Home Anisotropic solutions in f(Q) gravity with hybrid expansion
Article
Licensed
Unlicensed Requires Authentication

Anisotropic solutions in f(Q) gravity with hybrid expansion

  • Lambamayum Anjana Devi EMAIL logo , S. Surendra Singh and Md Khurshid Alam
Published/Copyright: May 25, 2023

Abstract

Despite having a reasonably successful account of accelerated cosmology, understanding of the early evolution of Universe has always been difficult for mankind. Our promising strategy is based on a novel class of symmetric teleparallel theories of gravity called f(Q), in which the gravitational interaction is caused by the non-metricity scalar Q, which may help to solve some problems. We consider the locally rotationally symmetric (LRS) Bianchi type-I spacetime cosmological models and derive the motion of equations to study the early evolution of the cosmos. By assuming the hybrid expansion law (HEL) for the average scale factor, we are able to determine the solutions to the field equations of Bianchi type-I spacetime. We discuss the energy density profile, the equation of state, and the skewness parameter and conclude that our models preserve anisotropic spatial geometry during the early stages of the Universe with the possibility of an anisotropic fluid present. However, as time goes on, even in the presence of an anisotropic fluid, the Universe may move towards isotropy due to inflation while the anisotropy of the fluid dims away at the same time. It is seen from the squared speed of sound that Universe shows phantom nature at the beginning then approaches to dark energy at present epoch. We analyze both geometrical and physical behaviours of the derived model.


Corresponding author: Lambamayum Anjana Devi, Department of Mathematics, National Institute of Technology Manipur, Imphal 795004, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The author declares no potential conflict of interest or competing interest.

References

[1] A. G. Riess, A. V. Filippenko, P. Challis, et al.., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J., vol. 116, p. 1009, 1998. https://doi.org/10.1086/300499.Search in Google Scholar

[2] S. Perlmutter, G. Aldering, G. Goldhaber, et al.., “Measurements of omega and lambda from 42 high-redshift supernovae,” Astrophys. J., vol. 517, pp. 565–586, 1999.10.1086/307221Search in Google Scholar

[3] R. R. Caldwell and M. Doran, “Cosmic microwave background and supernova constraints on quintessence: concordance regions and target models,” Phys. Rev. D, vol. 69, p. 103517, 2004. https://doi.org/10.1103/physrevd.69.103517.Search in Google Scholar

[4] Z. Y. Huang, B. Wang, E. Abdalla, and R. K. Su, “Holographic explanation of wide-angle power correlation suppression in the cosmic microwave background radiation,” JCAP, vol. 0605, p. 013, 2006. https://doi.org/10.1088/1475-7516/2006/05/013.Search in Google Scholar

[5] S. Weinberg, “The cosmological constant problem,” Rev. Mod. Phys., vol. 61, p. 1, 1989. https://doi.org/10.1103/revmodphys.61.1.Search in Google Scholar

[6] A. Habib, F. Bajardi, S. Capozziello, et al.., “Linearized field equations and extra force in f(R, T(n)) extended gravity,” Int. J. Mod. Phys. D, vol. 31, p. 2240015, 2022.10.1142/S0218271822400156Search in Google Scholar

[7] S. M. Carroll, V. Duvvuri, M. Trodden, et al.., “Is cosmic speed-up due to new gravitational physics?,” Phys. Rev. D, vol. 70, p. 043528, 2004.10.1103/PhysRevD.70.043528Search in Google Scholar

[8] S. Capozziello, M. Capriolo, L. Caso, et al.., “Weak field limit and gravitational waves in f(T, B) teleparallel gravity,” Eur. Phys. J. C, vol. 80, p. 2, 2020.10.1140/epjc/s10052-020-7737-9Search in Google Scholar

[9] M. Koussour and M. Bennai, “Stability analysis of anisotropic Bianchi type-I cosmological model in teleparallel gravity,” Classical Quantum Gravity, vol. 39, p. 105001, 2022. https://doi.org/10.1088/1361-6382/ac61ad.Search in Google Scholar

