Startseite Constitution of the fully supported gold(I)alkynyl (dmpme)·bis[gold(I)ethynyldimethylsilyl]methane in solution
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Constitution of the fully supported gold(I)alkynyl (dmpme)·bis[gold(I)ethynyldimethylsilyl]methane in solution

  • Peter Heinrichs , Andreas Mix und Norbert W. Mitzel EMAIL logo
Veröffentlicht/Copyright: 5. Mai 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The dimetallacyclic complex H2C(Me2SiC≡CAuPMe2)2CH2 has been synthesized, in which the two gold centers are bridged by the diphosphine dmpme (= bis(dimethylphosphino)methane) and a diethynyl ligand providing “full support” for the possible transannular Au–Au contact (3). This compound and its “semi-” and “unsupported” analogues (21) have been characterized by NMR spectroscopy and elemental analysis. The monomeric nature of complex 3 in solution has been established using diffusion coefficients measured by DOSY-NMR spectroscopy and comparing the data with those of complexes 1 and 2 as references.


Corresponding author: Norbert W. Mitzel, Chair of Inorganic and Structural Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany, E-mail:

Acknowledgements

The authors thank Barbara Teichner for performing the CHN analyses and Dr. Jens Spross for measuring the accurate mass.

  1. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflict of interest regarding this article.

References

1. Schmidbaur, H., Wohlleben, A., Schubert, U., Frank, A., Huttner, G. Chem. Ber. 1977, 110, 2751–2757; https://doi.org/10.1002/cber.19771100810.Suche in Google Scholar

2. Gupta, A. K., Orthaber, A. Chem. Eur. J. 2018, 24, 7536–7559; https://doi.org/10.1002/chem.201704667.Suche in Google Scholar PubMed

3. Ahrland, S., Dreisch, K., Norén, B., Oskarsson, Å., Kankaanperä, A. Acta Chem. Scand. 1987, 41a, 173–177; https://doi.org/10.3891/acta.chem.scand.41a-0173.Suche in Google Scholar

4. Dyson, D. B., Parish, R. V., McAuliffe, C. A., Pritchard, R. G., Fields, R., Beagley, B. J. Chem. Soc., Dalton Trans. 1989, 907–914.10.1039/DT9890000907Suche in Google Scholar

5. Bates, P. A., Waters, J. M. Inorg. Chim. Acta 1985, 98, 125–129; https://doi.org/10.1016/s0020-1693(00)84921-x.Suche in Google Scholar

6. Ahrland, S., Aurivillius, B., Dreisch, K., Norén, B., Oskarsson, Å., Carcanague, D. R., Chao, I., Houk, K. N. Acta Chem. Scand. 1992, 46, 262–265; https://doi.org/10.3891/acta.chem.scand.46-0262.Suche in Google Scholar

7. Gil-Rubio, J., Vicente, J. Chem. Eur. J. 2018, 24, 32–46; https://doi.org/10.1002/chem.201703574.Suche in Google Scholar PubMed

8. Bunaciu, A. A., Udriştioiu, E. G., Aboul-Enein, H. Y. Crit. Rev. Anal. Chem. 2014, 45, 289–299; https://doi.org/10.1080/10408347.2014.949616.Suche in Google Scholar PubMed

9. Balzano, F., Cuzzola, A., Diversi, P., Ghiotto, F., Uccello‐Barretta, G. Eur. J. Inorg. Chem. 2007, 2007, 5556–5562; https://doi.org/10.1002/ejic.200700798.Suche in Google Scholar

10. Kiesilä, A., Beyeh, N. K., Moilanen, J. O., Puttreddy, R., Götz, S., Rissanen, K., Barran, P., Lützen, A., Kalenius, E. Org. Biomol. Chem. 2019, 17, 6980–6984; https://doi.org/10.1039/c9ob01383k.Suche in Google Scholar PubMed

11. Macchioni, A., Ciancaleoni, G., Zuccaccia, C., Zuccaccia, D. Chem. Soc. Rev. 2008, 37, 479–489; https://doi.org/10.1039/b615067p.Suche in Google Scholar PubMed

12. Lamm, J.-H., Niermeier, P., Mix, A., Chmiel, J., Neumann, B., Stammler, H.-G., Mitzel, N. W. Angew. Chem. Int. Ed. 2014, 53, 7938–7942; https://doi.org/10.1002/anie.201402145.Suche in Google Scholar PubMed

13. Canovese, L., Levi, C., Visentin, F., Santo, C., Bertolasi, V. Inorg. Chim. Acta 2013, 404, 105–112; https://doi.org/10.1016/j.ica.2013.04.026.Suche in Google Scholar

14. Claridge, T. D. W. High-Resolution NMR Techniques in Organic Chemistry; Elsevier: Amsterdam, 2016.10.1016/B978-0-08-099986-9.00002-6Suche in Google Scholar

15. Zhao, Y. H., Abraham, M. H., Zissimos, A. M. J. Org. Chem. 2003, 68, 7368–7373; https://doi.org/10.1021/jo034808o.Suche in Google Scholar PubMed

16. Price, W. S., Ide, H., Arata, Y. J. Phys. Chem. A 1999, 103, 448–450; https://doi.org/10.1021/jp9839044.Suche in Google Scholar

17. Mills, R. J. Phys. Chem. 1973, 77, 685–688; https://doi.org/10.1021/j100624a025.Suche in Google Scholar

18. Toyama, H., Nakamura, M., Nakamura, M., Matsumoto, Y., Nakagomi, M., Hashimoto, Y. Bioorg. Med. Chem. 2014, 22, 1948–1959; https://doi.org/10.1016/j.bmc.2014.01.023.Suche in Google Scholar PubMed

19. Yam, V. W.-W., Choi, S. W.-K. J. Chem. Soc., Dalton Trans. 1994, 2057–2059.10.1039/dt9940002057Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2023-0022).


Received: 2023-04-03
Accepted: 2023-04-15
Published Online: 2023-05-05
Published in Print: 2023-06-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0022/html
Button zum nach oben scrollen