Startseite Ion-acoustic stable oscillations, solitary, periodic and shock waves in a quantum magnetized electron–positron–ion plasma
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ion-acoustic stable oscillations, solitary, periodic and shock waves in a quantum magnetized electron–positron–ion plasma

  • Ahmed Atteya , Mohamed A. El-Borie , Gamal D. Roston , Abdel-Aziz Samir El-Helbawy , Punam Kumari Prasad ORCID logo und Asit Saha ORCID logo EMAIL logo
Veröffentlicht/Copyright: 2. Juli 2021

Abstract

Nonlinear stable oscillations, solitary, periodic and shock waves in electron–positron–ion (EPI) quantum plasma in the presence of an external static magnetic field are reported. The Korteweg-de Vries-Burgers (KdVB) equation is derived by the reductive perturbation technique (RPT). The wave solution gives shock waves depending on various parameters as quantum diffraction parameter (β), electron and positron Fermi temperatures, and densities of the system species. Amplitude, polarity, speed, and width of wave solutions are remarkably modified by species densities, kinematic viscosity, and the Bohm potential. Existence of stable oscillation of ion-acoustic waves (IAWs) is shown by using the concept of phase plane analysis. Stability of wave solution is analysed by examining the Bohm potential effect. In the absence of dissipation, phase plane of the considered plasma system is analysed to discuss the existence of periodic wave solution. The results of this study could be helpful for comprehension of the wave features in dense quantum plasmas, like white dwarfs, laboratory plasma as interaction experiments of intense laser-solid matter and microelectronic devices.


Corresponding author: Asit Saha, Department of Mathematics, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Majitar, Rangpo, East-Sikkim 737136, India, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Dr. Asit Saha is thankful to SMIT (SMU) for research funding.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] W. Misner, K. S. Thorne, and J. I. Wheeler, Gravitation, San Francisco, CA, USA, Freeman, 1973.Suche in Google Scholar

[2] M. R. Hossen and A. A. Mamun, “Electrostatic solitary structures in a relativistic degenerate multispecies plasma,” Braz. J. Phys., vol. 44, p. 673, 2014. https://doi.org/10.1007/s13538-014-0254-2.Suche in Google Scholar

[3] M. R. Hossen, S. A. Ema, and A. A. Mamun, “Nonplanar shock structures in a relativistic degenerate multi-species plasma,” Commun. Theor. Phys., vol. 62, p. 888, 2014. https://doi.org/10.1088/0253-6102/62/6/18.Suche in Google Scholar

[4] F. C. Michel, Theory of Neutron Star Magnetosphere, Chicago, IL, USA, Chicago Univ. Press, 1991.Suche in Google Scholar

[5] M. C. Begelman, R. D. Blandford, and M. J. Rees, “Theory of extragalactic radio sources,” Rev. Mod. Phys., vol. 56, p. 255, 1984. https://doi.org/10.1103/revmodphys.56.255.Suche in Google Scholar

[6] E. P. Liang, S. C. Wilks, and M. Tabak, “Pair production by ultraintense lasers,” Phys. Rev. Lett., vol. 81, p. 4887, 1998. https://doi.org/10.1103/physrevlett.81.4887.Suche in Google Scholar

[7] M. L. Burns, A. K. Harding, and R. Ramaty, Positron-Electron Pairs in Astrophysics, New York, NY, USA, American Institute Physics, 1983.Suche in Google Scholar

[8] P. Goldreich and W. H. Julian, “Pulsar electrodynamics,” Astrophys. J., vol. 157, p. 869, 1969. https://doi.org/10.1086/150119.Suche in Google Scholar

[9] M. J. Rees, “New interpretation of extragalactic radio sources,” Nature, vol. 229, p. 312, 1971. https://doi.org/10.1038/229312a0.Suche in Google Scholar

[10] M. Marklund and P. K. Shukla, “Nonlinear collective effects in photon-photon and photon-plasma interactions,” Rev. Mod. Phys., vol. 78, p. 591, 2006. https://doi.org/10.1103/revmodphys.78.591.Suche in Google Scholar