[10] Y. F. Cai, S. Capozziello, L. Mariafelicia De, et al.., “f(T) teleparallel gravity and cosmology,” Rep. Prog. Phys., vol. 79, p. 10, 2016.10.1088/0034-4885/79/10/106901Search in Google Scholar PubMed

[11] J. B. Jimenez, L. Heisenberg, and T. Koivisto, “Coincident general relativity,” Phys. Rev. D, vol. 98, p. 044048, 2018.10.1103/PhysRevD.98.044048Search in Google Scholar

[12] J. B. Jimenez, L. Heisenberg, T. Koivisto, et al.., “Cosmology in f(Q) geometry,” Phys. Rev. D, vol. 101, p. 103507, 2020.10.1103/PhysRevD.101.103507Search in Google Scholar

[13] S. Mandal, P. K. Sahoo, and J. R. L. Santos, “Energy conditions in f(Q) gravity,” Phys. Rev. D, vol. 102, p. 024057, 2020. https://doi.org/10.1103/physrevd.102.024057.Search in Google Scholar

[14] S. Mandal, D. Wang, P. K. Sahoo, et al.., “Cosmography in f(Q) gravity,” Phys. Rev. D, vol. 102, p. 124029, 2020.10.1103/PhysRevD.102.124029Search in Google Scholar

[15] R. H. Lin and X. H. Zhai, “Spherically symmetric configuration in f(Q) gravity,” Phys. Rev. D, vol. 103, p. 124001, 2021. https://doi.org/10.1103/physrevd.103.124001.Search in Google Scholar

[16] W. Khyllep, A. Paliathanasis, and J. Dutta, “Cosmological solutions and growth index of matter perturbations in f(Q) gravity,” Phys. Rev. D, vol. 103, p. 103521, 2021. https://doi.org/10.1103/physrevd.103.103521.Search in Google Scholar

[17] T. Harko, T. S. Koivisto, F. S. Lobo, G. J. Olmo, and D. Rubiera-Garcia, “Coupling matter in modifiedQgravity,” Phys. Rev. D, vol. 98, p. 084043, 2018. https://doi.org/10.1103/physrevd.98.084043.Search in Google Scholar

[18] M. Koussour, S. Shekh, and M. Bennai, “Cosmic acceleration and energy conditions in symmetric teleparallel f(Q) gravity,” J. High Energy Astrophys., vol. 35, pp. 43–51, 2022. https://doi.org/10.1016/j.jheap.2022.05.002.Search in Google Scholar

[19] Y. Xu, G. Li, T. Harko, et al.., “f(Q, T) gravity,” Eur. Phys. J., vol. 79, p. 8, 2019.10.1140/epjc/s10052-019-7207-4Search in Google Scholar

[20] R. Ferraro and F. Fiorini, “Born-Infeld gravity in Weitzenböck spacetime,” Phys. Rev. D, vol. 78, p. 124019, 2008. https://doi.org/10.1103/physrevd.78.124019.Search in Google Scholar

[21] E. V. Linder, “Einstein’s other gravity and the acceleration of the Universe,” Phys. Rev. D, vol. 81, p. 127301, 2010. https://doi.org/10.1103/physrevd.81.127301.Search in Google Scholar

[22] C. Q. Geng, C. C. Lee, and J. A. Gu, “Teleparallel dark energy with purely non-minimal coupling to gravity,” Phys. Lett. B, vol. 704, p. 5, 2011.Search in Google Scholar

[23] A. Linde, S. Ferrara, R. D’Auria, et al.., Extremal Black Holes in Supergravity, Berlin, Heidelberg, Springer, 2008, pp. 1–54.Search in Google Scholar

[24] W. Handley, “Curvature tension: evidence for a closed universe,” Phys. Rev. D, vol. 103, supp. L041301, 2021.10.1103/PhysRevD.103.L041301Search in Google Scholar

[25] M. E. Rodrigues, M. J. S. Houndjo, D. Saez-Gomez, et al.., “Anisotropic universe models in f(T) gravity,” Phys. Rev. D, vol. 86, p. 104059, 2012.10.1103/PhysRevD.86.104059Search in Google Scholar

