Abstract
Local structures and electron paramagnetic resonance (EPR) parameters (g factors g x , g y , and g z ) for the substitutional Ti3+ and W5+ centers in stishovite are theoretically investigated by using the high-order perturbation formulas of these parameters for a d1 ion in rhombically compressed octahedra. In the calculation formulas, the related molecular orbital coefficients are obtained from the cluster approach, and the relevant crystal-field (CF) parameters are determined from the superposition model, which enables to connect these CF parameters and, hence, the studied g factors with the local structures of the Ti3+ and W5+ centers in stishovite. Based on the calculations, the impurity–ligand bond lengths parallel and perpendicular to the C2-axis are found to be R′|| (≈1.751 and 1.717 Å) and R′⊥ (≈1.788 and 1.806 Å) with the planar bond angles θ′ (≈89.0° and 88.2°) for the studied [TiO6]9− and [WO6]7− clusters, respectively. The calculated results are in good agreement with the experimental data, and the validity of the results is discussed.
Acknowledgements
This work is financially supported by the Natural Science Foundation of Jiangxi (Grant No. 20212BAB201021), Research on teaching reform from Nanchang Hangkong University (Grant No. JY21069), Foundation of Jiangxi Educational Committee (Grant Nos. GJJ180524, GJJ211703), and Shangrao Basic Application Research Project (SKB20211011).
-
Research ethics: Ethics approval was not required for this research.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
[1] C. Z. Tan and J. Arndt, “Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range,” J. Phys. Chem. Solids, vol. 61, no. 8, pp. 1315–1320, 2000. https://doi.org/10.1016/s0022-3697(99)00411-4.Suche in Google Scholar
[2] K. Klier, J. A. Spirko, and K. M. Landskron, “Optical absorption anisotropy of high-density, wide-gap, high-hardness SiO2 polymorphs seifertite, stishovite, and coesite,” Am. Mineral., vol. 100, no. 1, pp. 120–129, 2015. https://doi.org/10.2138/am-2015-4890.Suche in Google Scholar
[3] A. N. Trukhin, J. L. Jansons, T. I. Dyuzheva, L. M. Lityagina, and N. A. Bendeliani, “Luminescence of different modifications of crystalline silicon dioxide: stishovite and coesite,” Solid State Commun., vol. 127, no. 6, pp. 415–418, 2003. https://doi.org/10.1016/s0038-1098(03)00456-3.Suche in Google Scholar
[4] A. N. Trukhin, K. Smits, A. Sharakosky, G. Chikvaidze, T. I. Dyuzheva, and L. M. Lityagina, “Luminescence of dense, octahedral structured crystalline silicon dioxide (stishovite),” J. Lumin., vol. 131, no. 11, pp. 2273–2278, 2011. https://doi.org/10.1016/j.jlumin.2011.05.062.Suche in Google Scholar
[5] R. Das and R. K. Soni, “Highly stable In@SiO2 core-shell nanostructures for ultraviolet surface-enhanced Raman spectroscopy,” Appl. Surf. Sci., vol. 489, pp. 755–765, 2019. https://doi.org/10.1016/j.apsusc.2019.06.003.Suche in Google Scholar
[6] S. Mallakpour and M. Naghdi, “Polymer/SiO2 nanocomposites: production and applications,” Prog. Mater. Sci., vol. 97, pp. 409–447, 2018. https://doi.org/10.1016/j.pmatsci.2018.04.002.Suche in Google Scholar
[7] Y. Wang, et al.., “Elaborately tailored NiCo2O4 for highly efficient overall water splitting and urea electrolysis,” Green Chem., vol. 25, no. 20, pp. 8181–8195, 2023. https://doi.org/10.1039/d3gc01828h.Suche in Google Scholar
