Startseite Large-Eddy Simulation of Shaped Hole Film Cooling with the Influence of Cross Flow
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Large-Eddy Simulation of Shaped Hole Film Cooling with the Influence of Cross Flow

  • Wang Qingsong , Xinrong Su EMAIL logo und Xin Yuan
Veröffentlicht/Copyright: 8. Mai 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the highly-loaded turbine blade passage, cross flow is driven by the lateral gradient. It strongly influences the cooling performances in the endwall region. In this research, the effect of cross flow on the shaped film cooling hole is studied by Large Eddy Simulation (LES); modal analysis is conducted with an incremental POD (iPOD) approach, which makes the analysis of the large data sets from LES feasible. It is shown that the symmetry of the counter rotating vortex pair (CRVP) is destroyed. The large-scale vortex induced by end-wall cross flow plays an important role in both shape and convection of hairpin vortices and horseshoe vortices, which influences the coolant distribution. This study suggests that the effects of cross flow should be considered for the design of end-wall film cooling. It also indicates the high efficiency of the iPOD approach, which can be used to analyze large amounts of high-dimensional data.

JEL Classification: 47.11.-j

Funding statement: This work is supported by the Open fund from State Key Laboratory of Aerodynamics and the National Natural Science Foundation of China (Project Grant No. 51876098). This work is also supported by the National Science and Technology Major Project (2017-III-0009-0035).

Nomenclature

aw

adiabatic wall

c

Coolant

Mainstream

M

blowing ratio

PSD

power spectral density

TKE

nondimensional turbulent kinetic energy

SVD

singular value decomposition

Re

Reynolds number

POD

Proper Orthogonal Decomposition

CRVP

counter-rotating vortex pair

v

y-direction free-stream velocity in cartesian coordinate system

r

cylindrical coordinate (Radial)

θ

cylindrical coordinate (Circumferential)

T 2

temperature variance

References

1. Bogard DG, Thole KA. Gas turbine film cooling. J Propul Power. 2006;22.2:249–70. ISSN: 0748-4658. DOI:10.2514/1.18034.Suche in Google Scholar

2. Zhang H, Li Y, Chen Z, Su X, Yuan X. Multi-fidelity model based optimization of shaped film cooling hole and experimental validation. Int J Heat Mass Transf. 2019;132:118–29. ISSN: 0017-9310. DOI: 10.1016/j.ijheatmasstransfer.2018.11.156. URL:. http://www.sciencedirect.com/science/article/pii/S0017931018341024.Suche in Google Scholar

3. Li G, Chen Y, Kou Z, Zhang W, Zhang G. Mechanism of film cooling with one inlet and double outlet hole injection at various turbulence intensities. Int J Turbo & Jet-Engines. 2018;35.1:1–9.10.1515/tjj-2016-0024Suche in Google Scholar

4. Lutum E, von Wolfersdorf J, Semmler K, Dittmar J, Weigand B. An experimental investigation of film cooling on a convex surface subjected to favourable pressure gradient flow”. Int J Heat Mass Transf. 2001;44.5:939–51. ISSN: 0017-9310. DOI: 10.1016/S0017-9310(00)00158-7. URL: http://www.sciencedirect.com/science/article/pii/S0017931000001587.Suche in Google Scholar

5. Li Y, Zhang Y, Su X, Yuan X. Experimental and numerical investigations of shaped hole film cooling with the influence of endwall cross flow. Int J Heat Mass Transf. 2018;120:42–55.10.1016/j.ijheatmasstransfer.2017.11.150Suche in Google Scholar

6. Zhou Y, Zhang Y, Su X, Yuan X. Effect of inlet rotating swirl on endwall film cooling for two representative hole arrangements. Chin J Aeronaut. 2018;31.5:1095–108. ISSN: 1000-9361. DOI: 10.1016/j.cja.2018.03.008. URL: https://www.sciencedirect.com/science/article/pii/S1000936118301006.Suche in Google Scholar

7. Zhang Y, Li Y, Bian X, Yuan X. Effects of inlet swirl on pressure side film cooling of neighboring vane surface. J Therm Sci Eng Appl. 2019;11.6. ISSN: 1948-5085. DOI: 10.1115/1.4043260. URL: https://doi.org/10.1115/1.4043260.Suche in Google Scholar

8. McClintic JW, Wilkes EK, Bogard DG, Dees JE, Laskowski GM, Briggs R. Near-hole thermal field measurements for round compound angle film cooling holes fed by cross-flow. ASME Turbo Expo: Power for Land, Sea, and Air. 2015;5B:Heat Transfer: V05BT12A050.10.1115/GT2015-43949Suche in Google Scholar

