Abstract
The ytterbium(III) oxide bromide oxidotellu-rate(IV) Yb3O2Br[TeO3]2 was obtained from a mixture of Yb2O3, YbBr3 and TeO2 in a molar ratio of 2:1:2 along with an excess of KBr as fluxing agent in evacuated fused silica ampoules after 10 days at T = 800 °C and subsequent slow cooling to room temperatures as colorless, plate-shaped single crystals. Its triclinic crystal structure (a = 663.97(5), b = 697.46(5), c = 1080.15(8) pm, α = 105.102(3), β = 90.931(3), γ = 100.034(3)°; Z = 2, space group: P
Gewidmet Professor Christian Robl zum 65. Geburtstag.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
Literatur
1. Wontcheu, J. Oxoselenates(IV) of the Trivalent Rare-Earth Elements and Some Derivatives. Dissertation, Universität Stuttgart: Stuttgart, 2004.Search in Google Scholar
2. Lipp, C. Halogenid- und Alkalimetall-Derivate von Selten-Erd-Metall(III)-Oxoselenaten(IV). Dissertation, Universität Stuttgart: Stuttgart, 2008.Search in Google Scholar
3. Zitzer, S. Selten-Erd-Metall(III)-Oxoselenate(IV) und -Oxotellurate(IV): Synthese, Kristallstrukturaufklärung und fluoreszenzspektroskopische Untersuchungen ausgewählter Leuchtstoffe. Dissertation, Universität Stuttgart: Stuttgart, 2012.Search in Google Scholar
4. Greiner, S. Synthese und Charakterisierung von Seltenerdmetall(III)-Verbindungen mit komplexen Lone-Pair-Oxochalkogenat-Anionen. Dissertation, Universität Stuttgart: Stuttgart, 2018.Search in Google Scholar
5. Chou, S.-C. Rare-Earth Metal(III) Oxoselenates(IV) and Oxotellurates(IV) and Investigation of their Luminescent Properties. Dissertation, Universität Stuttgart: Stuttgart, 2016.Search in Google Scholar
6. Wontcheu, J., Schleid, Th. Z. Anorg. Allg. Chem. 2003, 629, 1463–1465; https://doi.org/10.1002/zaac.200300105.Search in Google Scholar
7. Krügermann, I., Wickleder, M. S. J. Solid State Chem. 2002, 167, 113–118; https://doi.org/10.1006/jssc.2002.9629.Search in Google Scholar
8. Wickleder, M. S. Z. Anorg. Allg. Chem. 2000, 626, 547–551; https://doi.org/10.1002/(sici)1521-3749(200002)626:2<547::aid-zaac547>3.0.co;2-v.10.1002/(SICI)1521-3749(200002)626:2<547::AID-ZAAC547>3.0.CO;2-VSearch in Google Scholar
9. Krügermann, I., Wickleder, M. S. Z. Anorg. Allg. Chem. 2002, 628, 2197; https://doi.org/10.1002/1521-3749(200209)628:9/10<2197::aid-zaac11112197>3.0.co;2-3.10.1002/1521-3749(200209)628:9/10<2197::AID-ZAAC11112197>3.0.CO;2-3Search in Google Scholar
10. Krügermann, I., Wickleder, M. S., Wontcheu, J., Schleid, Th. Z. Anorg. Allg. Chem. 2006, 632, 901–904; https://doi.org/10.1002/zaac.200600016.Search in Google Scholar
11. Greiner, S., Chou, S.-C., Schleid, Th. J. Solid State Chem. 2017, 246, 160–166; https://doi.org/10.1016/j.jssc.2016.11.011.Search in Google Scholar
12. Lipp, C., Schleid, Th. Z. Anorg. Allg. Chem. 2008, 634, 657–661; https://doi.org/10.1002/zaac.200700544.Search in Google Scholar
13. Lipp, C., Schleid, Th. Z. Anorg. Allg. Chem. 2008, 634, 1662–1668; https://doi.org/10.1002/zaac.200800099.Search in Google Scholar
14. Lipp, C., Schleid, Th. Z. Naturforsch. 2009, 64b, 375–382; https://doi.org/10.1515/znb-2009-0403.Search in Google Scholar
15. Lipp, C., Schleid, Th. Z. Anorg. Allg. Chem. 2007, 633, 1429–1434; https://doi.org/10.1002/zaac.200700158.Search in Google Scholar
16. Wickleder, M. S., Göhausen, I. Z. Anorg. Allg. Chem. 2000, 626, 1725–1727; https://doi.org/10.1002/1521-3749(200008)626:8<1725::aid-zaac1725>3.0.co;2-q.10.1002/1521-3749(200008)626:8<1725::AID-ZAAC1725>3.0.CO;2-QSearch in Google Scholar
17. Lipp, C., Schleid, Th. Z. Naturforsch. 2008, 63b, 229–236; https://doi.org/10.1515/znb-2008-0301.Search in Google Scholar
