Ion-acoustic stable oscillations, solitary, periodic and shock waves in a quantum magnetized electron–positron–ion plasma
-
Ahmed Atteya
, Mohamed A. El-Borie , Gamal D. Roston , Abdel-Aziz Samir El-Helbawy , Punam Kumari Prasadand Asit Saha
Abstract
Nonlinear stable oscillations, solitary, periodic and shock waves in electron–positron–ion (EPI) quantum plasma in the presence of an external static magnetic field are reported. The Korteweg-de Vries-Burgers (KdVB) equation is derived by the reductive perturbation technique (RPT). The wave solution gives shock waves depending on various parameters as quantum diffraction parameter (β), electron and positron Fermi temperatures, and densities of the system species. Amplitude, polarity, speed, and width of wave solutions are remarkably modified by species densities, kinematic viscosity, and the Bohm potential. Existence of stable oscillation of ion-acoustic waves (IAWs) is shown by using the concept of phase plane analysis. Stability of wave solution is analysed by examining the Bohm potential effect. In the absence of dissipation, phase plane of the considered plasma system is analysed to discuss the existence of periodic wave solution. The results of this study could be helpful for comprehension of the wave features in dense quantum plasmas, like white dwarfs, laboratory plasma as interaction experiments of intense laser-solid matter and microelectronic devices.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Dr. Asit Saha is thankful to SMIT (SMU) for research funding.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
[1] W. Misner, K. S. Thorne, and J. I. Wheeler, Gravitation, San Francisco, CA, USA, Freeman, 1973.Search in Google Scholar
[2] M. R. Hossen and A. A. Mamun, “Electrostatic solitary structures in a relativistic degenerate multispecies plasma,” Braz. J. Phys., vol. 44, p. 673, 2014. https://doi.org/10.1007/s13538-014-0254-2.Search in Google Scholar
[3] M. R. Hossen, S. A. Ema, and A. A. Mamun, “Nonplanar shock structures in a relativistic degenerate multi-species plasma,” Commun. Theor. Phys., vol. 62, p. 888, 2014. https://doi.org/10.1088/0253-6102/62/6/18.Search in Google Scholar
[4] F. C. Michel, Theory of Neutron Star Magnetosphere, Chicago, IL, USA, Chicago Univ. Press, 1991.Search in Google Scholar
[5] M. C. Begelman, R. D. Blandford, and M. J. Rees, “Theory of extragalactic radio sources,” Rev. Mod. Phys., vol. 56, p. 255, 1984. https://doi.org/10.1103/revmodphys.56.255.Search in Google Scholar
[6] E. P. Liang, S. C. Wilks, and M. Tabak, “Pair production by ultraintense lasers,” Phys. Rev. Lett., vol. 81, p. 4887, 1998. https://doi.org/10.1103/physrevlett.81.4887.Search in Google Scholar
[7] M. L. Burns, A. K. Harding, and R. Ramaty, Positron-Electron Pairs in Astrophysics, New York, NY, USA, American Institute Physics, 1983.Search in Google Scholar
[8] P. Goldreich and W. H. Julian, “Pulsar electrodynamics,” Astrophys. J., vol. 157, p. 869, 1969. https://doi.org/10.1086/150119.Search in Google Scholar
[9] M. J. Rees, “New interpretation of extragalactic radio sources,” Nature, vol. 229, p. 312, 1971. https://doi.org/10.1038/229312a0.Search in Google Scholar
[10] M. Marklund and P. K. Shukla, “Nonlinear collective effects in photon-photon and photon-plasma interactions,” Rev. Mod. Phys., vol. 78, p. 591, 2006. https://doi.org/10.1103/revmodphys.78.591.Search in Google Scholar
[11] Z. Y. Wang and C. J. Tang, “Slow-wave electromagnetic instability driven by wiggling relativistic electron beam in ion-channel,” Acta Phys. Sin., vol. 60, no. 5, p. 055204, 2011. https://doi.org/10.7498/aps.60.055204.Search in Google Scholar
[12] L. Stenflo, P. K. Shukla, and M. Marklund, “New low-frequency oscillations in quantum dusty plasmas,” Europhys. Lett., vol. 74, p. 844, 2006. https://doi.org/10.1209/epl/i2006-10032-x.Search in Google Scholar
