Startseite Nonlinear vibration of microbeams subjected to a uniform magnetic field and rested on nonlinear elastic foundation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nonlinear vibration of microbeams subjected to a uniform magnetic field and rested on nonlinear elastic foundation

  • Süleyman Murat Bağdatlı ORCID logo , Necla Togun ORCID logo EMAIL logo , Burak Emre Yapanmış und Şevki Akkoca
Veröffentlicht/Copyright: 14. November 2023

Abstract

This study investigates the nonlinear vibration motions of the Euler–Bernoulli microbeam on a nonlinear elastic foundation in a uniform magnetic field based on Modified Couple Stress Theory (MCST). The effect of size, foundation, and magnetic field on the nonlinear vibration motion of microbeam has been examined. The governing equations related to the nonlinear vibration motions of the microbeam are obtained by using Hamilton’s Principle, and the Multiple Time Scale Method was used to obtain the solutions for the governing equations. The linear natural frequencies of microbeam are presented in the table according to nonlinear parameters and boundary conditions. The linear and nonlinear natural frequency ratio graphs are shown. The present study results are also compared with previous work for validation. It is observed that length scale parameters and magnetic force have a more significant effect on the natural frequency of microbeams. It is seen that when the linear elastic foundation coefficient, the Pasternak foundation and the magnetic force effects increase, the ratio of nonlinear and linear natural frequency decreases.


Corresponding author: Necla Togun, Department of Mechanical Engineering, Gaziantep University, Üniversite Bulvarı Şehitkamil, Gaziantep, Türkiye, E-mail:

  1. Research ethics: This article does not contain any studies with human participants or animals performed by any of the authors.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: On behalf of all the authors, the corresponding author states that there is no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

[1] F. L. Guo, “Thermo-elastic dissipation of microbeam resonators in the framework of generalized thermo-elasticity theory,” J. Therm. Stresses, vol. 36, no. 11, pp. 1156–1168, 2013. https://doi.org/10.1080/01495739.2013.818903.Suche in Google Scholar

[2] H. Jamshidifar, H. Askari, and B. Fidan, “Parameter identification and adaptive control of carbon nanotube resonators,” Asian J. Control, vol. 19, no. 2, pp. 1–10, 2017. https://doi.org/10.1002/asjc.1423.Suche in Google Scholar

[3] M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol., vol. 2, no. 2, pp. 114–120, 2007. https://doi.org/10.1038/nnano.2006.208.Suche in Google Scholar PubMed

[4] A. Subramanian, P. I. Oden, S. J. Kennel, et al.., “Glucose biosensing using an enzyme-coated microcantilever,” Appl. Phys. Lett., vol. 81, no. 2, pp. 385–387, 2002. https://doi.org/10.1063/1.1492308.Suche in Google Scholar

[5] X. Li, B. Bhushan, K. Takashima, C.-W. Baek, and Y.-K. Kim, “Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques,” Ultramicroscopy, vol. 97, pp. 481–494, 2003. https://doi.org/10.1016/S0304-3991(03)00077-9.Suche in Google Scholar PubMed

[6] J. Pei, F. Tian, and T. Thundat, “Glucose biosensor based on the microcantilever,” Anal. Chem., vol. 76, pp. 292–297, 2004. https://doi.org/10.1021/ac035048k.Suche in Google Scholar PubMed

[7] R. S. Pereira, “Atomic force microscopy as a novel pharmacological tool,” Biochem. Pharmacol., vol. 62, pp. 975–983, 2001. https://doi.org/10.1016/S0006-2952(01)00746-8.Suche in Google Scholar PubMed

[8] A. Zakria and A. Abouelregal, “Thermoelastic response of microbeams under a magnetic field rested on two-parameter viscoelastic foundation,” J. Comput. Appl. Mech., vol. 51, no. 2, pp. 332–339, 2020, https://doi.org/10.22059/jcamech.2019.293933.460.Suche in Google Scholar

[9] F. Yang, A. C. M. Chong, D. C. C. Lam, and P. Tong, “Couple stress based strain gradient theory for elasticity,” Int. J. Solids Struct., vol. 39, no. 10, pp. 2731–2743, 2002. https://10.1016/s0020-7683(02)00152-x.10.1016/S0020-7683(02)00152-XSuche in Google Scholar

[10] H. M. Ma, X. L. Gao, and J. N. Reddy, “A microstructure-dependent Timoshenko beam model based on a modified couple stress theory,” J. Mech. Phys. Solids, vol. 56, pp. 3379–3391, 2008. http://10.1016/j.jmps.2008.09.007.10.1016/j.jmps.2008.09.007Suche in Google Scholar