[11] Z. Y. Wang and C. J. Tang, “Slow-wave electromagnetic instability driven by wiggling relativistic electron beam in ion-channel,” Acta Phys. Sin., vol. 60, no. 5, p. 055204, 2011. https://doi.org/10.7498/aps.60.055204.Suche in Google Scholar

[12] L. Stenflo, P. K. Shukla, and M. Marklund, “New low-frequency oscillations in quantum dusty plasmas,” Europhys. Lett., vol. 74, p. 844, 2006. https://doi.org/10.1209/epl/i2006-10032-x.Suche in Google Scholar

[13] W. F. El-Taibany and M. Waidati, “Nonlinear quantum dust acoustic waves in nonuniform complex quantum dusty plasma,” Phys. Plasmas, vol. 14, p. 042302, 2007. https://doi.org/10.1063/1.2717883.Suche in Google Scholar

[14] W. H. Matthaeus, S. Dasso, J. M. Weygand, L. J. Milano, C. W. Smith, and M. G. Kivelson, “Spatial correlation of solar-wind turbulence from two-point measurements,” Phys. Rev. Lett., vol. 95, p. 231101, 2005. https://doi.org/10.1103/physrevlett.95.231101.Suche in Google Scholar

[15] N. Jehan, M. Salahuddin, H. Saleem, and A. M. Mirza, “Modulation instability of low-frequency electrostatic ion waves in magnetized electron–positron–ion plasma,” Phys. Plasmas, vol. 15, p. 092301, 2008. https://doi.org/10.1063/1.2977768.Suche in Google Scholar

[16] A. S. Bains, A. P. Misra, N. S. Saini, and T. S. Gill, “Modulational instability of ion-acoustic wave envelopes in magnetized quantum electron-positron-ion plasmas,” Phys. Plasmas, vol. 17, p. 012103, 2010. https://doi.org/10.1063/1.3293119.Suche in Google Scholar

[17] R. Sabry, W. M. Moslem, and P. K. Shukla, “Freak waves in white dwarfs and magnetars,” Phys. Plasmas, vol. 19, p. 122903, 2012. https://doi.org/10.1063/1.4772058.Suche in Google Scholar

[18] M. R. Hossen and A. A. Mamun, “Modeling of modified electron-acoustic solitary waves in a relativistic degenerate plasma,” J. Kor. Phys. Soc., vol. 65, p. 2045, 2014. https://doi.org/10.3938/jkps.65.2045.Suche in Google Scholar

[19] D. Koester and G. Chanmugam, “Physics of white dwarf stars,” Rep. Prog. Phys., vol. 53, p. 837, 1990. https://doi.org/10.1088/0034-4885/53/7/001.Suche in Google Scholar

[20] S. Chandrasekhar, “The maximum mass of ideal white dwarfs,” Astrophys. J., vol. 74, p. 81, 1931. https://doi.org/10.1086/143324.Suche in Google Scholar

[21] S. Chandrasekhar, “Stellar Configurations with Degenerate Cores,” Mon. Not. Roy. Astron. Soc., vol. 95, no. 3, pp. 226–260, 1935. https://doi.org/10.1093/mnras/95.3.226.Suche in Google Scholar

[22] S. Y. El-Monier and A. Atteya, “Obliquely propagating nonlinear ion-acoustic solitary and cnoidal waves in nonrelativistic magnetized pair-ion plasma with superthermal electrons,” AIP Adv., vol. 9, no. 4, p. 045306, 2019. https://doi.org/10.1063/1.5093016.Suche in Google Scholar

[23] W. F. El-Taibany, N. A. Zedan, and A. Atteya, “Stability of three-dimensional dust acoustic waves in a strongly coupled dusty plasma including kappa distributed superthermal ions and electrons,” Eur. Phys. J. Plus, vol. 134, p. 479, 2019. https://doi.org/10.1140/epjp/i2019-12888-2.Suche in Google Scholar

[24] S. Y. El-Monier and A. Atteya, “Higher order corrections and temperature effects to ion acoustic shock waves in quantum degenerate electron-ion plasma,” Chin. J. Phys., vol. 60, p. 695, 2019. https://doi.org/10.1016/j.cjph.2019.06.010.Suche in Google Scholar

