Startseite Untersuchungen zur Polymorphie der Cäsium-Dodekahalogeno-closo-Dodekaborate Cs2[B12X12] (X = Cl–I)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Untersuchungen zur Polymorphie der Cäsium-Dodekahalogeno-closo-Dodekaborate Cs2[B12X12] (X = Cl–I)

  • Ioannis Tiritiris , Kevin U. Bareiß und Thomas Schleid EMAIL logo
Veröffentlicht/Copyright: 12. August 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Thermoanalytic DSC and temperature-dependent X-ray diffraction investigations on the cesium dodecahalogeno-closo-dodecaborates Cs2[B12X12] (X = Cl–I) have revealed solid-solid phase transitions from their trigonal room-temperature α-forms (e.g. α-Cs2[B12Cl12]: a = 959.67(3) pm, c = 4564.2(2) pm, Z = 6, space group R3¯) into cubic high-temperature modifications. The isotypic title compounds crystallize in the space group Pm3¯n (e.g. β-Cs2[B12Cl12]: a = 1051.98(6) pm, Z = 2) with a W3O-type defect structure. The statistic occupation of six possible positions with only four Cs+ cations results in a cation-deficient A2B arrangement for Cs2[B12X12]. Upon cooling the β-phase, a third polymorph was observed, which also crystallizes in the cubic system, but now in the space group Ia3¯d (e.g. γ-Cs2[B12Cl12]: a = 2102.2(3) pm, Z = 16), and has to be regarded as a phase with only a partially disordered cation substructure. In this crystal structure the [B12X12]2− anions exhibit a NaTl-type arrangement, in which the Cs+ cations occupy suitable interstices. The phase transitions of the differently halogenated cesium salts follow no specific trend as the transition from the trigonal α- to the cubic β-form occurs at 178 °C for the chlorinated, at 270 °C for the iodinated and at 325 °C for the brominated examples. On further heating however, β-Cs2[B12I12] starts to decompose at 945 °C first, followed by β-Cs2[B12Br12] and β-Cs2[B12Cl12] at 959 °C and 983 °C, respectively.


Widmung: Professor Peter Paetzold zum 85. Geburtstag.



Corresponding author: Thomas Schleid, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany, E-mail:

  1. Danksagung: Wir danken Herrn Dr. Falk Lissner (AOR) für die Einkristallmessungen, Herrn Christof Schneck (CTA) für die DSC-Messungen sowie dem Land Baden-Württemberg (Stuttgart) und der Deutschen Forschungsgemeinschaft (Bonn) im Rahmen der Förderung des Graduiertenkollegs „Moderne Methoden der magnetischen Resonanz in der Materialforschung“ an der Universität Stuttgart für die großzügige Unterstützung mit Personal- und Sachmitteln.

  2. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Research funding: None declared.

  4. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2004, 630, 1555–1563; https://doi.org/10.1002/zaac.200400167.Suche in Google Scholar

2. Tiritiris, I. Untersuchungen zu Reaktivität, Aufbau und struktureller Dynamik von salzartigen closo-Dodekaboraten. Dissertation, Universität Stuttgart: Stuttgart, 2004.Suche in Google Scholar

3. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2002, 628, 2212.10.1002/1521-3749(200209)628:9/10<2212::AID-ZAAC11112212>3.0.CO;2-6Suche in Google Scholar

4. Hägg, G., Schönberg, N. Acta Crystallogr. 1954, 7, 351–352; https://doi.org/10.1107/s0365110x54000989.Suche in Google Scholar

5. Hahn Th., Wilson, A. J. C., Eds. International Tables for Crystallography, 3rd ed.; Kluwer Acad. Publ., Dordrecht, Boston, London, 1992.Suche in Google Scholar

6. Tiritiris, I., Schleid, Th., Müller, K., Preetz, W. Z. Anorg. Allg. Chem. 2000, 626, 323–325.10.1002/(SICI)1521-3749(200002)626:2<323::AID-ZAAC323>3.0.CO;2-QSuche in Google Scholar

7. Geis, V., Guttsche, K., Knapp, C., Scherer, H., Uzun, R. Dalton Trans. 2009, 15, 2687–2694; https://doi.org/10.1039/b821030f.Suche in Google Scholar

8. Knoth, W. H., Miller, H. C., Sauer, J. C., Balthis, J. H., Chia, Y. T., Muetterties, E. L. Inorg. Chem. 1964, 3, 159–167; https://doi.org/10.1021/ic50012a002.Suche in Google Scholar

9. Kuznetsov, N. T., Kulikova, L. N., Zhukov, S. T. Russ. J. Inorg. Chem. 1976, 21, 51–53.Suche in Google Scholar

10. Tiritiris, I., Schleid, Th. Z. Kristallogr. 2000, S17, 128.Suche in Google Scholar

11. Moury, R., Lodziana, Z., Remhof, A., Duchêne, L., Roedern, E., Gigante, A., Hagemann, H. Acta Crystallogr. 2019, B75, 406–413; https://doi.org/10.1107/s2052520619004670.Suche in Google Scholar

12. Hoch, C., Zimmermann, L. W., Schleid, Th. Z. Kristallogr. 2012, S32, 99.Suche in Google Scholar

13. Netzsch-Gerätebau GmbH, NETZSCH TA: Thermoanalysen-Software für MS-Windows, Selb, Deutschland, 1999.Suche in Google Scholar

14. Programm X-SHAPE (Version 1.06); STOE & Cie GmbH: Darmstadt, Deutschland, 1999.Suche in Google Scholar

15. Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467–473; https://doi.org/10.1107/s0108767390000277.Suche in Google Scholar

16. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar

17. Brandenburg, K., DIAMOND (Version 4.4.1), Crystal and Molecular Structure Visualization, Crystal Impact – K. Brandenburg & H. Putz GbR: Bonn, Deutschland, 2000.Suche in Google Scholar

18. Programm STOE VISUAL XPOW, (Version 1.04); STOE & Cie GmbH: Darmstadt, Deutschland, 1998.Suche in Google Scholar

Erhalten: 2020-06-05
Angenommen: 2020-06-11
Online erschienen: 2020-08-12
Erschienen im Druck: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2020-0096/html
Button zum nach oben scrollen