[11] S. K. Park and X. L. Gao, “Bernoulli–Euler beam model based on a modified couple stress theory,” J. Micromech. Microeng., vol. 16, no. 11, pp. 2355–2359, 2006. http://10.1088/0960-1317/16/11/015.10.1088/0960-1317/16/11/015Suche in Google Scholar

[12] M. Malikan and V. A. Eremeyev, “On time-dependent nonlinear dynamic response of micro-elastic solids,” Int. J. Eng. Sci., vol. 182, 2023, Art. no. 103793. https://doi.org/10.1016/j.ijengsci.2022.103793.Suche in Google Scholar

[13] M. Fathalilou, M. Sadeghi, and G. Rezazadeh, “Nonlinear behavior of capacitive micro-beams based on strain gradient theory,” J. Mech. Sci. Technol., vol. 28, no. 4, pp. 1141–1151, 2014. https://doi.org/10.1007/s12206-014-0102-x.Suche in Google Scholar

[14] M. S. Goughari, S. Jeon, and K. Hyock-Ju, “Fluid structure interaction of cantilever micro and nanotubes conveying magnetic fluid with small size effects under a transverse magnetic field,” J. Fluids Struct., vol. 94, pp. 1–11, 2020. https://doi.org/10.1016/j.jfluidstructs.2020.102951.Suche in Google Scholar

[15] T. Chang, “Non-linear free vibration analysis of nanobeams under magnetic field based on non-local elasticity theory,” J. Vibroeng., vol. 18, no. 3, pp. 1912–1919, 2015. https://doi.org/10.21595/jve.2015.16751.Suche in Google Scholar

[16] D. Atcı and S. M. Bagdatli, “Vibrations of fluid conveying microbeams under non-ideal boundary conditions,” Microsyst. Technol., vol. 23, no. 10, pp. 141–149, 2017. https://doi.org/10.12989/scs.2017.24.2.141.Suche in Google Scholar

[17] Z. Saadatnia, H. Askari, and E. Esmailzadeh, “Multi-frequency excitation of microbeams supported by Winkler,” J. Vib. Control, vol. 24, pp. 2894–2911, 2018. https://doi.org/10.1177/1077546317695463.Suche in Google Scholar

[18] S. Kural and E. Özkaya, “Size-dependent vibrations of a micro beam conveying fluid and resting on an elastic foundation,” J. Vib. Control, vol. 23, no. 7, pp. 1106–1114, 2015. https://doi.org/10.1177/1077546315589666.Suche in Google Scholar

[19] N. Togun and S. M. Bağdatli, “The vibration of nanobeam resting on elastic foundation using modified couple stress theory,” Teh. Glas., vol. 12, no. 4, pp. 221–225, 2018. https://doi.org/10.31803/tg-20180214212115.Suche in Google Scholar

[20] S. M. Bağdatli and N. Togun, “Stability of fluid conveying nanobeam considering nonlocal elasticity,” Int. J. Non-Lin. Mech., vol. 95, pp. 132–142, 2017. https://doi.org/10.1016/j.ijnonlinmec.2017.06.004.Suche in Google Scholar

[21] H. M. Sedighi and K. H. Shirazi, “Vibrations of micro-beams actuated by an electric field via Parameter Expansion Method,” Acta Astronaut., vol. 85, pp. 19–24, 2013. https://doi.org/10.1016/j.actaastro.2012.11.014.Suche in Google Scholar

[22] E. Taati, M. M. Najafabadi, and B. H. Tabrizi, “Size-dependent generalized thermoelasticity model for Timoshenko microbeams,” Acta Mech., vol. 225, no. 7, pp. 1823–1842, 2014. https://doi.org/10.1007/s00707-013-1027-7.Suche in Google Scholar

[23] B. E. Yapanmış, N. Togun, S. M. Bagdatli, and S. Akkoca, “Magnetic field effect on nonlinear vibration of nonlocal nanobeam embedded in nonlinear elastic foundation,” Struct. Eng. Mech., vol. 79, no. 6, pp. 723–735, 2021. https://doi.org/10.12989/sem.2021.79.6.723.Suche in Google Scholar

[24] M. Mohammadimehr, A. A. Monajemi, and H. Afshari, “Free and forced vibration analysis of viscoelastic damped FG-CNT reinforced micro composite beams,” Microsyst. Technol., vol. 26, pp. 3085–3099, 2020. https://doi.org/10.1007/s00542-017-3682-4.Suche in Google Scholar