[25] S. Ali, A. Rhman, M. A. Mirza, and A. Qamar, “Planar and nonplanar ion acoustic shock waves in relativistic degenerate astrophysical electron-positron-ion plasmas,” Phys. Plasmas, vol. 20, p. 042305, 2013. https://doi.org/10.1063/1.4802934.Suche in Google Scholar

[26] M. R. Hossen, M. A. Hossen, S. Sultana, and A. A. Mamun, “Modeling of modified ion-acoustic shock waves in a relativistic electron degenerate multi-ion plasma for higher order nonlinearity,” Astrophys. Space Sci., vol. 357, p. 34, 2015. https://doi.org/10.1007/s10509-015-2278-7.Suche in Google Scholar

[27] S. A. Ema, M. R. Hossen, and A. A. Mamun, “Planar and nonplanar shock waves in a degenerate quantum plasma,” Contrib. Plasma Phys., vol. 55, p. 551, 2015. https://doi.org/10.1002/ctpp.201500003.Suche in Google Scholar

[28] A. A. Mamun and P. K. Shukla, “Cylindrical and spherical ion shock waves in a strongly coupled degenerate plasma,” Europhys. Lett., vol. 94, p. 65002, 2011. https://doi.org/10.1209/0295-5075/94/65002.Suche in Google Scholar

[29] H. Ikezi, R. J. Taylor, and D. R. Baker, “Formation and interaction of ion-acoustic solitions,” Phys. Rev. Lett., vol. 25, p. 11, 1970. https://doi.org/10.1103/physrevlett.25.11.Suche in Google Scholar

[30] M. A. Hossen, M. R. Hossen, and A. A. Mamun, “Modified ion-acoustic shock waves and double layers in a degenerate electron-positron-ion plasma in presence of heavy negative ions,” Braz. J. Phys., vol. 44, p. 703, 2014. https://doi.org/10.1007/s13538-014-0267-x.Suche in Google Scholar

[31] M. Ferdousi, S. Yasmin, S. Ashraf, and A. A. Mamun, “Cylindrical and spherical ion-acoustic shock waves in nonextensive electron-positron-ion plasma,” IEEE Trans. Plasma Sci., vol. 43, p. 643, 2015. https://doi.org/10.1109/tps.2014.2384835.Suche in Google Scholar

[32] H. R. Pakzad, “Ion acoustic shock waves in dissipative plasma with superthermal electrons and positrons,” Astrophys. Space Sci., vol. 331, p. 169, 2011. https://doi.org/10.1007/s10509-010-0424-9.Suche in Google Scholar

[33] M.-J. Lee and Y.-D. Jung, “Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas,” Phys. Lett. A, vol. 381, p. 636, 2017. https://doi.org/10.1016/j.physleta.2016.12.025.Suche in Google Scholar

[34] M. R. Hossen and A. A. Mamun, “Study of nonlinear waves in astrophysical quantum plasmas,” Braz. J. Phys., vol. 45, p. 200, 2015. https://doi.org/10.1007/s13538-014-0297-4.Suche in Google Scholar

[35] S. Mahmood and A. Mushtaq, “Quantum ion acoustic solitary waves in electron-ion plasmas: a Sagdeev potential approach,” Phys. Lett. A, vol. 372, p. 3467, 2008. https://doi.org/10.1016/j.physleta.2008.02.003.Suche in Google Scholar

[36] A. Rahman, S. Ali, A. Mushtaq, and A. Qamar, “Nonlinear ion acoustic excitations in relativistic degenerate, astrophysical electron-positron-ion plasmas,” J. Plasma Phys., vol. 79, p. 817, 2013. https://doi.org/10.1017/s0022377813000524.Suche in Google Scholar

[37] A. A. Mamun and P. K. Shukla, “Solitary waves in an ultrarelativistic degenerate dense plasma,” Phys. Plasmas, vol. 17, p. 104504, 2010. https://doi.org/10.1063/1.3491433.Suche in Google Scholar

[38] D. Pines, “Classical and quantum plasmas,” J. Nucl. Energy, Part C, vol. 2, p. 5, 1961. https://doi.org/10.1088/0368-3281/2/1/301.Suche in Google Scholar

