Abstract
(Pyrrolidinyldimethylsilyl)tetramethylcyclopentadienide complexes of lithium, sodium and potassium were synthesized and characterized, including crystal structure determinations. The lithium cyclopentadienide compound was used as a Cp transfer reagent to prepare the corresponding ferrocene, stannocene and plumbocene.
-
Author contributions: MM: lead: synthesis and characterization of compounds 1, 2a–c and 4a, b. JL: lead: synthesis and characterization of compounds 1 and 2a, supporting: characterization of compound 3; writing, reviewing and editing of the manuscript. LW: supporting: synthesis and characterization of compounds 1, 2a–c and 4a, b; reviewing of the manuscript. BM: lead: X-ray analysis. AS: lead: synthesis and characterization of compound 3; DFT calculations; writing, reviewing and editing of the manuscript; project administration and supervision; funding acquisition.
-
Research funding: Support and funding by the Deutsche Forschungsgemeinschaft, DFG, (Emmy Noether program SCHA1915/3-1/2) is gratefully acknowledged. Instrumentation and technical assistance for this work were provided by the Service Center X-ray Diffraction, with financial support from Saarland University and Deutsche Forschungsgemeinschaft, DFG, (INST256/506-1).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Jutzi, P., Burford, N. Chem. Rev. 1999, 99, 969–990; https://doi.org/10.1021/cr941099t.Search in Google Scholar PubMed
2. Poli, R. Chem. Rev. 1991, 91, 509–551; https://doi.org/10.1021/cr00004a004.Search in Google Scholar
3. Beswick, M. A., Palmer, J. S., Wright, D. S. Chem. Soc. Rev. 1998, 27, 225–232.10.1039/a827225zSearch in Google Scholar
4. Budzelaar, P. H. M., Engelberts, J. J., van Lenthe, J. H. Organometallics 2003, 22, 1562–1576; https://doi.org/10.1021/om020928v.Search in Google Scholar
5. Jutzi, P., Reumann, G. J. Chem. Soc., Dalton Trans. 2000, 2237–2244; https://doi.org/10.1039/b001365j.Search in Google Scholar
6. Hanusa, T. P. Organometallics 2002, 21, 2559–2571; https://doi.org/10.1021/om020168o.Search in Google Scholar
7. Lauk, S., Schäfer, A. Eur. J. Inorg. Chem. 2021, 5026–5036; https://doi.org/10.1002/ejic.202100770.Search in Google Scholar
8. Frei, A. Chem. Eur. J. 2019, 25, 7074–7090; https://doi.org/10.1002/chem.201900276.Search in Google Scholar PubMed
9. Mas-Roselló, J., Herraiz, A. G., Audic, B., Laverny, A., Cramer, N. Angew. Chem. Int. Ed. 2021, 60, 13198–13224; https://doi.org/10.1002/anie.202008166.Search in Google Scholar PubMed
10. Müller, C., Warken, J., Huch, V., Morgenstern, B., Bischoff, I.-A., Zimmer, M., Schäfer, A. Chem. Eur. J. 2021, 27, 6500–6510; https://doi.org/10.1002/chem.202005198.Search in Google Scholar PubMed PubMed Central
11. Van Leusen, D., Hessen, B. Organometallics 2001, 20, 224–226; https://doi.org/10.1021/om000678n.Search in Google Scholar
12. Škoch, K., Císařová, I., Schulz, J., Siemeling, U., Štěpnička, P. Dalton Trans. 2017, 46, 10339–10354; https://doi.org/10.1039/c7dt02336g.Search in Google Scholar PubMed
13. Guthardt, R., Blanckenberg, J., Bruhn, C., Siemeling, U. Chem. Commun. 2021, 57, 12984–12987; https://doi.org/10.1039/d1cc05287j.Search in Google Scholar PubMed
14. Luo, Y., Chi, S., Chen, J. New J. Chem. 2013, 37, 2675–2682; https://doi.org/10.1039/c3nj00214d.Search in Google Scholar
15. Deng, M., Chi, S., Luo, Y. New J. Chem. 2015, 39, 7575–7581; https://doi.org/10.1039/c5nj00279f.Search in Google Scholar
16. Schaefer, W. P., Cotter, W. D., Bercaw, J. E. Acta Crystallogr. 1993, C49, 1489–1492; https://doi.org/10.1107/s0108270193001842.Search in Google Scholar
17. Dinnebier, R. E., Behrens, U., Olbrich, F. Organometallics 1997, 16, 3855–3858; https://doi.org/10.1021/om9700122.Search in Google Scholar
18. Tedesco, C., Dinnebier, R. E., Olbrich, F., van Smaalen, S. Acta Crystallogr. 2001, B57, 673–679; https://doi.org/10.1107/s010876810101237x.Search in Google Scholar PubMed
19. Harder, S. Coord. Chem. Rev. 1998, 176, 17–66; https://doi.org/10.1016/s0010-8545(98)00113-1.Search in Google Scholar
20. Dinnebier, R. E., Schneider, M., van Smaalen, S., Olbrich, F., Behrens, U. Acta Crystallogr. 1999, B55, 35–44; https://doi.org/10.1107/s0108768198007009.Search in Google Scholar PubMed