[25] M. Mohammadimehr, M. Mehrabi, H. Hadizadeh, and H. Hadizadeh, “Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory,” Steel Compos. Struct., vol. 26, no. 4, pp. 513–531, 2018. https://doi.org/10.12989/scs.2018.26.4.513.Suche in Google Scholar

[26] M. Mohammadimehr and S. Shahedi, “Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM,” Steel Compos. Struct. Int. J, vol. 21, no. 1, pp. 1–36, 2016. https://doi.org/10.12989/scs.2016.21.1.001.Suche in Google Scholar

[27] N. Ebrahimi and Y. T. Beni, “Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory,” Steel Compos. Struct., vol. 22, no. 6, pp. 1301–1336, 2016. https://doi.org/10.12989/scs.2016.22.6.1301.Suche in Google Scholar

[28] Y. T. Beni, “Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams,” J. Intell. Mater. Syst. Struct., vol. 27, no. 16, pp. 2199–2215, 2016. https://doi.org/10.1177/1045389X15624798.Suche in Google Scholar

[29] M. Malikan and V. A. Eremeyev, “Flexomagnetic response of buckled piezomagnetic composite nanoplates,” Compos. Struct., vol. 267, 2021, Art. no. 113932. https://doi.org/10.1016/j.compstruct.2021.113932.Suche in Google Scholar

[30] M. Malikan and V. A. Eremeyev, “On a flexomagnetic behavior of composite structures,” Int. J. Eng. Sci., vol. 175, 2022, Art. no. 103671. https://doi.org/10.1016/j.ijengsci.2022.103671.Suche in Google Scholar

[31] M. Malikan and V. A. Eremeyev, “On dynamic modeling of piezomagnetic/flexomagnetic microstructures based on Lord–Shulman thermoelastic model,” Arch. Appl. Mech., vol. 93, no. 1, pp. 181–196, 2023. https://doi.org/10.1007/s00419-022-02149-7.Suche in Google Scholar

[32] A. Ghobadi, Y. T. Beni, and H. Golestanian, “Size dependent thermo-electro-mechanical nonlinear bending analysis of flexoelectric nano-plate in the presence of magnetic field,” Int. J. Mech. Sci., vol. 152, pp. 118–137, 2019. https://doi.org/10.1016/j.ijmecsci.2018.12.049.Suche in Google Scholar

[33] A. Ghobadi, H. Golestanian, Y. T. Beni, and K. K. Żur, “On the size-dependent nonlinear thermo-electro-mechanical free vibration analysis of functionally graded flexoelectric nano-plate,” Commun. Nonlinear Sci. Numer. Simulat., vol. 95, 2021, Art. no. 105585. https://doi.org/10.1016/j.cnsns.2020.105585.Suche in Google Scholar

[34] M. Malikan and V. A. Eremeyev, “On the geometrically nonlinear vibration of a piezo‐flexomagnetic nanotube,” Math. Methods Appl. Sci., pp. 1–20, 2020, https://doi.org/10.1002/mma.6758.Suche in Google Scholar

[35] S. F. Dehkordi and Y. T. Beni, “Size-dependent continuum-based model of a truncated flexoelectric/flexomagnetic functionally graded conical nano/microshells,” Appl. Phys. A, vol. 128, no. 4, pp. 1–42, 2022. https://doi.org/10.1007/s00339-022-05386-3.Suche in Google Scholar

[36] A. A. Hendi, M. A. Eltaher, S. A. Mohamed, M. A. Attia, and A. W. Abdalla, “Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory,” Steel Compos. Struct., vol. 41, no. 6, pp. 787–803, 2021. https://doi.org/10.12989/scs.2021.41.6.787.Suche in Google Scholar

[37] D. Younesian, M. Sadri, and E. Esmailzade, “Primary and secondary resonance analyses of clamped–clamped micro-beams,” Nonlinear Dynam., vol. 76, no. 4, pp. 1867–1884, 2014. https://doi.org/10.1007/s11071-014-1254-z.Suche in Google Scholar

[38] H. M. Ghayesh, H. Farokhi, and M. Amabili, “Non-linear dynamics of a micro scale beam based on the modified couple stress theory,” Compos. B, vol. 50, pp. 318–324, 2013. https://doi.org/10.1016/j.compositesb.2013.02.021.Suche in Google Scholar