[13] W. F. El-Taibany and M. Waidati, “Nonlinear quantum dust acoustic waves in nonuniform complex quantum dusty plasma,” Phys. Plasmas, vol. 14, p. 042302, 2007. https://doi.org/10.1063/1.2717883.Search in Google Scholar
[14] W. H. Matthaeus, S. Dasso, J. M. Weygand, L. J. Milano, C. W. Smith, and M. G. Kivelson, “Spatial correlation of solar-wind turbulence from two-point measurements,” Phys. Rev. Lett., vol. 95, p. 231101, 2005. https://doi.org/10.1103/physrevlett.95.231101.Search in Google Scholar
[15] N. Jehan, M. Salahuddin, H. Saleem, and A. M. Mirza, “Modulation instability of low-frequency electrostatic ion waves in magnetized electron–positron–ion plasma,” Phys. Plasmas, vol. 15, p. 092301, 2008. https://doi.org/10.1063/1.2977768.Search in Google Scholar
[16] A. S. Bains, A. P. Misra, N. S. Saini, and T. S. Gill, “Modulational instability of ion-acoustic wave envelopes in magnetized quantum electron-positron-ion plasmas,” Phys. Plasmas, vol. 17, p. 012103, 2010. https://doi.org/10.1063/1.3293119.Search in Google Scholar
[17] R. Sabry, W. M. Moslem, and P. K. Shukla, “Freak waves in white dwarfs and magnetars,” Phys. Plasmas, vol. 19, p. 122903, 2012. https://doi.org/10.1063/1.4772058.Search in Google Scholar
[18] M. R. Hossen and A. A. Mamun, “Modeling of modified electron-acoustic solitary waves in a relativistic degenerate plasma,” J. Kor. Phys. Soc., vol. 65, p. 2045, 2014. https://doi.org/10.3938/jkps.65.2045.Search in Google Scholar
[19] D. Koester and G. Chanmugam, “Physics of white dwarf stars,” Rep. Prog. Phys., vol. 53, p. 837, 1990. https://doi.org/10.1088/0034-4885/53/7/001.Search in Google Scholar
[20] S. Chandrasekhar, “The maximum mass of ideal white dwarfs,” Astrophys. J., vol. 74, p. 81, 1931. https://doi.org/10.1086/143324.Search in Google Scholar
[21] S. Chandrasekhar, “Stellar Configurations with Degenerate Cores,” Mon. Not. Roy. Astron. Soc., vol. 95, no. 3, pp. 226–260, 1935. https://doi.org/10.1093/mnras/95.3.226.Search in Google Scholar
[22] S. Y. El-Monier and A. Atteya, “Obliquely propagating nonlinear ion-acoustic solitary and cnoidal waves in nonrelativistic magnetized pair-ion plasma with superthermal electrons,” AIP Adv., vol. 9, no. 4, p. 045306, 2019. https://doi.org/10.1063/1.5093016.Search in Google Scholar
[23] W. F. El-Taibany, N. A. Zedan, and A. Atteya, “Stability of three-dimensional dust acoustic waves in a strongly coupled dusty plasma including kappa distributed superthermal ions and electrons,” Eur. Phys. J. Plus, vol. 134, p. 479, 2019. https://doi.org/10.1140/epjp/i2019-12888-2.Search in Google Scholar
[24] S. Y. El-Monier and A. Atteya, “Higher order corrections and temperature effects to ion acoustic shock waves in quantum degenerate electron-ion plasma,” Chin. J. Phys., vol. 60, p. 695, 2019. https://doi.org/10.1016/j.cjph.2019.06.010.Search in Google Scholar
[25] S. Ali, A. Rhman, M. A. Mirza, and A. Qamar, “Planar and nonplanar ion acoustic shock waves in relativistic degenerate astrophysical electron-positron-ion plasmas,” Phys. Plasmas, vol. 20, p. 042305, 2013. https://doi.org/10.1063/1.4802934.Search in Google Scholar
[26] M. R. Hossen, M. A. Hossen, S. Sultana, and A. A. Mamun, “Modeling of modified ion-acoustic shock waves in a relativistic electron degenerate multi-ion plasma for higher order nonlinearity,” Astrophys. Space Sci., vol. 357, p. 34, 2015. https://doi.org/10.1007/s10509-015-2278-7.Search in Google Scholar
[27] S. A. Ema, M. R. Hossen, and A. A. Mamun, “Planar and nonplanar shock waves in a degenerate quantum plasma,” Contrib. Plasma Phys., vol. 55, p. 551, 2015. https://doi.org/10.1002/ctpp.201500003.Search in Google Scholar