[39] M. M. Hasan, M. A. Hossen, A. Rafat, and A. A. Mamun, “Effect of Bohm quantum potential in the propagation of ion-acoustic waves in degenerate plasmas,” Chin. Phys. B, vol. 25, p. 105203, 2016. https://doi.org/10.1088/1674-1056/25/10/105203.Suche in Google Scholar

[40] J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields, New York, Springer-Verlag, 1983.10.1007/978-1-4612-1140-2Suche in Google Scholar

[41] S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, New York, Springer-Verlag, 1981.10.1007/978-1-4613-8159-4Suche in Google Scholar

[42] U. K. Samanta, A. Saha, and P. Chatterjee, “Bifurcations of dust ion acoustic travelling waves in a magnetized dusty plasma with aq-nonextensive electron velocity distribution,” Phys. Plasmas, vol. 20, p. 022111, 2013. https://doi.org/10.1063/1.4791660.Suche in Google Scholar

[43] E. F. El-Shamy, R. C. Al-Chouikh, A. El-Depsy, and N. S. Al-Wadie, “Nonlinear propagation of electrostatic travelling waves in degenerate dense magnetoplasmas,” Phys. Plasmas, vol. 23, p. 122122, 2016. https://doi.org/10.1063/1.4972817.Suche in Google Scholar

[44] K. Singh, P. Sethi, and N. S. Saini, “Nonlinear excitations in a degenerate relativistic magneto-rotating quantum plasma,” Phys. Plasmas, vol. 26, p. 092104, 2019. https://doi.org/10.1063/1.5098138.Suche in Google Scholar

[45] W. F. El-Taibany, E. E. Behery, S. K. El-Labany, and A. M. Abdelghany, “Gravitoelectrostatic excitations in an opposite polarity complex plasma,” Phys. Plasmas, vol. 26, p. 063701, 2019. https://doi.org/10.1063/1.5092514.Suche in Google Scholar

[46] P. K. Prasad and A. Saha, “Bifurcation analysis of ion-acoustic waves for Schrödinger equation in nonextensive Solar wind plasma,” Adv. Space Res., vol. 67, p. 9, 2021. https://doi.org/10.1016/j.asr.2020.07.031.Suche in Google Scholar

[47] A. Saha, B. Pradhan, and S. Banerjee, “Bifurcation analysis of quantum ion-acoustic kink, anti-kink and periodic waves of the Burgers equation in a dense quantum plasma,” Eur. Phys. J. Plus, vol. 135, p. 216, 2020. https://doi.org/10.1140/epjp/s13360-020-00235-9.Suche in Google Scholar

[48] M. M. Selim, A. El-Depsy, and E. F. El-Shamy, “Bifurcations of nonlinear ion-acoustic travelling waves in a multicomponent magnetoplasma with superthermal electrons,” Astrophys. Space Sci., vol. 360, p. 66, 2015. https://doi.org/10.1007/s10509-015-2574-2.Suche in Google Scholar

[49] R. A. Shahein and A. R. Seadawy, “Bifurcation analysis of KP and modified KP equations in an unmagnetized dust plasma with nonthermal distributed multi-temperatures ions,” Indian J. Phys., vol. 93, p. 941, 2019. https://doi.org/10.1007/s12648-018-1357-3.Suche in Google Scholar

[50] P. K. Prasad and A. Saha, “Dynamical behavior and multistability of ion-acoustic waves in a magnetized Auroral zone plasma,” J. Astrophys. Astron., vol. 42, p. 9, 2021. https://doi.org/10.1007/s12036-021-09721-7.Suche in Google Scholar

[51] S. Y. El-Monier and A. Atteya, “Bifurcation analysis for dust-acoustic waves in a four-component plasma including warm ions,” IEEE Trans. Plasma Sci., vol. 46, p. 815, 2018. https://doi.org/10.1109/tps.2017.2766097.Suche in Google Scholar