[39] C. F. Yazdi and A. Jalali, “Vibration behavior of a viscoelastic composite microbeam under simultaneous electrostatic and piezoelectric actuation,” Mech. Time-Dependent Mater., vol. 19, no. 3, pp. 277–304, 2015. https://doi.org/10.1007/s11043-015-9264-x.Suche in Google Scholar

[40] S. Sadeghzadeh and A. Kabiri, “Application of higher order the Hamiltonian approach to the nonlinear vibration of micro electro mechanical systems,” Lat. Am. J. Solids Struct., vol. 13, no. 3, pp. 478–497, 2016. https://doi.org/10.1590/1679-78252557.Suche in Google Scholar

[41] R. Fernandes, S. M. Mousavi, and S. El-Borgi, “Free and forced vibration non-linear analysis of a microbeam using finite strain and velocity gradients theory,” Acta Mech., vol. 227, no. 9, pp. 2657–2670, 2016. https://doi.org/10.1007/s00707-016-1646-x.Suche in Google Scholar

[42] B. E. Yapanmış, S. M. Bagdatli, and N. Togun, “Investigation of linear vibration behavior of middle supported nanobeam,” El-Cezeri J. Sci. Eng., vol. 7, no. 3, pp. 1450–1459, 2020. https://doi.org/10.31202/ecjse.741269.Suche in Google Scholar

[43] H. Madinei, H. H. Khodaparast, S. Adhikari, and M. I. Friswell, “A hybrid piezoelectric and electrostatic vibration energy harvester,” in Conference Proceedings of the Society for Experimental Mechanics Series, 189–195, 2016. January 2016 Orlando, USA.10.1007/978-3-319-30087-0_17Suche in Google Scholar

[44] L. Dai, L. Sun, and C. Chen, “A control approach for vibrations of a non-linear microbeam system in multi-dimensional form,” Nonlinear Dynam., vol. 77, no. 4, pp. 1677–1692, 2014. https://doi.org/10.1007/s11071-014-1409-y.Suche in Google Scholar

[45] A. E. Abouelregal, “Response of thermoelastic microbeams to a periodic external transverse excitation based on MCS theory,” Microsyst. Technol., vol. 24, no. 4, pp. 1925–1933, 2017. https://doi.org/10.1007/s00542-017-3589-0.Suche in Google Scholar

[46] H. Jing, X. Gong, J. Wang, R. Wu, and B. Huang, “An analysis of nonlinear beam vibrations with the extended Rayleigh-ritz method,” J. Appl. Comput. Mech., vol. 8, no. 4, pp. 1299–1306, 2022.Suche in Google Scholar

[47] M. Malikan, “Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory,” Appl. Math. Modell., vol. 48, pp. 196–207, 2017. https://doi.org/10.1016/j.apm.2017.03.065.Suche in Google Scholar

[48] M. Malikan, “Temperature influences on shear stability of a nanosize plate with piezoelectricity effect,” Multidiscip. Model. Mater. Struct., vol. 14, no. 1, pp. 125–142, 2018. https://doi.org/10.1108/MMMS-09-2017-0105.Suche in Google Scholar

[49] M. A. Shahmohammadi, S. M. Mirfatah, H. Salehipour, and Ö. Civalek, “On nonlinear forced vibration of micro scaled panels,” Int. J. Eng. Sci., vol. 182, 2023, Art. no. 103774. https://doi.org/10.1016/j.ijengsci.2022.103774.Suche in Google Scholar

[50] M. A. Khorshidi, “The material length scale parameter used in couple stress theories is not a material constant,” Int. J. Eng. Sci., vol. 133, pp. 15–25, 2018. https://doi.org/10.1016/j.ijengsci.2018.08.005.Suche in Google Scholar

[51] W. Li, M. Pan, X. Wu, et al.., “Comparison analysis of energy loss between micro clamped–clamped and clamped-free beam in vertical motion flux modulation magnetic sensor,” Microsyst. Technol.s, vol. 23, pp. 1991–1997, 2017. https://doi.org/10.1007/s00542-016-2993-1.Suche in Google Scholar

[52] B. E. Yapanmış and S. M. Bağdatlı, “Investigation of the non-linear vibration behaviour and 3:1 internal resonance of the multi supported nanobeam,” Z. Naturforsch., vol. 77, no. 4, pp. 305–321, 2022. https://doi.org/10.1515/zna-2021-0300.Suche in Google Scholar

[53] Y. Tang, T. Yang, and B. Fang, “Fractional dynamics of fluid-conveying pipes made of polymer-like materials,” Acta Mech. Solida Sin. vol. 31, pp. 243–258, 2018a. https://doi.org/10.1007/s10338-018-0007-9.Suche in Google Scholar