[8] H. Zhang and X. Wan, “Theoretical studies of spin Hamiltonian parameters for the tetragonally elongated Cu2+ centers in ARbB4O7 (A = Li, Na, K) glasses,” J. Non-Cryst. Solids, vol. 361, pp. 43–46, 2013. https://doi.org/10.1016/j.jnoncrysol.2012.10.019.Suche in Google Scholar
[9] P. Lombard, N. Ollier, and B. Boizot, “EPR study of Ti3+ ions formed under beta irradiation in silicate glasses,” J. Non-Cryst. Solids, vol. 357, no. 7, pp. 1685–1689, 2011. https://doi.org/10.1016/j.jnoncrysol.2010.12.015.Suche in Google Scholar
[10] M. Qin, et al.., “Achieving highly efficient pH-universal hydrogen evolution by Mott-Schottky heterojunction of Co2P/Co4N,” Chem. Eng. J., vol. 454, p. 140230, 2023. https://doi.org/10.1016/j.cej.2022.140230.Suche in Google Scholar
[11] M. Wang and L. Zhu, “EPR g factors and defect structures for V4+ and Cr5+ in the rutile-type crystals,” J. Mol. Struct., vol. 1117, pp. 265–268, 2016. https://doi.org/10.1016/j.molstruc.2016.03.090.Suche in Google Scholar
[12] R. R. Rakhimov, D. E. Jones, H. L. Rocha, A. I. Prokof’ev, and A. I. Aleksandrov, “Electron paramagnetic resonance study of W5+ pairs in Lithium−Tungsten phosphate glasses,” J. Phys. Chem. B, vol. 104, no. 47, pp. 10973–10977, 2000. https://doi.org/10.1021/jp000150w.Suche in Google Scholar
[13] H. Zhang, W. Xiao, and X. Wan, “Theoretical studies of the optical and EPR spectra for VO2+ in MgKPO4·6H2O single crystal,” Physica B, vol. 449, pp. 225–228, 2014. https://doi.org/10.1016/j.physb.2014.05.036.Suche in Google Scholar
[14] Y. Pan, M. Mao, Z. Li, S. M. Botis, R. I. Mashkovtsev, and A. Shatskiy, “Single-crystal EPR study of three radiation-induced defects (Al–O23−, Ti3+ and W5+) in stishovite,” Phys. Chem. Miner., vol. 39, pp. 627–637, 2012. https://doi.org/10.1007/s00269-012-0517-9.Suche in Google Scholar
[15] F. Kubec and Z. Šroubek, “Paramagnetic resonance of interstitial V4+ in TiO2,” J. Chem. Phys., vol. 57, no. 4, pp. 1660–1663, 2003. https://doi.org/10.1063/1.1678451.Suche in Google Scholar
[16] D. Kivelson and S. K. Lee, “ESR studies and the electronic structure of vanadyl ion complexes,” J. Chem. Phys., vol. 41, no. 7, pp. 1896–1903, 2004. https://doi.org/10.1063/1.1726180.Suche in Google Scholar
[17] Z. H. Zhang, S. Y. Wu, P. Xu, L. L. Li, and S. X. Zhang, “Studies on the local structures and spin Hamiltonian parameters for the rhombic Nb4+centers in MO2(M = Sn, Ti and Ge) crystals,” Eur. Phys. J.- Appl. Phys., vol. 53, no. 2, p. 20902, 2011. https://doi.org/10.1051/epjap/2010100161.Suche in Google Scholar
[18] M. G. Brik and N. M. Avram, “Microscopic analysis of the crystal field strength and electron-vibrational interaction in cubic SrTiO3doped with Cr3+, Mn4+and Fe5+ions,” J. Phys.: Condens. Matter, vol. 21, no. 15, p. 155502, 2009. https://doi.org/10.1088/0953-8984/21/15/155502.Suche in Google Scholar PubMed
[19] J. Z. Lin, S. Y. Wu, Q. Fu, and H.-M. Zhang, “Theoretical studies on the EPR parameters of the interstitial V4+ in rutile,” Radiat. Eff. Defects Solids, vol. 161, no. 10, pp. 571–577, 2006. https://doi.org/10.1080/10420150600879864.Suche in Google Scholar
[20] Y. M. Wang, S. Y. Wu, S. J. Jiang, Y. J. Luo, Q. S. Zhu, and M. Han, “Investigations of defect structures for V4+ in CBPB glasses with distinct V2O5 contents,” J. Non-Cryst. Solids, vol. 566, p. 120879, 2021. https://doi.org/10.1016/j.jnoncrysol.2021.120879.Suche in Google Scholar