[26] J. P. Singh, A. Pradhan, A. K. Singh, et al.., “Bianchi type-I cosmological models with variable G and Λ-term in general relativity,” Astrophys. Space Sci., vol. 314, p. 1, 2008.10.1007/s10509-008-9742-6Search in Google Scholar

[27] M. Koussour, S. H. Shekh, and M. Bennai, “Anisotropic nature of space–time in f(Q) gravity,” Phys. Dark Universe, vol. 36, 101051, 2022.10.1016/j.dark.2022.101051Search in Google Scholar

[28] V. A. Belinskii and I. M. Khalatnikov, “Influence of viscosity on the character of cosmological evolution,” Zh. Teor. Fiz., vol. 69, pp. 401–413, 1975.Search in Google Scholar

[29] N. I. Singh, S. Singh, and S. R. Devi, “A new class of bulk viscous cosmological models in a scale covariant theory of gravitation,” Astrophys. Space Sci., vol. 326, pp. 293–297, 2010. https://doi.org/10.1007/s10509-009-0247-8.Search in Google Scholar

[30] I. Singh, S. R. Devi, S. S. Singh, and A. S. Devi, “Bulk viscous cosmological models of universe with variable deceleration parameter in Lyra’s Manifold,” Astrophys. Space Sci., vol. 321, pp. 233–239, 2009. https://doi.org/10.1007/s10509-009-0026-6.Search in Google Scholar

[31] S. S. Singh, Y. B. Devi, and M. S. Singh, “Power law inflation with anisotropic fluid in Lyra’s manifold,” Can. J. Phys., vol. 95, p. 748, 2017. https://doi.org/10.1139/cjp-2016-0897.Search in Google Scholar

[32] M. S. Singh and S. S. Singh, “Cosmological dynamics of anisotropic dark energy in f(R, T) gravity,” New Astron., vol. 72, pp. 36–41, 2019. https://doi.org/10.1016/j.newast.2019.03.007.Search in Google Scholar

[33] S. Surendra Singh and L. Anjana Devi, “Interacting anisotropic dark energy with hybrid expansion in f (R, T) gravity,” New Astron., vol. 22, p. 101656, 2021.Search in Google Scholar

[34] A. Pradhan, D. C. Maurya, and A. Dixit, “Dark energy nature of viscus universe in f(Q)-gravity with observational constraints,” Int. J. Geom. Methods Mod. Phys., vol. 18, p. 2150124, 2021. https://doi.org/10.1142/s0219887821501243.Search in Google Scholar

[35] G. Mustafa, Z. Hassan, and P. Sahoo, “Traversable wormhole inspired by non-commutative geometries in f(Q) gravity with conformal symmetry,” Ann. Phys., vol. 437, p. 168751, 2022. https://doi.org/10.1016/j.aop.2021.168751.Search in Google Scholar

[36] S. K. Maurya, K. N. Singh, S. V. Lohakare, and B. Mishra, arXiv:2208.04735vl [gr-qc], 2022.Search in Google Scholar

[37] A. K. Yadav, P. K. Srivastava, and L. Yadav, “Hybrid expansion law for dark energy dominated universe in f (R,T) gravity,” Int. J. Theor. Phys., vol. 54, p. 1671, 2015. https://doi.org/10.1007/s10773-014-2368-2.Search in Google Scholar

[38] S. Ram and S. Chandel, “Dynamics of magnetized string cosmological model in f(R,T) gravity theory,” Astrophys. Space Sci., vol. 355, p. 195, 2015. https://doi.org/10.1007/s10509-014-2160-z.Search in Google Scholar

[39] C. R. Mahanta and N. Sarma, “Anisotropic ghost dark energy cosmological model with hybrid expansion law,” New Astron., vol. 57, p. 70, 2017. https://doi.org/10.1016/j.newast.2017.06.008.Search in Google Scholar