21. Harder, S., Prosenc, M.-H. Angew. Chem. Int. Ed. Engl. 1994, 33, 1744–1746; https://doi.org/10.1002/anie.199417441.Search in Google Scholar
22. DFT calculations were performed with the Gaussian 16, Revision C.01 software suite. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A.Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J. Gaussian 16, (revision C.01); Gaussian, Inc.: Wallingford CT (USA), 2019.Search in Google Scholar
23. Adamo, C., Barone, V. J. Chem. Phys. 1999, 110, 6158–6170; https://doi.org/10.1063/1.478522.Search in Google Scholar
24. Grimme, S., Antony, J., Ehrlich, S., Krieg, H. J. Chem. Phys. 2010, 132, 154104; https://doi.org/10.1063/1.3382344.Search in Google Scholar PubMed
25. Weigend, F., Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305; https://doi.org/10.1039/b508541a.Search in Google Scholar PubMed
26. Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065; https://doi.org/10.1039/b515623h.Search in Google Scholar PubMed
27. Müller, C., Stahlich, A., Wirtz, L., Gretsch, C., Huch, V., Schäfer, A. Inorg. Chem. 2018, 57, 8050–8053; https://doi.org/10.1021/acs.inorgchem.8b01432.Search in Google Scholar PubMed
28. Müller, C., Andrada, D. M., Bischoff, I.-A., Zimmer, M., Huch, V., Steinbrück, N., Schäfer, A. Organometallics 2019, 38, 1052–1061; https://doi.org/10.1021/acs.organomet.8b00861.Search in Google Scholar
29. Staub, L.-H., Lambert, J., Müller, C., Morgenstern, B., Zimmer, M., Warken, J., Koldemir, A., Block, T., Pöttgen, R., Schäfer, A. Dalton Trans. 2022, 51, 10714–10720; https://doi.org/10.1039/d2dt00582d.Search in Google Scholar PubMed
30. Fulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E., Goldberg, K. I. Organometallics 2010, 29, 2176–2179; https://doi.org/10.1021/om100106e.Search in Google Scholar
31. Stern, D., Sabat, M., Marks, T. J. J. Am. Chem. Soc. 1990, 112, 9558–9575; https://doi.org/10.1021/ja00182a015.Search in Google Scholar
32. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar
33. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/S2053229614024218.Search in Google Scholar PubMed PubMed Central
34. Hübschle, C. B., Sheldrick, G. M., Dittrich, B. J. Appl. Crystallogr. 2011, 44, 1281–1284; https://doi.org/10.1107/s0021889811043202.Search in Google Scholar PubMed PubMed Central
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Cobalt(II) and nickel(II) complexes based on 2,5-di(pyridine-4-yl)thiazolo[5,4-d]thiazole and dicarboxylate ligands: synthesis, structures and properties
- Crystal structure of the oxidotechnetate(V) complex Na2[(TcVO)(OTf)5] · 2(TfOH) with TfOH = trifluoromethanesulfonic acid
- Design, synthesis, and in-silico study of new letrozole derivatives as prospective anticancer and antioxidant agents
- Understanding formation of the InPd3 polymorphs: a DFT study
- Aminosilyl-substituted cyclopentadienyl complexes of alkali metals
- Constitution of the fully supported gold(I)alkynyl (dmpme)·bis[gold(I)ethynyldimethylsilyl]methane in solution
- About the pseudo-ternary alkali metal-thallium(I) dicyanamide systems
- Tb2Co(B2O5)2 and Tb2Cu(B2O5)2 – two new borates with gadolinite-type structures
- SrMg2Ga2 with ThCr2Si2-type structure
- Note
- Synthesis and characterization of diphenyl(pentachlorophenyl)phosphanegold(I) chloride
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Cobalt(II) and nickel(II) complexes based on 2,5-di(pyridine-4-yl)thiazolo[5,4-d]thiazole and dicarboxylate ligands: synthesis, structures and properties
- Crystal structure of the oxidotechnetate(V) complex Na2[(TcVO)(OTf)5] · 2(TfOH) with TfOH = trifluoromethanesulfonic acid
- Design, synthesis, and in-silico study of new letrozole derivatives as prospective anticancer and antioxidant agents
- Understanding formation of the InPd3 polymorphs: a DFT study
- Aminosilyl-substituted cyclopentadienyl complexes of alkali metals
- Constitution of the fully supported gold(I)alkynyl (dmpme)·bis[gold(I)ethynyldimethylsilyl]methane in solution
- About the pseudo-ternary alkali metal-thallium(I) dicyanamide systems
- Tb2Co(B2O5)2 and Tb2Cu(B2O5)2 – two new borates with gadolinite-type structures
- SrMg2Ga2 with ThCr2Si2-type structure
- Note
- Synthesis and characterization of diphenyl(pentachlorophenyl)phosphanegold(I) chloride