Startseite Effects of plaque shape on arterial blood flow
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of plaque shape on arterial blood flow

  • Karla Marušić , Eduard Marušić-Paloka EMAIL logo und Marko Vrdoljak
Veröffentlicht/Copyright: 25. Mai 2023

Abstract

Plaque reduces the conductivity of the blood vessel and its shape is more important than its quantity. We show that, for given quantity, the conductivity is maximal if the plaque forms a uniform layer next to the vessel wall and leaves a circular hole in the middle. On the other hand, for any quantity of the plaque a shape can be found such that the conductivity of the vessel is arbitrary close to zero.


Corresponding author: Eduard Marušić-Paloka, Department of Mathematics, Faculty of Science and Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] Y. Amirat, D. Bresch, J. Lemoine, and J. Simon, “Effect of rugosity on a flow governed by stationary Navier-Stokes equations,” Q. Appl. Math., vol. 59, no. 4, pp. 769–785, 2001. https://doi.org/10.1090/qam/1866556.Suche in Google Scholar

[2] H. J. Brascamp, E. H. Lieb, and J. M. Luttinger, “A general rearrangement inequality for multiple integrals,” J. Funct. Anal., vol. 17, pp. 227–237, 1974. https://doi.org/10.1016/0022-1236(74)90013-5.Suche in Google Scholar

[3] P. Chen, F. Lin, H. Huang, et al.., “Diameter reduction determined through carotid ultrasound associated with cardiovascular and all-cause mortality: a single-center experience of 38 201 consecutive patients in Taiwan,” J. Am. Heart Assoc., vol. 10, no. 23, p. e023689, 2021. https://doi.org/10.1161/jaha.121.023689.Suche in Google Scholar PubMed PubMed Central

[4] I. Danad, P. G. Raijmakers, H. J. Harms, et al.., “Impact of anatomical and functional severity of coronary arterosclerotic plaques on the transmural perfusion gradient: a [15O]H2O PET study,” Eur. Heart J., vol. 35, pp. 2094–2105, 2014. https://doi.org/10.1093/eurheartj/ehu170.Suche in Google Scholar PubMed

[5] C.-P. Danet, “The classical maximum principles. Some of its extensions and applications,” Annals of the Academy of Romanian Scientists, Series on Mathematics and its Applications, vol. 3, no. 2, pp. 273–299, 2011.Suche in Google Scholar

[6] R. S. Driessen, W. J. Stuijfzand, P. G. Raijmakers, et al.., “Effect of plaque burden and morphology on myocardial blood flow and fractional flow reserve,” J. Am. Coll. Cardiol., vol. 71, no. 5, pp. 499–509, 2018. https://doi.org/10.1016/j.jacc.2017.11.054.Suche in Google Scholar PubMed

[7] O. O. Gipouloux and E. Marušić-Paloka, “Asymptotic behaviour of the incompressible Newtonian flow through thin constricted fracture,” in Multiscale Problems in Science and Technology, N. Antonić, C. J. Van Duijin, W. Jaeger, and A. Mikelić, Eds., Berlin, Springer Verlag, 2000, pp. 189–202.10.1007/978-3-642-56200-6_8Suche in Google Scholar

[8] G. H. L. Hagen, “Uber die Bewegung des Wassers in engen cylindrischen Röhren,” Poggendorfs Annalen der Physik un Chemie, vol. 16, pp. 423–442, 1839.10.1002/andp.18391220304Suche in Google Scholar

[9] W. Jäger and A. Mikelić, “On the roughness-induced effective boundary conditions for an incompressible viscous flow,” J. Differ. Equ., vol. 170, pp. 96–122, 2001. https://doi.org/10.1006/jdeq.2000.3814.Suche in Google Scholar

[10] A. Mahalingam, U. U. Gawandalkar, G. Kini, et al.., “Numerical analysis of the effect of turbulence transition on the hemodynamic parameters in human coronary arteries,” Cardiovasc. Diagn. Ther., vol. 6, no. 3, pp. 208–220, 2016. https://doi.org/10.21037/cdt.2016.03.08.Suche in Google Scholar PubMed PubMed Central

[11] E. Marušić-Paloka, “Effective fluid behavior in domain with rough boundary and the Darcy-Weisbach law,” SIAM J. Appl. Math., vol. 79, pp. 1244–1270, 2019. https://doi.org/10.1137/18m1183376.Suche in Google Scholar

[12] L. F. Moody, “Friction factors for the pipe flow,” Trans. ASME, vol. 66, pp. 671–684, 1944. https://doi.org/10.1115/1.4018140.Suche in Google Scholar

[13] E. Marušić-Paloka and I. Pažanin, “Effects of boundary roughness and inertia on the fluid flow through a corrugated pipe,” Int. J. Eng. Sci. Res., vol. 152, pp. 1–13, 2020.10.1016/j.ijengsci.2020.103293Suche in Google Scholar

[14] J. S. Pellerito and J. F. Polak, Introduction to Vascular Ultrasonography, 7th ed. Philadelphia, Elsevier, 2020.Suche in Google Scholar

[15] J. L. Poiseuille, “Recherches expérimentales sur le movement des liquides dans les tubes de très-petits diamètres,” C. R. Acad. Sci., vol. 11, pp. 961–967, 1841.Suche in Google Scholar

[16] S. P. Sutera and R. Skalak, “The history of the Poiseuille’s law,” Annu. Rev. Fluid Mech., vol. 25, pp. 1–19, 1993. https://doi.org/10.1146/annurev.fl.25.010193.000245.Suche in Google Scholar

[17] H. F. Weinberger, “Remark on a preceding paper of Serrin,” Arch. Ration Mech. Anal., vol. 43, pp. 319–320, 1971. https://doi.org/10.1007/bf00250469.Suche in Google Scholar

[18] Available at: https://en.wikipedia..org/Darcy friction factor formulae.Suche in Google Scholar

[19] World Health organization, World Health Statistics 2021: Monitoring Health for the SDGs, Sustainable Development Goals, World Health Organization. Available at: https://apps.who.int/iris/handle/10665/342703. License: CC BY-NC-SA 3.0 IGO.Suche in Google Scholar

Received: 2023-03-08
Accepted: 2023-04-21
Published Online: 2023-05-25
Published in Print: 2023-07-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 11.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2023-0059/html
Button zum nach oben scrollen