[54] Y. Tang, Y. Zhen, and B. Fang, “Nonlinear vibration analysis of a fractional dynamic model for the viscoelastic pipe conveying fluid,” Appl. Math. Modell., vol. 56, pp. 123–136, 2018b. https://doi.org/10.1016/j.apm.2017.11.022.Suche in Google Scholar

[55] Y. Tang, T. Wang, Z. S. Ma, and T. Yang, “Magneto-electro-elastic modelling and nonlinear vibration analysis of bi-directional functionally graded beams,” Nonlinear Dynam., vol. 105, pp. 2195–2227, 2021. https://doi.org/10.1007/s11071-021-06656-0.Suche in Google Scholar

[56] Y. Zhen, Y. Gong, and Y. Tang, “Nonlinear vibration analysis of a supercritical fluid-conveying pipe made of functionally graded material with initial curvature,” Compos. Struct., vol. 268, 2021, Art. no. 113980. https://doi.org/10.1016/j.compstruct.2021.113980.Suche in Google Scholar

[57] Y. Tang and Q. Ding, “Nonlinear vibration analysis of a bi-directional functionally graded beam under hygro-thermal loads,” Compos. Struct., vol. 225, 2019, Art. no. 111076. https://doi.org/10.1016/j.compstruct.2019.111076.Suche in Google Scholar

[58] S. Kong, S. Zhou, Z. Nie, and K. Wang, “The size-dependent natural frequency of Bernoulli–Euler micro-beams,” Int. J. Eng. Sci., vol. 46, pp. 427–437, 2008. https://doi.org/10.1016/j.ijengsci.2007.10.002.Suche in Google Scholar

[59] S. Bhattacharya and D. Das, “A study on free vibration behavior of microbeam under large static deflection using modified couple stress theory,” in Advances in Fluid Mechanics and Solid Mechanics, Lecture Notes in Mechanical Engineering, Singapore, Springer, 2020.10.1007/978-981-15-0772-4_14Suche in Google Scholar

[60] N. Togun and S. M. Bagdatli, “Size dependent non-linear vibration of the tensioned nanobeam based on the modified couple stress theory,” Compos. B, vol. 97, pp. 255–262, 2016. https://doi.org/10.1016/j.compositesb.2016.04.074.Suche in Google Scholar

[61] B. Akgöz and Ö. Civalek, “Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory,” Compos. Struct., vol. 98, pp. 314–322, 2013. https://doi.org/10.1016/j.compstruct.2012.11.020.Suche in Google Scholar

[62] G. Y. Zhang, X. L. Gao, and S. R. Ding, “Band gaps for wave propagation in 2-D periodic composite structures incorporating microstructure effects,” Acta Mech., vol. 229, pp. 4199–4214, 2018. https://doi.org/10.1007/s00707-018-2207-2.Suche in Google Scholar

[63] S. M. Bagdatli, H. R. Oz, and E. Ozkaya, “Dynamics of axially accelerating beams with an intermediate support,” J. Vib. Acoust., vol. 133, no. 3, pp. 031013/1–10, 2011. https://doi.org/10.1115/1.4003205.Suche in Google Scholar

[64] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, New York, USA, John Wiley, 1979.Suche in Google Scholar

[65] Y. G. Wang, W. H. Lin, and N. Liu, “Nonlinear free vibration of a microscale beam based on modified couple stress theory,” Phys. E, vol. 47, pp. 80–85, 2013. https://doi.org/10.1016/j.physe.2012.10.020.Suche in Google Scholar

[66] J. N. Reddy, “Microstructure-dependent couple stress theories of functionally graded beams,” J. Mech. Phys. Solids, vol. 59, no. 11, pp. 2382–2399, 2011. https://doi.org/10.1016/j.jmps.2011.06.008.Suche in Google Scholar

[67] M. Şimşek, “Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory,” Compos. B, vol. 56, pp. 621–628, 2014. https://doi.org/10.1016/j.compositesb.2013.08.082.Suche in Google Scholar

[68] H. V. Dang, D. D. Le, and K. T. Nguyen, “Non-linear vibration of microbeams under magnetic field using the modified couple stress theory,” Asian Res. J. Math., vol. 12, no. 1, pp. 1–4, 2019. https://doi.org/10.9734/arjom/2019/46392.Suche in Google Scholar

Received: 2023-08-10
Accepted: 2023-10-23
Published Online: 2023-11-14
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2023-0225/html
Button zum nach oben scrollen