Home Constitution of the fully supported gold(I)alkynyl (dmpme)·bis[gold(I)ethynyldimethylsilyl]methane in solution
Article
Licensed
Unlicensed Requires Authentication

Constitution of the fully supported gold(I)alkynyl (dmpme)·bis[gold(I)ethynyldimethylsilyl]methane in solution

  • Peter Heinrichs , Andreas Mix and Norbert W. Mitzel EMAIL logo
Published/Copyright: May 5, 2023
Become an author with De Gruyter Brill

Abstract

The dimetallacyclic complex H2C(Me2SiC≡CAuPMe2)2CH2 has been synthesized, in which the two gold centers are bridged by the diphosphine dmpme (= bis(dimethylphosphino)methane) and a diethynyl ligand providing “full support” for the possible transannular Au–Au contact (3). This compound and its “semi-” and “unsupported” analogues (21) have been characterized by NMR spectroscopy and elemental analysis. The monomeric nature of complex 3 in solution has been established using diffusion coefficients measured by DOSY-NMR spectroscopy and comparing the data with those of complexes 1 and 2 as references.


Corresponding author: Norbert W. Mitzel, Chair of Inorganic and Structural Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany, E-mail:

Acknowledgements

The authors thank Barbara Teichner for performing the CHN analyses and Dr. Jens Spross for measuring the accurate mass.

  1. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflict of interest regarding this article.

References

1. Schmidbaur, H., Wohlleben, A., Schubert, U., Frank, A., Huttner, G. Chem. Ber. 1977, 110, 2751–2757; https://doi.org/10.1002/cber.19771100810.Search in Google Scholar

2. Gupta, A. K., Orthaber, A. Chem. Eur. J. 2018, 24, 7536–7559; https://doi.org/10.1002/chem.201704667.Search in Google Scholar PubMed

3. Ahrland, S., Dreisch, K., Norén, B., Oskarsson, Å., Kankaanperä, A. Acta Chem. Scand. 1987, 41a, 173–177; https://doi.org/10.3891/acta.chem.scand.41a-0173.Search in Google Scholar

4. Dyson, D. B., Parish, R. V., McAuliffe, C. A., Pritchard, R. G., Fields, R., Beagley, B. J. Chem. Soc., Dalton Trans. 1989, 907–914.10.1039/DT9890000907Search in Google Scholar

5. Bates, P. A., Waters, J. M. Inorg. Chim. Acta 1985, 98, 125–129; https://doi.org/10.1016/s0020-1693(00)84921-x.Search in Google Scholar

6. Ahrland, S., Aurivillius, B., Dreisch, K., Norén, B., Oskarsson, Å., Carcanague, D. R., Chao, I., Houk, K. N. Acta Chem. Scand. 1992, 46, 262–265; https://doi.org/10.3891/acta.chem.scand.46-0262.Search in Google Scholar

7. Gil-Rubio, J., Vicente, J. Chem. Eur. J. 2018, 24, 32–46; https://doi.org/10.1002/chem.201703574.Search in Google Scholar PubMed

8. Bunaciu, A. A., Udriştioiu, E. G., Aboul-Enein, H. Y. Crit. Rev. Anal. Chem. 2014, 45, 289–299; https://doi.org/10.1080/10408347.2014.949616.Search in Google Scholar PubMed

9. Balzano, F., Cuzzola, A., Diversi, P., Ghiotto, F., Uccello‐Barretta, G. Eur. J. Inorg. Chem. 2007, 2007, 5556–5562; https://doi.org/10.1002/ejic.200700798.Search in Google Scholar

10. Kiesilä, A., Beyeh, N. K., Moilanen, J. O., Puttreddy, R., Götz, S., Rissanen, K., Barran, P., Lützen, A., Kalenius, E. Org. Biomol. Chem. 2019, 17, 6980–6984; https://doi.org/10.1039/c9ob01383k.Search in Google Scholar PubMed

11. Macchioni, A., Ciancaleoni, G., Zuccaccia, C., Zuccaccia, D. Chem. Soc. Rev. 2008, 37, 479–489; https://doi.org/10.1039/b615067p.Search in Google Scholar PubMed

12. Lamm, J.-H., Niermeier, P., Mix, A., Chmiel, J., Neumann, B., Stammler, H.-G., Mitzel, N. W. Angew. Chem. Int. Ed. 2014, 53, 7938–7942; https://doi.org/10.1002/anie.201402145.Search in Google Scholar PubMed

13. Canovese, L., Levi, C., Visentin, F., Santo, C., Bertolasi, V. Inorg. Chim. Acta 2013, 404, 105–112; https://doi.org/10.1016/j.ica.2013.04.026.Search in Google Scholar

14. Claridge, T. D. W. High-Resolution NMR Techniques in Organic Chemistry; Elsevier: Amsterdam, 2016.10.1016/B978-0-08-099986-9.00002-6Search in Google Scholar

15. Zhao, Y. H., Abraham, M. H., Zissimos, A. M. J. Org. Chem. 2003, 68, 7368–7373; https://doi.org/10.1021/jo034808o.Search in Google Scholar PubMed

16. Price, W. S., Ide, H., Arata, Y. J. Phys. Chem. A 1999, 103, 448–450; https://doi.org/10.1021/jp9839044.Search in Google Scholar

17. Mills, R. J. Phys. Chem. 1973, 77, 685–688; https://doi.org/10.1021/j100624a025.Search in Google Scholar

18. Toyama, H., Nakamura, M., Nakamura, M., Matsumoto, Y., Nakagomi, M., Hashimoto, Y. Bioorg. Med. Chem. 2014, 22, 1948–1959; https://doi.org/10.1016/j.bmc.2014.01.023.Search in Google Scholar PubMed

19. Yam, V. W.-W., Choi, S. W.-K. J. Chem. Soc., Dalton Trans. 1994, 2057–2059.10.1039/dt9940002057Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2023-0022).


Received: 2023-04-03
Accepted: 2023-04-15
Published Online: 2023-05-05
Published in Print: 2023-06-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0022/html
Scroll to top button