Startseite Anisotropic solutions in f(Q) gravity with hybrid expansion
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Anisotropic solutions in f(Q) gravity with hybrid expansion

  • Lambamayum Anjana Devi EMAIL logo , S. Surendra Singh und Md Khurshid Alam
Veröffentlicht/Copyright: 25. Mai 2023

Abstract

Despite having a reasonably successful account of accelerated cosmology, understanding of the early evolution of Universe has always been difficult for mankind. Our promising strategy is based on a novel class of symmetric teleparallel theories of gravity called f(Q), in which the gravitational interaction is caused by the non-metricity scalar Q, which may help to solve some problems. We consider the locally rotationally symmetric (LRS) Bianchi type-I spacetime cosmological models and derive the motion of equations to study the early evolution of the cosmos. By assuming the hybrid expansion law (HEL) for the average scale factor, we are able to determine the solutions to the field equations of Bianchi type-I spacetime. We discuss the energy density profile, the equation of state, and the skewness parameter and conclude that our models preserve anisotropic spatial geometry during the early stages of the Universe with the possibility of an anisotropic fluid present. However, as time goes on, even in the presence of an anisotropic fluid, the Universe may move towards isotropy due to inflation while the anisotropy of the fluid dims away at the same time. It is seen from the squared speed of sound that Universe shows phantom nature at the beginning then approaches to dark energy at present epoch. We analyze both geometrical and physical behaviours of the derived model.


Corresponding author: Lambamayum Anjana Devi, Department of Mathematics, National Institute of Technology Manipur, Imphal 795004, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The author declares no potential conflict of interest or competing interest.

References

[1] A. G. Riess, A. V. Filippenko, P. Challis, et al.., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J., vol. 116, p. 1009, 1998. https://doi.org/10.1086/300499.Suche in Google Scholar

[2] S. Perlmutter, G. Aldering, G. Goldhaber, et al.., “Measurements of omega and lambda from 42 high-redshift supernovae,” Astrophys. J., vol. 517, pp. 565–586, 1999.10.1086/307221Suche in Google Scholar

[3] R. R. Caldwell and M. Doran, “Cosmic microwave background and supernova constraints on quintessence: concordance regions and target models,” Phys. Rev. D, vol. 69, p. 103517, 2004. https://doi.org/10.1103/physrevd.69.103517.Suche in Google Scholar

[4] Z. Y. Huang, B. Wang, E. Abdalla, and R. K. Su, “Holographic explanation of wide-angle power correlation suppression in the cosmic microwave background radiation,” JCAP, vol. 0605, p. 013, 2006. https://doi.org/10.1088/1475-7516/2006/05/013.Suche in Google Scholar

[5] S. Weinberg, “The cosmological constant problem,” Rev. Mod. Phys., vol. 61, p. 1, 1989. https://doi.org/10.1103/revmodphys.61.1.Suche in Google Scholar

[6] A. Habib, F. Bajardi, S. Capozziello, et al.., “Linearized field equations and extra force in f(R, T(n)) extended gravity,” Int. J. Mod. Phys. D, vol. 31, p. 2240015, 2022.10.1142/S0218271822400156Suche in Google Scholar

[7] S. M. Carroll, V. Duvvuri, M. Trodden, et al.., “Is cosmic speed-up due to new gravitational physics?,” Phys. Rev. D, vol. 70, p. 043528, 2004.10.1103/PhysRevD.70.043528Suche in Google Scholar

[8] S. Capozziello, M. Capriolo, L. Caso, et al.., “Weak field limit and gravitational waves in f(T, B) teleparallel gravity,” Eur. Phys. J. C, vol. 80, p. 2, 2020.10.1140/epjc/s10052-020-7737-9Suche in Google Scholar

[9] M. Koussour and M. Bennai, “Stability analysis of anisotropic Bianchi type-I cosmological model in teleparallel gravity,” Classical Quantum Gravity, vol. 39, p. 105001, 2022. https://doi.org/10.1088/1361-6382/ac61ad.Suche in Google Scholar