[21] H. M. Zhang, X. Wan, and Z. M. Zhang, “Theoretical studies of the spin Hamiltonian parameters and local structures for the tetragonal Cu2+ and Ni3+ centers in Mg2TiO4,” J. Alloys Compd., vol. 549, pp. 226–230, 2013. https://doi.org/10.1016/j.jallcom.2012.09.078.Suche in Google Scholar
[22] C. C. Ding, S. Y. Wu, Q. S. Zhu, Z. H. Zhang, B. H. Teng, and M. H. Wu, “An investigation on the defect structures and spin Hamiltonian parameters for the two orthorhombic Ti3+ centers in ZnWO4,” J. Phys. Chem. Solids, vol. 86, pp. 141–147, 2015. https://doi.org/10.1016/j.jpcs.2015.06.017.Suche in Google Scholar
[23] H. Zhang and W. Xiao, “Investigations on the EPR parameters and defect structures due to Jahn-Teller effect for the Cu2+ and Ni+ centers in LiNbO3,” J. Alloys Compd., vol. 745, pp. 586–591, 2018. https://doi.org/10.1016/j.jallcom.2018.02.209.Suche in Google Scholar
[24] D. J. Newman and B. Ng, “The superposition model of crystal fields,” Rep. Prog. Phys., vol. 52, no. 6, p. 699, 1989. https://doi.org/10.1088/0034-4885/52/6/002.Suche in Google Scholar
[25] C. C. Ding, S. Y. Wu, X. F. Hu, G. L. Li, and Y. Q. Xu, “An investigation of the local distortions and the EPR parameters for Cu2+ in 40MgO–(10−x)PbF2–50SiO2–xCuO glasses,” J. Alloys Compd., vol. 664, pp. 250–255, 2016. https://doi.org/10.1016/j.jallcom.2015.12.232.Suche in Google Scholar
[26] S. X. Zhang, S. Y. Wu, P. Xu, and L. L. Li, “Theoretical investigations on the spin Hamiltonian parameters and the local structure for Rh2+ in rutile,” Can. J. Phys., vol. 88, no. 1, pp. 49–53, 2010. https://doi.org/10.1139/p09-110.Suche in Google Scholar
[27] H. M. Zhang, J. H. Duan, W. B. Xiao, and X. Wan, “Theoretical studies of the local structure of Cu2+ center in aluminium lead borate glasses by their EPR and optical spectra,” J. Non-Cryst. Solids, vol. 425, pp. 173–175, 2015. https://doi.org/10.1016/j.jnoncrysol.2015.05.043.Suche in Google Scholar
[28] H. N. Dong and X. S. Liu, “Investigations on the local structure and EPR parameters for the trigonal Nd3+centre in CdS,” Mol. Phys., vol. 113, no. 5, pp. 492–496, 2015. https://doi.org/10.1080/00268976.2014.954018.Suche in Google Scholar
[29] J. R. Lyu, S. Y. Wu, Y. J. Hong, H. Wu, and H. N. Dong, “Theoretical studies of the concentration dependences of d–d transition band, g factors, and local distortion for V4+ in Li2O–PbO–B2O3–P2O5 glasses,” Magn. Reson. Chem., vol. 60, no. 3, pp. 398–406, 2022. https://doi.org/10.1002/mrc.5232.Suche in Google Scholar PubMed
[30] M. Açıkgöz, R. Kripal, M. G. Misra, A. K. Yadav, P. Gnutek, and C. Rudowicz, “Theoretical analysis of crystal field parameters and zero field splitting parameters for Mn2+ ions in tetramethylammonium tetrachlorozincate (TMATC-Zn),” Polyhedron, vol. 235, p. 116341, 2023. https://doi.org/10.1016/j.poly.2023.116341.Suche in Google Scholar
[31] J. Yeon, M. D. Smith, G. Morrison, and H. C. zur Loye, “Trivalent cation-controlled phase space of new U(IV) fluorides, Na3MU6F30 (M = Al3+, Ga3+, Ti3+, V3+, Cr3+, Fe3+): mild hydrothermal synthesis including an in situ reduction step, structures, optical, and magnetic properties,” Inorg. Chem., vol. 54, no. 4, pp. 2058–2066, 2015. https://doi.org/10.1021/ic503034t.Suche in Google Scholar PubMed
