Startseite Traveling wavefronts in an anomalous diffusion predator–prey model
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Traveling wavefronts in an anomalous diffusion predator–prey model

  • Asmaa H. Abobakr , Hussien S. Hussien , Mahmoud B. A. Mansour ORCID logo und Hillal M. Elshehabey ORCID logo EMAIL logo
Veröffentlicht/Copyright: 15. Februar 2024

Abstract

In this paper, we study traveling wavefronts in an anomalous diffusion predator–prey model with the modified Leslie–Gower and Holling-type II schemes. We perform a traveling wave analysis to show that the model has heteroclinic trajectories connecting two steady state solutions of the resulting system of fractional partial differential equations and corresponding to traveling wavefronts. This also includes numerical results to show the existence of traveling wavefronts. Furthermore, we obtain the numerical time-dependent solutions in order to show the evolution of wavefronts. We find that wavefronts exist that travel faster in the anomalous subdiffusive regime than in the normal diffusive one. Our results emphasize that the main properties of traveling waves and invasions are altered by anomalous subdiffusion in this model.


Corresponding author: Hillal M. Elshehabey, Mathematics Department, South Valley University Faculty of Science, 83523, Qena, Egypt, E-mail:

Acknowledgments

We would like to express our sincere gratitude to the anonymous reviewer for their thoughtful and constructive feedback. Their insightful comments and suggestions have significantly contributed to the improvement of the quality and clarity of this manuscript.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no competing interests.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

[1] Z. P. Ma and W. T. Li, “Bifurcation analysis on a diffusive Holling-Tanner predator-prey model,” Appl. Math. Model., vol. 37, no. 6, pp. 4371–4384, 2013. https://doi.org/10.1016/j.apm.2012.09.036.Suche in Google Scholar

[2] K. Sambath, M. Balachandran, and H. J. Il, “Dynamics of a modified holling-tanner predator-prey model with diffusion,” J. Korean Soc. Ind. Appl. Math., vol. 23, no. 2, pp. 139–155, 2019.Suche in Google Scholar

[3] J.-S. G. Yan-Yu Chen, C.-H. Yao, and C. H. Yao, “Traveling wave solutions for a continuous and discrete diffusive predator-prey model,” J. Math. Anal. Appl., vol. 445, no. 1, pp. 212–239, 2017. https://doi.org/10.1016/j.jmaa.2016.07.071.Suche in Google Scholar

[4] R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: a fractional dynamics approach,” Phys. Rep., vol. 339, no. 1, pp. 1–77, 2000. https://doi.org/10.1016/s0370-1573(00)00070-3.Suche in Google Scholar

[5] G. Chacón-Acosta and M. Núñez-López, “Patterns in a time-fractional predator–prey system with Finite interaction range,” Math. Comput. Sci., vol. 4, no. 1, pp. 1–14, 2022.10.3390/cmsf2022004003Suche in Google Scholar

[6] A. Farhadi and E. Hanert, “Front propagation of exponentially truncated fractional-order epidemics,” Fractal fract., vol. 53, no. 6, pp. 1–23, 2022. https://doi.org/10.3390/fractalfract6020053.Suche in Google Scholar

[7] Z. L. Wei Zhang, F. Yu, and C. Huang, “Mathematical analysis of a fractional-order predator-prey network with feedback control strategy,” Comput. Intell. Neurosci., vol. 2021, pp. 1–17, 2021. https://doi.org/10.1155/2021/9358881.Suche in Google Scholar PubMed PubMed Central

[8] M. F. Carfora and I. Torcicollo, “A fractional-in-time prey-predator model with hunting cooperation: qualitative analysis, stability and numerical approximations,” Axioms, vol. 2, no. 10, pp. 1–14, 2021. https://doi.org/10.3390/axioms10020078.Suche in Google Scholar

[9] H. J. Haubold, A. M. Mathai, and R. Saxena, “Further solutions of fractional reaction-diffusion equations in terms of the H-function,” J. Comput. Appl. Math., vol. 235, no. 5, pp. 1311–1316, 2011. https://doi.org/10.1016/j.cam.2010.08.016.Suche in Google Scholar

[10] D. S. Shireen Jawad and M. Winter, “The dynamics of a two-species prey-predator model with wind effect,” Int. J. Nonlinear Anal. Appl., vol. 12, no. 3, pp. 2203–2210, 2021.Suche in Google Scholar

[11] E. Hanert, “Front dynamics in a two-species competition model driven by Le’vy flights,” J. Theor. Biol., vol. 300, no. 1, pp. 134–142, 2012. https://doi.org/10.1016/j.jtbi.2012.01.022.Suche in Google Scholar PubMed

[12] E. S. Emmanuel Hanert and E. Deleersnijder, “Front dynamics in fractional-order epidemic models,” J. Theor. Biol., vol. 279, no. 1, pp. 9–16, 2011. https://doi.org/10.1016/j.jtbi.2011.03.012.Suche in Google Scholar PubMed

[13] M. K. Boris Baeumer and M. M. Meerschaert, “Numerical solutions for fractional reaction-diffusion equations,” Comput. Math. Appl., vol. 55, no. 10, pp. 2212–2226, 2008. https://doi.org/10.1016/j.camwa.2007.11.012.Suche in Google Scholar

[14] C. Li and F. Zeng, “Finite difference methods for fractional differential equations,” Int. J. Bifurcat. Chaos, vol. 22, no. 4, pp. 1–28, 2011.10.1142/S0218127412300145Suche in Google Scholar

[15] S. R. Dunbar, “Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in R4,” Trans. Am. Math. Soc., vol. 286, no. 2, pp. 57–94, 1984. https://doi.org/10.2307/1999810.Suche in Google Scholar

[16] B. I. Camara, “Waves analysis and spatiotemporal pattern formation of an ecosystem model,” Nonlinear Anal. Real World Appl., vol. 12, no. 5, pp. 2511–2528, 2011. https://doi.org/10.1016/j.nonrwa.2011.02.020.Suche in Google Scholar

[17] M. A. Aziz-Alaoui and M. D. Okiye, “Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes,” Appl. Math. Lett., vol. 16, no. 7, pp. 1069–1075, 2003. https://doi.org/10.1016/s0893-9659(03)90096-6.Suche in Google Scholar

[18] W.-C. Y. Tian and C. Wu, “Traveling wave solutions of a diffusive predator–prey model with modified Leslie–Gower and Holling-type II schemes,” Trans. Am. Math. Soc., vol. 125, no. 35, pp. 1–25, 2018. https://doi.org/10.1007/s12044-018-0401-8.Suche in Google Scholar

[19] G. Jumarie, “Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results,” Comput. Math. Appl., vol. 51, no. 9, pp. 1367–1376, 2006. https://doi.org/10.1016/j.camwa.2006.02.001.Suche in Google Scholar

Received: 2023-11-11
Accepted: 2024-01-13
Published Online: 2024-02-15
Published in Print: 2024-05-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2023-0306/html
Button zum nach oben scrollen