[10] Y. F. Cai, S. Capozziello, L. Mariafelicia De, et al.., “f(T) teleparallel gravity and cosmology,” Rep. Prog. Phys., vol. 79, p. 10, 2016.10.1088/0034-4885/79/10/106901Suche in Google Scholar PubMed

[11] J. B. Jimenez, L. Heisenberg, and T. Koivisto, “Coincident general relativity,” Phys. Rev. D, vol. 98, p. 044048, 2018.10.1103/PhysRevD.98.044048Suche in Google Scholar

[12] J. B. Jimenez, L. Heisenberg, T. Koivisto, et al.., “Cosmology in f(Q) geometry,” Phys. Rev. D, vol. 101, p. 103507, 2020.10.1103/PhysRevD.101.103507Suche in Google Scholar

[13] S. Mandal, P. K. Sahoo, and J. R. L. Santos, “Energy conditions in f(Q) gravity,” Phys. Rev. D, vol. 102, p. 024057, 2020. https://doi.org/10.1103/physrevd.102.024057.Suche in Google Scholar

[14] S. Mandal, D. Wang, P. K. Sahoo, et al.., “Cosmography in f(Q) gravity,” Phys. Rev. D, vol. 102, p. 124029, 2020.10.1103/PhysRevD.102.124029Suche in Google Scholar

[15] R. H. Lin and X. H. Zhai, “Spherically symmetric configuration in f(Q) gravity,” Phys. Rev. D, vol. 103, p. 124001, 2021. https://doi.org/10.1103/physrevd.103.124001.Suche in Google Scholar

[16] W. Khyllep, A. Paliathanasis, and J. Dutta, “Cosmological solutions and growth index of matter perturbations in f(Q) gravity,” Phys. Rev. D, vol. 103, p. 103521, 2021. https://doi.org/10.1103/physrevd.103.103521.Suche in Google Scholar

[17] T. Harko, T. S. Koivisto, F. S. Lobo, G. J. Olmo, and D. Rubiera-Garcia, “Coupling matter in modifiedQgravity,” Phys. Rev. D, vol. 98, p. 084043, 2018. https://doi.org/10.1103/physrevd.98.084043.Suche in Google Scholar

[18] M. Koussour, S. Shekh, and M. Bennai, “Cosmic acceleration and energy conditions in symmetric teleparallel f(Q) gravity,” J. High Energy Astrophys., vol. 35, pp. 43–51, 2022. https://doi.org/10.1016/j.jheap.2022.05.002.Suche in Google Scholar

[19] Y. Xu, G. Li, T. Harko, et al.., “f(Q, T) gravity,” Eur. Phys. J., vol. 79, p. 8, 2019.10.1140/epjc/s10052-019-7207-4Suche in Google Scholar

[20] R. Ferraro and F. Fiorini, “Born-Infeld gravity in Weitzenböck spacetime,” Phys. Rev. D, vol. 78, p. 124019, 2008. https://doi.org/10.1103/physrevd.78.124019.Suche in Google Scholar

[21] E. V. Linder, “Einstein’s other gravity and the acceleration of the Universe,” Phys. Rev. D, vol. 81, p. 127301, 2010. https://doi.org/10.1103/physrevd.81.127301.Suche in Google Scholar

[22] C. Q. Geng, C. C. Lee, and J. A. Gu, “Teleparallel dark energy with purely non-minimal coupling to gravity,” Phys. Lett. B, vol. 704, p. 5, 2011.Suche in Google Scholar

[23] A. Linde, S. Ferrara, R. D’Auria, et al.., Extremal Black Holes in Supergravity, Berlin, Heidelberg, Springer, 2008, pp. 1–54.Suche in Google Scholar

[24] W. Handley, “Curvature tension: evidence for a closed universe,” Phys. Rev. D, vol. 103, supp. L041301, 2021.10.1103/PhysRevD.103.L041301Suche in Google Scholar

[25] M. E. Rodrigues, M. J. S. Houndjo, D. Saez-Gomez, et al.., “Anisotropic universe models in f(T) gravity,” Phys. Rev. D, vol. 86, p. 104059, 2012.10.1103/PhysRevD.86.104059Suche in Google Scholar