[32] P. Petkova, “Influence of W5+ ions on the optical properties of doped Bi12TiO20,” Opt. Mater., vol. 37, pp. 160–164, 2014. https://doi.org/10.1016/j.optmat.2014.05.016.Suche in Google Scholar
[33] Q. Yu, et al.., “Textural, structural, and morphological characterizations and catalytic activity of nanosized CeO2–MOx (M=Mg2+, Al3+, Si4+) mixed oxides for CO oxidation,” J. Colloid Interface Sci., vol. 354, no. 1, pp. 341–352, 2011. https://doi.org/10.1016/j.jcis.2010.10.043.Suche in Google Scholar PubMed
[34] H. M. Zhang, S. Y. Wu, L. L. Li, and P. Xu, “Investigations on the g factors and superhyperfine parameters for various tetragonal Ni+ centers in RbCaF3,” J. Mol. Struct. THEOCHEM, vol. 942, nos. 1–3, pp. 104–109, 2010. https://doi.org/10.1016/j.theochem.2009.12.005.Suche in Google Scholar
[35] H. N. Dong, S. Y. Wu, and P. Li, “Theoretical explanation of EPR parameters for Cu2+ ion in TiO2 crystal,” Phys. Status Solidi (b), vol. 241, no. 8, pp. 1935–1938, 2004. https://doi.org/10.1002/pssb.200402033.Suche in Google Scholar
[36] S. Y. Wu, W. C. Zheng, and P. Ren, “Studies of local phase transition behavior for Co2+ in CsCaCl3 crystals from EPR data,” Appl. Magn. Reson., vol. 18, pp. 565–573, 2000. https://doi.org/10.1007/bf03162303.Suche in Google Scholar
[37] C. C. Ding and B. Duan, “Investigations on the role of doped 3d transition ions in Li2B4O7 glasses: local structures, spectroscopic properties and optical basicities,” Mater. Res. Bull., vol. 156, p. 111995, 2022. https://doi.org/10.1016/j.materresbull.2022.111995.Suche in Google Scholar
[38] B. Srinivas, A. Hameed, G. Ramadevudu, M. N. Chary, and M. Shareefuddin, “Evaluation of EPR parameters for compressed and elongated local structures of VO2+ and Cu2+ spin probes in BaO-TeO2-B2O3 glasses,” J. Phys. Chem. Solids, vol. 129, pp. 22–30, 2019. https://doi.org/10.1016/j.jpcs.2018.12.042.Suche in Google Scholar
[39] A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford, Clarendon Press, 2012.Suche in Google Scholar
[40] S. Y. Wu, X. Y. Gao, and H. N. Dong, “Investigations on the angular distortions around V2+ in CsMgX3 (X=Cl, Br, I),” J. Magn. Magn. Mater., vol. 301, no. 1, pp. 67–73, 2006. https://doi.org/10.1016/j.jmmm.2005.06.010.Suche in Google Scholar
[41] Z. H. Zhang, S. Y. Wu, B. T. Song, and X. F. Hu, “Investigations on the spin Hamiltonian parameters and defect structure for the interstitial Mo5+ centre in TiO2,” Optik, vol. 125, no. 18, pp. 5221–5224, 2014. https://doi.org/10.1016/j.ijleo.2014.05.009.Suche in Google Scholar
[42] L. H. Wei, S. Y. Wu, Z. H. Zhang, X. F. Wang, and Y. X. Hu, “Investigations on the local structure and g factors for the interstitial Ti3+ in TiO2,” Pramana, vol. 71, pp. 167–173, 2008. https://doi.org/10.1007/s12043-008-0149-2.Suche in Google Scholar
[43] C. C. Ding, S. Y. Wu, L. J. Zhang, X. F. Hu, and G. L. Li, “Studies of the local distortions for n d 1 (Mo5+ and W5+) impurities in KTP crystals,” Polyhedron, vol. 105, pp. 71–76, 2016. https://doi.org/10.1016/j.poly.2015.12.013.Suche in Google Scholar
[44] J. S. Griffith, The Theory of Transition-Metal Ions, London, Cambridge University Press, 1961.Suche in Google Scholar
[45] E. K. Hodgson and I. Fridovich, “Reversal of the superoxide dismutase reaction,” Biochem. Biophys. Res. Commun., vol. 54, no. 1, pp. 270–274, 1973. https://doi.org/10.1016/0006-291x(73)90918-2.Suche in Google Scholar PubMed