9. Zhai Y, Liu C, He Y, Zhou Z. Investigation on the film cooling performance of diffuser shaped holes with different inclination angles. Int J Turbo & Jet Engines. 2016;34.2:123–39.10.1515/tjj-2016-0026Suche in Google Scholar

10. Zhong L, Zhou C, Chen S. Large-Eddy simulations of inclined jets in crossflow with different holes. J Propul Power. 2018;34.5. ISSN: 0748-4658. DOI:10.2514/1.B36594.Suche in Google Scholar

11. Haydt S, Lynch S, Lewis S. The effect of area ratio change via increased hole length for shaped film cooling holes with constant expansion angles. J Turbomach. 2018;140.5. ISSN: 0889-504X. DOI:10.1115/1.4038871.Suche in Google Scholar

12. Bidan G, Vézier C, Nikitopoulos DE. Study of unforced and modulated film-cooling jets using proper orthogonal decomposition—Part I: unforced jets. J Turbomach. 2012;135.2. ISSN: 0889-504X. DOI:10.1115/1.4006599.Suche in Google Scholar

13. Sarkar, Babu H. Large Eddy simulation on the interactions of wake and film-cooling near a leading edge. J Turbomach. 2014;137.1. ISSN: 0889-504X. DOI:10.1115/1.4028219.Suche in Google Scholar

14. Thompson L, et al. Planar laser induced fluorescence experiments and modeling study of jets in crossflow. J Fluids Eng. 2016;138.8:081201.10.1115/1.4032581Suche in Google Scholar

15. Meng T, Zhu H, Liu C, Wei J. Investigation on the accuracy of superposition predictions of film cooling effectiveness. Int J Turbo & Jet-Engines. 2018;35.2:181–92.10.1515/tjj-2017-0029Suche in Google Scholar

16. Zhou Z-Y, Li H-W, Wang H-C, Zhao G-Q, Han F, Wu M. Rotating film cooling performance of the hole near the leading edge on the suction side of theturbine blade. ASME Int Mech Eng Congr Exposition. 2019;8B: Heat Transfer and Thermal Engineering. DOI: 10.1115/IMECE2018-86929. eprint: https://asmedigitalcollection.asme.org/IMECE/proceedings-pdf/IMECE2018/52125/V08BT10A052/2503593/v08bt10a052-imece2018-86929.pdf. URL: https://doi.org/10.1115/IMECE2018-86929.Suche in Google Scholar

17. Li Y, Zhang Y, Su X, Yuan X. Influence of mainstream cross flow on film cooling performance and jet flow field. ASME Turbo Expo: Power for Land, Sea, and Air. 2017; 5A: Heat Transfer: V05AT12A013. DOI:10.1115/GT2017-64234.Suche in Google Scholar

18. Stratton ZT, Shih TI-P. Identifying weaknesses in eddy-viscosity models for predicting film cooling via Large-Eddy simulations”. J Propul Power. 2019:1–12. DOI:10.2514/1.B37314. URL: https://arc.aiaa.org/doi/10.2514/1.B37314.Suche in Google Scholar

19. Rozati A, Tafti DK. Effect of coolant–mainstream blowing ratio on leading edge film cooling flow and heat transfer – LES investigation”. Int J Heat Fluid Flow. 2008;29.4:857–73. ISSN: 0142-727X. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2008.02.007. URL: http://www.sciencedirect.com/science/article/pii/S0142727X08000234.Suche in Google Scholar

20. Dong P, Amano RS. High-pressure gas turbine vane turbulent flows and heat transfer predicted by RANS/LES/DES. ASME Turbo Expo: Power for Land, Sea, and Air. 2017;5B. Heat Transfer: V05BT22A001. DOI:10.1115/GT2017-63032.Suche in Google Scholar

21. Li W, Shi W, Li X, Ren J, Jiang H. Large Eddy simulation of axial and compound angle holes with varying hole length-to-diameter ratio. ASME Turbo Expo: Power for Land, Sea, and Air. 2017; 5A: Heat Transfer: V05AT12A004. DOI:10.1115/GT2017-63308.Suche in Google Scholar

22. Roy S, Kapadia S, Heidmann JD. Film cooling analysis using DES turbulence model. Parts A and B Turbo Expo: Power for Land, Sea, and Air. 2003;6:1113–22. Turbo Expo 2003. DOI: 10.1115/GT2003-38140. URL: https://doi.org/10.1115/GT2003-38140.Suche in Google Scholar