18. Wontcheu, J., Schleid, Th. Z. Anorg. Allg. Chem. 2002, 628, 1941–1945; https://doi.org/10.1002/1521-3749(200209)628:9/10<1941::aid-zaac1941>3.0.co;2-b.10.1002/1521-3749(200209)628:9/10<1941::AID-ZAAC1941>3.0.CO;2-BSearch in Google Scholar
19. Wontcheu, J., Zitzer, S., Schleid, Th. Z. Naturforsch. 2016, 71b, 1279–1285; https://doi.org/10.1515/znb-2016-0180.Search in Google Scholar
20. Schleid, Th., Wontcheu J. J. Alloys Compd. 2006, 418, 45–52; https://doi.org/10.1016/j.jallcom.2005.08.098.Search in Google Scholar
21. Wontcheu, J., Schleid, Th. Z. Anorg. Allg. Chem. 2005, 631, 309–315; https://doi.org/10.1002/zaac.200400261.Search in Google Scholar
22. Su, S. -H., Wontcheu, J., Schleid, Th. Z. Kristallogr. 2018, S38, 96.Search in Google Scholar
23. Zitzer, S., Schleifenbaum, F., Schleid, Th. Z. Kristallogr. 2011, 226, 651–656; https://doi.org/10.1524/zkri.2011.1406.Search in Google Scholar
24. Su, S.-H. Investigations into Rare-Earth Metal(III) Oxoselenates(IV) and Ultra-Thin Layered Selenides. Dissertation, Universität Stuttgart: Stuttgart, 2018.Search in Google Scholar
25. Kang, D. -H., Wontcheu, J., Schleid, Th. Solid State Sci. 2009, 11, 299–304; https://doi.org/10.1016/j.solidstatesciences.2008.09.013.Search in Google Scholar
26. Zitzer, S., Schleid, Th. Z. Naturforsch. 2009, 64b, 197–203.10.1515/znb-2009-0209Search in Google Scholar
27. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar
28. Chou, S.-C., Höss, P., Strobel, S., Schleid, Th. Z. Anorg. Allg. Chem. (in Vorbereitung).Search in Google Scholar
29. Meier, S. F. Neues über Oxotellurate dreiwertiger Lanthanide. Dissertation, Universität Stuttgart: Stuttgart, 2002.Search in Google Scholar
30. Meier, S. F., Höss, P., Schleid, Th. Z. Anorg. Allg. Chem. 2009, 635, 768–775; https://doi.org/10.1002/zaac.200900030.Search in Google Scholar
31. Höss, P., Meier, S. F., Schleid, Th. Z. Anorg. Allg. Chem. 2013, 639, 2548–2553; https://doi.org/10.1002/zaac.201300399.Search in Google Scholar
32. Höss, P., Starkulla, G., Schleid, Th. Acta Crystallogr. 2005, E61, i113–i115; https://doi.org/10.1107/s1600536805016090.Search in Google Scholar
33. Höss, P., Osvet, A., Meister, F., Batentschuk, M., Winnacker, A., Schleid, Th. J. Solid State Chem. 2008, 181, 2783–2788; https://doi.org/10.1016/j.jssc.2008.07.002.Search in Google Scholar
34. Castro, A., Enjalbert, R., Lloyd, D., Rasines, I., Galy, J. J. Solid State Chem. 1990, 85, 100–107; https://doi.org/10.1016/s0022-4596(05)80065-9.Search in Google Scholar
35. Meier, S. F., Schleid, Th. Z. Naturforsch. 2004, 59b, 881–888; https://doi.org/10.1515/znb-2004-0802.Search in Google Scholar
36. Weber, F. A., Meier, S. F., Schleid, Th. Z. Anorg. Allg. Chem. 2001, 627, 2225; https://doi.org/10.1002/1521-3749(200109)627:9<2225::aid-zaac2225>3.0.co;2-d.10.1002/1521-3749(200109)627:9<2225::AID-ZAAC2225>3.0.CO;2-DSearch in Google Scholar
37. Höss, P., Schleid, Th. Z. Anorg. Allg. Chem. 2007, 633, 1391–1396; https://doi.org/10.1002/zaac.200700074.Search in Google Scholar
38. Meier, S. F., Schleid, Th. Z. Naturforsch. 2005, 60b, 720–726; https://doi.org/10.1515/znb-2005-0704.10.1515/znb-2005-0704Search in Google Scholar
39. Meier, S. F., Schleid, Th. Z. Anorg. Allg. Chem. 2002, 628, 526–528; https://doi.org/10.1002/1521-3749(200203)628:3<526::aid-zaac526>3.0.co;2-0.10.1002/1521-3749(200203)628:3<526::AID-ZAAC526>3.0.CO;2-0Search in Google Scholar
40. Greiner, S., Russ, P. L., Schleid, Th. Z. Kristallogr. 2020, S40, 63.Search in Google Scholar
41. Zitzer, S., Su, S.-H., Greiner, S., Schleid, Th. Z. Anorg. Allg. Chem. 2018, 644, 1540–1548; https://doi.org/10.1002/zaac.201800339.Search in Google Scholar
42. Blachnik, R., Jäger-Kasper, A. Z. Anorg. Allg. Chem. 1980, 461, 74–86; https://doi.org/10.1002/zaac.19804610112.Search in Google Scholar