[28] A. A. Mamun and P. K. Shukla, “Cylindrical and spherical ion shock waves in a strongly coupled degenerate plasma,” Europhys. Lett., vol. 94, p. 65002, 2011. https://doi.org/10.1209/0295-5075/94/65002.Search in Google Scholar
[29] H. Ikezi, R. J. Taylor, and D. R. Baker, “Formation and interaction of ion-acoustic solitions,” Phys. Rev. Lett., vol. 25, p. 11, 1970. https://doi.org/10.1103/physrevlett.25.11.Search in Google Scholar
[30] M. A. Hossen, M. R. Hossen, and A. A. Mamun, “Modified ion-acoustic shock waves and double layers in a degenerate electron-positron-ion plasma in presence of heavy negative ions,” Braz. J. Phys., vol. 44, p. 703, 2014. https://doi.org/10.1007/s13538-014-0267-x.Search in Google Scholar
[31] M. Ferdousi, S. Yasmin, S. Ashraf, and A. A. Mamun, “Cylindrical and spherical ion-acoustic shock waves in nonextensive electron-positron-ion plasma,” IEEE Trans. Plasma Sci., vol. 43, p. 643, 2015. https://doi.org/10.1109/tps.2014.2384835.Search in Google Scholar
[32] H. R. Pakzad, “Ion acoustic shock waves in dissipative plasma with superthermal electrons and positrons,” Astrophys. Space Sci., vol. 331, p. 169, 2011. https://doi.org/10.1007/s10509-010-0424-9.Search in Google Scholar
[33] M.-J. Lee and Y.-D. Jung, “Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas,” Phys. Lett. A, vol. 381, p. 636, 2017. https://doi.org/10.1016/j.physleta.2016.12.025.Search in Google Scholar
[34] M. R. Hossen and A. A. Mamun, “Study of nonlinear waves in astrophysical quantum plasmas,” Braz. J. Phys., vol. 45, p. 200, 2015. https://doi.org/10.1007/s13538-014-0297-4.Search in Google Scholar
[35] S. Mahmood and A. Mushtaq, “Quantum ion acoustic solitary waves in electron-ion plasmas: a Sagdeev potential approach,” Phys. Lett. A, vol. 372, p. 3467, 2008. https://doi.org/10.1016/j.physleta.2008.02.003.Search in Google Scholar
[36] A. Rahman, S. Ali, A. Mushtaq, and A. Qamar, “Nonlinear ion acoustic excitations in relativistic degenerate, astrophysical electron-positron-ion plasmas,” J. Plasma Phys., vol. 79, p. 817, 2013. https://doi.org/10.1017/s0022377813000524.Search in Google Scholar
[37] A. A. Mamun and P. K. Shukla, “Solitary waves in an ultrarelativistic degenerate dense plasma,” Phys. Plasmas, vol. 17, p. 104504, 2010. https://doi.org/10.1063/1.3491433.Search in Google Scholar
[38] D. Pines, “Classical and quantum plasmas,” J. Nucl. Energy, Part C, vol. 2, p. 5, 1961. https://doi.org/10.1088/0368-3281/2/1/301.Search in Google Scholar
[39] M. M. Hasan, M. A. Hossen, A. Rafat, and A. A. Mamun, “Effect of Bohm quantum potential in the propagation of ion-acoustic waves in degenerate plasmas,” Chin. Phys. B, vol. 25, p. 105203, 2016. https://doi.org/10.1088/1674-1056/25/10/105203.Search in Google Scholar
[40] J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields, New York, Springer-Verlag, 1983.10.1007/978-1-4612-1140-2Search in Google Scholar
[41] S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, New York, Springer-Verlag, 1981.10.1007/978-1-4613-8159-4Search in Google Scholar
[42] U. K. Samanta, A. Saha, and P. Chatterjee, “Bifurcations of dust ion acoustic travelling waves in a magnetized dusty plasma with aq-nonextensive electron velocity distribution,” Phys. Plasmas, vol. 20, p. 022111, 2013. https://doi.org/10.1063/1.4791660.Search in Google Scholar
[43] E. F. El-Shamy, R. C. Al-Chouikh, A. El-Depsy, and N. S. Al-Wadie, “Nonlinear propagation of electrostatic travelling waves in degenerate dense magnetoplasmas,” Phys. Plasmas, vol. 23, p. 122122, 2016. https://doi.org/10.1063/1.4972817.Search in Google Scholar
[44] K. Singh, P. Sethi, and N. S. Saini, “Nonlinear excitations in a degenerate relativistic magneto-rotating quantum plasma,” Phys. Plasmas, vol. 26, p. 092104, 2019. https://doi.org/10.1063/1.5098138.Search in Google Scholar