[46] T. W. Kool and M. Glasbeek, “V4+ in SrTiO3: a Jahn-Teller impurity,” Solid State Commun., vol. 32, no. 11, pp. 1099–1101, 1979. https://doi.org/10.1016/0038-1098(79)90839-1.Suche in Google Scholar
[47] H. J. de Jong and M. Glasbeek, “Electric field effects in EPR of the SrTiO3:Cr5+ Jahn-Teller system,” Solid State Commun., vol. 28, no. 8, pp. 683–687, 1978. https://doi.org/10.1016/0038-1098(78)90608-7.Suche in Google Scholar
[48] Y. V. Yablokov and T. A. Ivanova, “The labile magnetic structure of JT copper and nickel complexes in the layered oxides,” Coord. Chem. Rev., vol. 190-192, pp. 1255–1267, 1999. https://doi.org/10.1016/s0010-8545(99)00173-3.Suche in Google Scholar
[49] B. J. Chen, Y. D. Li, C. D. Feng, H. M. Zhang, C. Yan, and W. B. Xiao, “Theoretical studies of the g factors and local structures of the Ni3+ centers in Na2Zn(SO4)2·4H2O and K2Zn(SO4)2·6H2O crystals,” Magn. Reson. Chem., vol. 58, no. 10, pp. 921–928, 2020. https://doi.org/10.1002/mrc.5039.Suche in Google Scholar PubMed
[50] Y. Li, H. Zhang, D. Gui, J.-Z. Yin, and W. B. Xiao, “Theoretical studies of the EPR parameters and local structures for Ni3+ and Cu2+ centers in MgNH4PO4·6H2O,” Radiat. Eff. Defects Solids, vol. 176, nos. 9–10, pp. 804–816, 2021. https://doi.org/10.1080/10420150.2021.1956926.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- General
- Magnetoacoustics and magnetic quantization of Fermi states in relativistic plasmas
- Atomic, Molecular & Chemical Physics
- Investigations on the EPR parameters and local structures for the substitutional Ti3+ and W5+ centers in stishovite
- Dynamical Systems & Nonlinear Phenomena
- The effects of viscosity on the structure of shock waves in a van der Waals gas
- Traveling wavefronts in an anomalous diffusion predator–prey model
- Bifurcation and stability analysis of atherosclerosis disease model characterizing the anti-oxidative activity of HDL during short- and long-time evolution
- Nuclear Physics
- Investigation of 90,92Zr(n,γ)91,93Zr in the s-process nucleosynthesis
- Quantum Theory
- Quantum-mechanical treatment of two particles in a potential box
- Solid State Physics & Materials Science
- Unveiling the luminescence property of Pr-incorporated barium cerate perovskites for white LED applications
- Electrical and magnetic properties of MF/CuAl nanocomposites
Artikel in diesem Heft
- Frontmatter
- General
- Magnetoacoustics and magnetic quantization of Fermi states in relativistic plasmas
- Atomic, Molecular & Chemical Physics
- Investigations on the EPR parameters and local structures for the substitutional Ti3+ and W5+ centers in stishovite
- Dynamical Systems & Nonlinear Phenomena
- The effects of viscosity on the structure of shock waves in a van der Waals gas
- Traveling wavefronts in an anomalous diffusion predator–prey model
- Bifurcation and stability analysis of atherosclerosis disease model characterizing the anti-oxidative activity of HDL during short- and long-time evolution
- Nuclear Physics
- Investigation of 90,92Zr(n,γ)91,93Zr in the s-process nucleosynthesis
- Quantum Theory
- Quantum-mechanical treatment of two particles in a potential box
- Solid State Physics & Materials Science
- Unveiling the luminescence property of Pr-incorporated barium cerate perovskites for white LED applications
- Electrical and magnetic properties of MF/CuAl nanocomposites