[52] R. M. Taha and W. F. El-Taibany, “Bifurcation analysis of nonlinear and supernonlinear dust-acoustic waves in a dusty plasma using the generalized (r , q ) distribution function for ions and electrons,” Contrib. Plasma Phys., vol. 60, p. e202000022, 2020. https://doi.org/10.1002/ctpp.202000022.Suche in Google Scholar

[53] J. Tamang, B. Pradhan, and A. Saha, “Stable oscillation and chaotic motion of the dust-acoustic waves for the KdV-Burgers equation in a four-component dusty plasma,” IEEE Trans. Plasma Sci., vol. 48, p. 3982, 2020. https://doi.org/10.1109/tps.2020.3027241.Suche in Google Scholar

[54] P. K. Prasad, S. Sarkar, A. Saha, and K. K. Mondal, “Bifurcation analysis of ion-acoustic superperiodic waves in dense plasmas,” Braz. J. Phys., vol. 49, p. 698, 2019. https://doi.org/10.1007/s13538-019-00697-y.Suche in Google Scholar

[55] M. G. Hafez, “Nonlinear ion acoustic solitary waves with dynamical behaviours in the relativistic plasmas,” Astrophys. Space Sci., vol. 365, p. 78, 2020. https://doi.org/10.1007/s10509-020-03791-9.Suche in Google Scholar

[56] S. K. El-Labany, W. F. El-Taibany, and A. Atteya, “Bifurcation analysis for ion acoustic waves in a strongly coupled plasma including trapped electrons,” Phys. Lett. A, vol. 382, p. 412, 2018. https://doi.org/10.1016/j.physleta.2017.12.026.Suche in Google Scholar

[57] W. F. El-Taibany, A. Atteya, and S. K. El-Labany, “Ion-acoustic Gardner solitons in multi-ion degenerate plasma with the effect of polarization and trapping in the presence of a quantizing magnetic field,” Phys. Plasmas, vol. 25, p. 083704, 2018. https://doi.org/10.1063/1.5030368.Suche in Google Scholar

[58] S. Arshad, H. A. Shah, and M. N. S. Quresh, “Effect of adiabatic trapping on vortices and solitons in degenerate plasma in the presence of a quantizing magnetic field,” Phys. Scripta, vol. 89, p. 075602, 2014. https://doi.org/10.1088/0031-8949/89/7/075602.Suche in Google Scholar

[59] M. K. Deka and A. N. Dev, “Landau degeneracy effect on ion beam driven degenerate magneto plasma: evolution of hypersonic soliton,” Ann. Phys., vol. 395, p. 45, 2018. https://doi.org/10.1016/j.aop.2018.05.008.Suche in Google Scholar

[60] W. Malfliet and W. Hereman, “The tanh method: I. Exact solutions of nonlinear evolution and wave equations,” Phys. Scr., vol. 54, p. 563, 1996. https://doi.org/10.1088/0031-8949/54/6/003.Suche in Google Scholar

[61] V. I. Karpman, Nonlinear Waves in Dispersive Media, New York, USA, Oxford, Pergamon, 1975.10.1016/B978-0-08-017720-5.50008-7Suche in Google Scholar

[62] K. Xue, “Cylindrical and spherical dust-ion acoustic shock waves,” Phys. Plasmas, vol. 10, p. 4893, 2003. https://doi.org/10.1063/1.1622954.Suche in Google Scholar

[63] S. Y. El-Monier and A. Atteya, “Dynamics of ion-acoustic waves in nonrelativistic magnetized multi-ion quantum plasma: the role of trapped electrons,” Waves In Random and Complex Media, 2020. https://doi.org/10.1080/17455030.2020.1772522.Suche in Google Scholar

[64] N. A. Zedan, A. Atteya, W. F. El-Taibany, and S. K. EL-Labany, “Stability of ion-acoustic solitons in a multi-ion degenerate plasma with the effects of trapping and polarization under the influence of quantizing magnetic field,” Waves In Random and Complex Media, 2020. https://doi.org/10.1080/17455030.2020.1798560.Suche in Google Scholar

Received: 2021-03-04
Revised: 2021-05-22
Accepted: 2021-05-30
Published Online: 2021-07-02
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0060/html
Button zum nach oben scrollen