali metals
- Constitution of the fully supported gold(I)alkynyl (dmpme)·bis[gold(I)ethynyldimethylsilyl]methane in solution
- About the pseudo-ternary alkali metal-thallium(I) dicyanamide systems
- Tb2Co(B2O5)2 and Tb2Cu(B2O5)2 – two new borates with gadolinite-type structures
- SrMg2Ga2 with ThCr2Si2-type structure
- Note
- Synthesis and characterization of diphenyl(pentachlorophenyl)phosphanegold(I) chloride