23. Martin P, Schulz A, Bauer HJ, Whitney CF. Detached eddy simulation of film cooling performance on the trailing edge cutback of gas turbine airfoils. J Turbomach. 2005;128.2:292–9. ISSN: 0889-504X. DOI: 10.1115/1.2137739. eprint: https://asmedigitalcollection.asme.org/turbomachinery/article-pdf/128/2/292/4819952/292\_1.pdf. URL: https://doi.org/10.1115/1.2137739.Suche in Google Scholar

24. Takahashi T, Funazaki K, Salleh HB, Sakai E, Watanabe K. Assessment of URANS and DES for prediction of leading edge film cooling. J Turbomach. July 2011;134.3. ISSN: 0889-504X. DOI: 10.1115/1.4003054. eprint: https://asmedigitalcollection.asme.org/turbomachinery/article-pdf/134/3/031008/4852046/031008\_1.pdf. URL: https://doi.org/10.1115/1.4003054.Suche in Google Scholar

25. Foroutan H, Yavuzkurt S. Numerical simulations of the near-field region of film cooling jets under high free stream turbulence: application of RANS and hybrid URANS/Large Eddy simulation models. J Heat Transfer. 2015;137.1. ISSN: 0022-1481. DOI:10.1115/1.4028646.Suche in Google Scholar

26. Oliver TA, Anderson JB, Bogard DG, M.oser RD, Laskowski G. Implicit LES for shaped-hole film cooling flow. ASME Turbo Expo: Power for Land, Sea, and Air. 2017; 5A: Heat Transfer: V05AT12A005. DOI:10.1115/GT2017-63314.Suche in Google Scholar

27. Laroche E, Fenot M, Dorignac E, Vuillerme JJ, Brizzi LE, Larroya JC. A combined experimental and numerical investigation of the flow and heat transfer inside a turbine vane cooled by jet impingement. J Turbomach. 2017;140.3. ISSN: 0889-504X. DOI:10.1115/1.4038411.Suche in Google Scholar

28. Taira K, Brunton SL, Dawson STM, Rowley CW, Colonius T, Mckeon BJ, et al. Modal analysis of fluid flows: an overview. Aiaa J. 2017;55.12:4013–41.10.2514/1.J056060Suche in Google Scholar

29. Schroeder RP, Thole KA. Adiabatic effectiveness measurements for a baseline shaped film cooling hole. Heat Transfer Turbo Expo: Power for Land, Sea, and Air. 2014;5B. Dusseldorf, Germany. DOI: 10.1115/GT2014-25992. URL: https://doi.org/10.1115/GT2014-25992.Suche in Google Scholar

30. Schroeder RP, Thole KA. Adiabatic effectiveness measurements for a baseline shaped film cooling hole. Heat Transfer Turbo Expo: Power for Land, Sea, and Air. 2014;5B. DOI:10.1115/GT2014-25992. eprint: https://asmedigitalcollection.asme.org/GT/proceedings-pdf/GT2014/45721/V05BT13A036/2424686/v05bt13a036-gt2014-25992.pdf. URL: https://doi.org/10.1115/GT2014-25992.Suche in Google Scholar

31. Chatterjee A. An introduction to the proper orthogonal decomposition. Curr Sci. 2000;78.7:171–4.Suche in Google Scholar

32. Wilhelmus HA, Schilders HAVDV, Rommes J. Model order reduction: theory, research aspects and applications. Berlin Heidelberg: Springer, 2008. ISBN: 978-3-540-78840-9. DOI:10.1007/978-3-540-78841-6.Suche in Google Scholar

33. Lin D, Xinrong S, Yuan X. The development and mechanisms of the high pressure turbine vane wake vortex. J Eng Gas Turbines Power. 2018;140.9. ISSN: 0742-4795. DOI:10.1115/1.4039802.Suche in Google Scholar

34. Li H, Su X, Yuan X. Entropy analysis of the flat tip leakage flow with delayed detached eddy simulation. Entropy. 2019;21.1. ISSN: 1099-4300. DOI: 10.3390/e21010021. URL: http://www.mdpi.com/1099-4300/21/1/21.Suche in Google Scholar PubMed PubMed Central

35. Brand M. Incremental singular value decomposition of uncertain data with missing values. Berlin Heidelberg: Springer; 2002. p. 707–72.10.1007/3-540-47969-4_47Suche in Google Scholar

Received: 2020-04-07
Accepted: 2020-04-14
Published Online: 2020-05-08
Published in Print: 2022-12-16

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/tjj-2020-0012/html
Button zum nach oben scrollen