43. Meyer, G. Prog. Solid State Chem. 1982, 14, 141–219; https://doi.org/10.1016/0079-6786(82)90005-x.Search in Google Scholar
44. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar
45. Schleid, Th. Meyer G. J. Less Common Met. 1989, 149, 73–80; https://doi.org/10.1016/0022-5088(89)90472-4.Search in Google Scholar
46. Vasundhara, K., Achary, S. N., Patwe, S. J., Sahu, A. K., Manoj, N., Tyagi, A. K. J. Alloys Compds. 2014, 596, 151–157; https://doi.org/10.1016/j.jallcom.2014.01.201.Search in Google Scholar
47. Brenner, M. Kinetische Studien zu Phasenumwandlungen zwischen polymorphen Formen von YbBr2 sowie die Bestimmung der Kristallstruktur von YbBr3. Dissertation, Universität Karlsruhe: Karlsruhe, 1997.Search in Google Scholar
48. Politzer, P., Lane, P., Concha, M. C., Ma, Y., Murray, J. S. J. Mol. Model. 2007, 13, 305–311; https://doi.org/10.1007/s00894-006-0154-7.Search in Google Scholar PubMed
49. Clark, T., Hennemann, M., Murray, J. S., Politzer, P. J. Mol. Model. 2007, 13, 291–296; https://doi.org/10.1007/s00894-006-0130-2.Search in Google Scholar PubMed
50. Metrangolo, P., Meyer, F., Pilati, T., Resnati, G., Terraneo, G. Angew. Chem. Int. Ed. 2008, 47, 6114–6127; https://doi.org/10.1002/anie.200800128.Search in Google Scholar PubMed
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Na2MgSnS4 – a new member of the A2IBIICIVX4 family of compounds
- Synthesis, crystal structure, luminescence, and photocatalytic properties of a 2D Cu(II) metal-organic frameworks based on 3,5-di(1H-benzimidazol-1-yl)pyridine and 4,4′-oxybis(benzoate) ligands
- Synthesis and structural characterization of a three-dimensional two-fold interpenetrated coordination polymer constructed from bis(4-(1H-imidazol-1-yl)phenyl)methanone and 1,1ʹ-biphenyl-2,2ʹ-dicarboxylate ligands for cadmium(II)
- Impact of aging on the hydration of tricalcium aluminate (C3A)/gypsum blends and the effectiveness of retarding admixtures
- Influence of meso-linker attachment on the formation of core···π interactions in urea-functionalized porphyrins
- Single-crystal investigation of Ce5AgxGe4−x (x = 0.1−1.08) with Sm5Ge4 type
- Wirt-Gast-Komplexe von [bfu.bfu.bfu]: Vorhersage von Ionenselektivitäten mittels quantenchemischer Rechnungen XIII
- Untersuchungen zur Polymorphie der Cäsium-Dodekahalogeno-closo-Dodekaborate Cs2[B12X12] (X = Cl–I)
- Das Ytterbium(III)-Oxidbromid-Oxidotellurat(IV) Yb3O2Br[TeO3]2
- Note
- Sc14Co3.10In2.59 – the representative of the Lu14Co3In3 type with the smallest rare earth element
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Na2MgSnS4 – a new member of the A2IBIICIVX4 family of compounds
- Synthesis, crystal structure, luminescence, and photocatalytic properties of a 2D Cu(II) metal-organic frameworks based on 3,5-di(1H-benzimidazol-1-yl)pyridine and 4,4′-oxybis(benzoate) ligands
- Synthesis and structural characterization of a three-dimensional two-fold interpenetrated coordination polymer constructed from bis(4-(1H-imidazol-1-yl)phenyl)methanone and 1,1ʹ-biphenyl-2,2ʹ-dicarboxylate ligands for cadmium(II)
- Impact of aging on the hydration of tricalcium aluminate (C3A)/gypsum blends and the effectiveness of retarding admixtures
- Influence of meso-linker attachment on the formation of core···π interactions in urea-functionalized porphyrins
- Single-crystal investigation of Ce5AgxGe4−x (x = 0.1−1.08) with Sm5Ge4 type
- Wirt-Gast-Komplexe von [bfu.bfu.bfu]: Vorhersage von Ionenselektivitäten mittels quantenchemischer Rechnungen XIII
- Untersuchungen zur Polymorphie der Cäsium-Dodekahalogeno-closo-Dodekaborate Cs2[B12X12] (X = Cl–I)
- Das Ytterbium(III)-Oxidbromid-Oxidotellurat(IV) Yb3O2Br[TeO3]2
- Note
- Sc14Co3.10In2.59 – the representative of the Lu14Co3In3 type with the smallest rare earth element