[40] N. Aghanim, Y. Akrami, M. Ashdown, et al.., “Planck 2018 results-VI. Cosmological parametersPlanck 2018 results-VI. Cosmological parameters,” Astron. Astrophys., vol. 641, p. A6, 2020.Search in Google Scholar

[41] P. K. Sahoo, P. H. R. S. Moraes, “The simplest non-minimal matter–geometry coupling in the f(R, T) cosmology,” Eur. Phys. J. C, vol. 77, p. 480, 2017. https://doi.org/10.1140/epjc/s10052-017-5062-8.Search in Google Scholar

[42] P. K. Sahoo, P. H. R. S. Moraes, P. Sahoo1, and B. K. Bishi, “f(R,T)=f(R)+\lambda T f(R, T) = f(R) + λ T gravity models as alternatives to cosmic acceleration,” Eur. Phys. J. C, vol. 78, p. 736, 2018. https://doi.org/10.1140/epjc/s10052-018-6211-4.Search in Google Scholar

[43] F. G. Alvarenga, M. J. S. Houndjo, A. V. Monwanou, and J. B. C. Orou, “Testing some f(R,T) gravity models from energy conditions,” Phys., vol. 4, pp. 130–139, 2013. https://doi.org/10.4236/jmp.2013.41019.Search in Google Scholar

[44] M. Sharif, S. Rani, and R. Myrzakulov, “Analysis of F(R, T) gravity models through energy conditions,” Eur. Phys. J. Plus, vol. 128, p. 123, 2013. https://doi.org/10.1140/epjp/i2013-13123-0.Search in Google Scholar

[45] S. Ming and Z. Liang, “Oscillating quintom model with time periodic varying deceleration parameter,” Chin. Phys. Lett., vol. 31, no. 1, p. 010401, 2014.10.1088/0256-307X/31/1/010401Search in Google Scholar

[46] K. Bamba, G. G. L. Nashed, W. El Hanafy, and Sh.K. Ibraheem, “Bounce inflation inf(T)cosmology: a unified inflaton-quintessence field,” Phys. Rev. D, vol. 94, p. 083513, 2016. https://doi.org/10.1103/physrevd.94.083513.Search in Google Scholar

[47] O. Farooq and B. Ratra, “Hubble parameter measurement constraints on the cosmological deceleration–acceleration transition redshift,” Astrophys. J., Lett., vol. 766, p. L7, 2013. https://doi.org/10.1088/2041-8205/766/1/l7.Search in Google Scholar

[48] N. Busca, A. V. Biryukov, A. E. Bubnov, et al.., ““RadioAstron”-A telescope with a size of 300 000 km: Main parameters and first observational results,” Astron. Astrophys., vol. 552, p. A96, 2013.Search in Google Scholar

[49] J. Lu, L. Xu, and M. Liu, “Constraints on kinematic models from the latest observational data,” Phys. Lett. B, vol. 699, p. 246, 2011. https://doi.org/10.1016/j.physletb.2011.04.022.Search in Google Scholar

[50] Y. Yang and Y. Gong, “The evidence of cosmic acceleration and observational constraints,” J. Cosmol. Astropart. Phys., vol. 6, p. 59, 2020. https://doi.org/10.1088/1475-7516/2020/06/059.Search in Google Scholar

[51] S. Capozziello, O. Farooq, O. Luongo, and B. Ratra, “Cosmographic bounds on the cosmological deceleration-acceleration transition redshift inf(R)gravity,” Phys. Rev. D, vol. 90, p. 044016, 2014. https://doi.org/10.1103/physrevd.90.044016.Search in Google Scholar

[52] S. Capozziello, R. D’Agostino, and O. Luongo, “High-redshift cosmography: auxiliary variables versus Padé polynomials,” Mon. Not. R. Astron. Soc., vol. 494, p. 2576, 2018. https://doi.org/10.1093/mnras/staa871.Search in Google Scholar

Received: 2023-01-23
Accepted: 2023-05-06
Published Online: 2023-05-25
Published in Print: 2023-07-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2023-0016/html
Scroll to top button