[26] J. P. Singh, A. Pradhan, A. K. Singh, et al.., “Bianchi type-I cosmological models with variable G and Λ-term in general relativity,” Astrophys. Space Sci., vol. 314, p. 1, 2008.10.1007/s10509-008-9742-6Suche in Google Scholar

[27] M. Koussour, S. H. Shekh, and M. Bennai, “Anisotropic nature of space–time in f(Q) gravity,” Phys. Dark Universe, vol. 36, 101051, 2022.10.1016/j.dark.2022.101051Suche in Google Scholar

[28] V. A. Belinskii and I. M. Khalatnikov, “Influence of viscosity on the character of cosmological evolution,” Zh. Teor. Fiz., vol. 69, pp. 401–413, 1975.Suche in Google Scholar

[29] N. I. Singh, S. Singh, and S. R. Devi, “A new class of bulk viscous cosmological models in a scale covariant theory of gravitation,” Astrophys. Space Sci., vol. 326, pp. 293–297, 2010. https://doi.org/10.1007/s10509-009-0247-8.Suche in Google Scholar

[30] I. Singh, S. R. Devi, S. S. Singh, and A. S. Devi, “Bulk viscous cosmological models of universe with variable deceleration parameter in Lyra’s Manifold,” Astrophys. Space Sci., vol. 321, pp. 233–239, 2009. https://doi.org/10.1007/s10509-009-0026-6.Suche in Google Scholar

[31] S. S. Singh, Y. B. Devi, and M. S. Singh, “Power law inflation with anisotropic fluid in Lyra’s manifold,” Can. J. Phys., vol. 95, p. 748, 2017. https://doi.org/10.1139/cjp-2016-0897.Suche in Google Scholar

[32] M. S. Singh and S. S. Singh, “Cosmological dynamics of anisotropic dark energy in f(R, T) gravity,” New Astron., vol. 72, pp. 36–41, 2019. https://doi.org/10.1016/j.newast.2019.03.007.Suche in Google Scholar

[33] S. Surendra Singh and L. Anjana Devi, “Interacting anisotropic dark energy with hybrid expansion in f (R, T) gravity,” New Astron., vol. 22, p. 101656, 2021.Suche in Google Scholar

[34] A. Pradhan, D. C. Maurya, and A. Dixit, “Dark energy nature of viscus universe in f(Q)-gravity with observational constraints,” Int. J. Geom. Methods Mod. Phys., vol. 18, p. 2150124, 2021. https://doi.org/10.1142/s0219887821501243.Suche in Google Scholar

[35] G. Mustafa, Z. Hassan, and P. Sahoo, “Traversable wormhole inspired by non-commutative geometries in f(Q) gravity with conformal symmetry,” Ann. Phys., vol. 437, p. 168751, 2022. https://doi.org/10.1016/j.aop.2021.168751.Suche in Google Scholar

[36] S. K. Maurya, K. N. Singh, S. V. Lohakare, and B. Mishra, arXiv:2208.04735vl [gr-qc], 2022.Suche in Google Scholar

[37] A. K. Yadav, P. K. Srivastava, and L. Yadav, “Hybrid expansion law for dark energy dominated universe in f (R,T) gravity,” Int. J. Theor. Phys., vol. 54, p. 1671, 2015. https://doi.org/10.1007/s10773-014-2368-2.Suche in Google Scholar

[38] S. Ram and S. Chandel, “Dynamics of magnetized string cosmological model in f(R,T) gravity theory,” Astrophys. Space Sci., vol. 355, p. 195, 2015. https://doi.org/10.1007/s10509-014-2160-z.Suche in Google Scholar

[39] C. R. Mahanta and N. Sarma, “Anisotropic ghost dark energy cosmological model with hybrid expansion law,” New Astron., vol. 57, p. 70, 2017. https://doi.org/10.1016/j.newast.2017.06.008.Suche in Google Scholar