[45] W. F. El-Taibany, E. E. Behery, S. K. El-Labany, and A. M. Abdelghany, “Gravitoelectrostatic excitations in an opposite polarity complex plasma,” Phys. Plasmas, vol. 26, p. 063701, 2019. https://doi.org/10.1063/1.5092514.Search in Google Scholar
[46] P. K. Prasad and A. Saha, “Bifurcation analysis of ion-acoustic waves for Schrödinger equation in nonextensive Solar wind plasma,” Adv. Space Res., vol. 67, p. 9, 2021. https://doi.org/10.1016/j.asr.2020.07.031.Search in Google Scholar
[47] A. Saha, B. Pradhan, and S. Banerjee, “Bifurcation analysis of quantum ion-acoustic kink, anti-kink and periodic waves of the Burgers equation in a dense quantum plasma,” Eur. Phys. J. Plus, vol. 135, p. 216, 2020. https://doi.org/10.1140/epjp/s13360-020-00235-9.Search in Google Scholar
[48] M. M. Selim, A. El-Depsy, and E. F. El-Shamy, “Bifurcations of nonlinear ion-acoustic travelling waves in a multicomponent magnetoplasma with superthermal electrons,” Astrophys. Space Sci., vol. 360, p. 66, 2015. https://doi.org/10.1007/s10509-015-2574-2.Search in Google Scholar
[49] R. A. Shahein and A. R. Seadawy, “Bifurcation analysis of KP and modified KP equations in an unmagnetized dust plasma with nonthermal distributed multi-temperatures ions,” Indian J. Phys., vol. 93, p. 941, 2019. https://doi.org/10.1007/s12648-018-1357-3.Search in Google Scholar
[50] P. K. Prasad and A. Saha, “Dynamical behavior and multistability of ion-acoustic waves in a magnetized Auroral zone plasma,” J. Astrophys. Astron., vol. 42, p. 9, 2021. https://doi.org/10.1007/s12036-021-09721-7.Search in Google Scholar
[51] S. Y. El-Monier and A. Atteya, “Bifurcation analysis for dust-acoustic waves in a four-component plasma including warm ions,” IEEE Trans. Plasma Sci., vol. 46, p. 815, 2018. https://doi.org/10.1109/tps.2017.2766097.Search in Google Scholar
[52] R. M. Taha and W. F. El-Taibany, “Bifurcation analysis of nonlinear and supernonlinear dust-acoustic waves in a dusty plasma using the generalized (r , q ) distribution function for ions and electrons,” Contrib. Plasma Phys., vol. 60, p. e202000022, 2020. https://doi.org/10.1002/ctpp.202000022.Search in Google Scholar
[53] J. Tamang, B. Pradhan, and A. Saha, “Stable oscillation and chaotic motion of the dust-acoustic waves for the KdV-Burgers equation in a four-component dusty plasma,” IEEE Trans. Plasma Sci., vol. 48, p. 3982, 2020. https://doi.org/10.1109/tps.2020.3027241.Search in Google Scholar
[54] P. K. Prasad, S. Sarkar, A. Saha, and K. K. Mondal, “Bifurcation analysis of ion-acoustic superperiodic waves in dense plasmas,” Braz. J. Phys., vol. 49, p. 698, 2019. https://doi.org/10.1007/s13538-019-00697-y.Search in Google Scholar
[55] M. G. Hafez, “Nonlinear ion acoustic solitary waves with dynamical behaviours in the relativistic plasmas,” Astrophys. Space Sci., vol. 365, p. 78, 2020. https://doi.org/10.1007/s10509-020-03791-9.Search in Google Scholar
[56] S. K. El-Labany, W. F. El-Taibany, and A. Atteya, “Bifurcation analysis for ion acoustic waves in a strongly coupled plasma including trapped electrons,” Phys. Lett. A, vol. 382, p. 412, 2018. https://doi.org/10.1016/j.physleta.2017.12.026.Search in Google Scholar
[57] W. F. El-Taibany, A. Atteya, and S. K. El-Labany, “Ion-acoustic Gardner solitons in multi-ion degenerate plasma with the effect of polarization and trapping in the presence of a quantizing magnetic field,” Phys. Plasmas, vol. 25, p. 083704, 2018. https://doi.org/10.1063/1.5030368.Search in Google Scholar
[58] S. Arshad, H. A. Shah, and M. N. S. Quresh, “Effect of adiabatic trapping on vortices and solitons in degenerate plasma in the presence of a quantizing magnetic field,” Phys. Scripta, vol. 89, p. 075602, 2014. https://doi.org/10.1088/0031-8949/89/7/075602.Search in Google Scholar
[59] M. K. Deka and A. N. Dev, “Landau degeneracy effect on ion beam driven degenerate magneto plasma: evolution of hypersonic soliton,” Ann. Phys., vol. 395, p. 45, 2018. https://doi.org/10.1016/j.aop.2018.05.008.Search in Google Scholar
[60] W. Malfliet and W. Hereman, “The tanh method: I. Exact solutions of nonlinear evolution and wave equations,” Phys. Scr., vol. 54, p. 563, 1996. https://doi.org/10.1088/0031-8949/54/6/003.Search in Google Scholar
[61] V. I. Karpman, Nonlinear Waves in Dispersive Media, New York, USA, Oxford, Pergamon, 1975.10.1016/B978-0-08-017720-5.50008-7Search in Google Scholar
[62] K. Xue, “Cylindrical and spherical dust-ion acoustic shock waves,” Phys. Plasmas, vol. 10, p. 4893, 2003. https://doi.org/10.1063/1.1622954.Search in Google Scholar
[63] S. Y. El-Monier and A. Atteya, “Dynamics of ion-acoustic waves in nonrelativistic magnetized multi-ion quantum plasma: the role of trapped electrons,” Waves In Random and Complex Media, 2020. https://doi.org/10.1080/17455030.2020.1772522.Search in Google Scholar
[64] N. A. Zedan, A. Atteya, W. F. El-Taibany, and S. K. EL-Labany, “Stability of ion-acoustic solitons in a multi-ion degenerate plasma with the effects of trapping and polarization under the influence of quantizing magnetic field,” Waves In Random and Complex Media, 2020. https://doi.org/10.1080/17455030.2020.1798560.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Atomic, Molecular & Chemical Physics
- Chirp waveform control to produce broad harmonic plateau and single attosecond pulse
- Dynamical Systems & Nonlinear Phenomena
- Ion-acoustic stable oscillations, solitary, periodic and shock waves in a quantum magnetized electron–positron–ion plasma
- Nonlinear forced vibration of rotating composite laminated cylindrical shells under hygrothermal environment
- Vibration characteristics and stable region of a parabolic FGM thin-walled beam with axial and spinning motion
- Hydrodynamics
- Curvilinear flow of micropolar fluid with Cattaneo–Christov heat flux model due to oscillation of curved stretchable sheet
- Quantum Theory
- Accuracy of the typicality approach using Chebyshev polynomials
- Solid State Physics & Materials Science
- Impact of Sn ions on structural and electrical description of TiO2 nanoparticles
- The effect of non-bridging oxygen on the electrical transport of some lead borate glasses containing cobalt
- Thermodynamics & Statistical Physics
- Analytical solution for unsteady adiabatic and isothermal flows behind the shock wave in a rotational axisymmetric mixture of perfect gas and small solid particles
Articles in the same Issue
- Frontmatter
- Atomic, Molecular & Chemical Physics
- Chirp waveform control to produce broad harmonic plateau and single attosecond pulse
- Dynamical Systems & Nonlinear Phenomena
- Ion-acoustic stable oscillations, solitary, periodic and shock waves in a quantum magnetized electron–positron–ion plasma
- Nonlinear forced vibration of rotating composite laminated cylindrical shells under hygrothermal environment
- Vibration characteristics and stable region of a parabolic FGM thin-walled beam with axial and spinning motion
- Hydrodynamics
- Curvilinear flow of micropolar fluid with Cattaneo–Christov heat flux model due to oscillation of curved stretchable sheet
- Quantum Theory
- Accuracy of the typicality approach using Chebyshev polynomials
- Solid State Physics & Materials Science
- Impact of Sn ions on structural and electrical description of TiO2 nanoparticles
- The effect of non-bridging oxygen on the electrical transport of some lead borate glasses containing cobalt
- Thermodynamics & Statistical Physics
- Analytical solution for unsteady adiabatic and isothermal flows behind the shock wave in a rotational axisymmetric mixture of perfect gas and small solid particles