[40] N. Aghanim, Y. Akrami, M. Ashdown, et al.., “Planck 2018 results-VI. Cosmological parametersPlanck 2018 results-VI. Cosmological parameters,” Astron. Astrophys., vol. 641, p. A6, 2020.Suche in Google Scholar

[41] P. K. Sahoo, P. H. R. S. Moraes, “The simplest non-minimal matter–geometry coupling in the f(R, T) cosmology,” Eur. Phys. J. C, vol. 77, p. 480, 2017. https://doi.org/10.1140/epjc/s10052-017-5062-8.Suche in Google Scholar

[42] P. K. Sahoo, P. H. R. S. Moraes, P. Sahoo1, and B. K. Bishi, “f(R,T)=f(R)+\lambda T f(R, T) = f(R) + λ T gravity models as alternatives to cosmic acceleration,” Eur. Phys. J. C, vol. 78, p. 736, 2018. https://doi.org/10.1140/epjc/s10052-018-6211-4.Suche in Google Scholar

[43] F. G. Alvarenga, M. J. S. Houndjo, A. V. Monwanou, and J. B. C. Orou, “Testing some f(R,T) gravity models from energy conditions,” Phys., vol. 4, pp. 130–139, 2013. https://doi.org/10.4236/jmp.2013.41019.Suche in Google Scholar

[44] M. Sharif, S. Rani, and R. Myrzakulov, “Analysis of F(R, T) gravity models through energy conditions,” Eur. Phys. J. Plus, vol. 128, p. 123, 2013. https://doi.org/10.1140/epjp/i2013-13123-0.Suche in Google Scholar

[45] S. Ming and Z. Liang, “Oscillating quintom model with time periodic varying deceleration parameter,” Chin. Phys. Lett., vol. 31, no. 1, p. 010401, 2014.10.1088/0256-307X/31/1/010401Suche in Google Scholar

[46] K. Bamba, G. G. L. Nashed, W. El Hanafy, and Sh.K. Ibraheem, “Bounce inflation inf(T)cosmology: a unified inflaton-quintessence field,” Phys. Rev. D, vol. 94, p. 083513, 2016. https://doi.org/10.1103/physrevd.94.083513.Suche in Google Scholar

[47] O. Farooq and B. Ratra, “Hubble parameter measurement constraints on the cosmological deceleration–acceleration transition redshift,” Astrophys. J., Lett., vol. 766, p. L7, 2013. https://doi.org/10.1088/2041-8205/766/1/l7.Suche in Google Scholar

[48] N. Busca, A. V. Biryukov, A. E. Bubnov, et al.., ““RadioAstron”-A telescope with a size of 300 000 km: Main parameters and first observational results,” Astron. Astrophys., vol. 552, p. A96, 2013.Suche in Google Scholar

[49] J. Lu, L. Xu, and M. Liu, “Constraints on kinematic models from the latest observational data,” Phys. Lett. B, vol. 699, p. 246, 2011. https://doi.org/10.1016/j.physletb.2011.04.022.Suche in Google Scholar

[50] Y. Yang and Y. Gong, “The evidence of cosmic acceleration and observational constraints,” J. Cosmol. Astropart. Phys., vol. 6, p. 59, 2020. https://doi.org/10.1088/1475-7516/2020/06/059.Suche in Google Scholar

[51] S. Capozziello, O. Farooq, O. Luongo, and B. Ratra, “Cosmographic bounds on the cosmological deceleration-acceleration transition redshift inf(R)gravity,” Phys. Rev. D, vol. 90, p. 044016, 2014. https://doi.org/10.1103/physrevd.90.044016.Suche in Google Scholar

[52] S. Capozziello, R. D’Agostino, and O. Luongo, “High-redshift cosmography: auxiliary variables versus Padé polynomials,” Mon. Not. R. Astron. Soc., vol. 494, p. 2576, 2018. https://doi.org/10.1093/mnras/staa871.Suche in Google Scholar

Received: 2023-01-23
Accepted: 2023-05-06
Published Online: 2023-05-25
Published in Print: 2023-07-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 12.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2023-0016/html
Button zum nach oben scrollen