Startseite A Model Reference Adaptive Sliding Mode Control Method for Aero-Engine
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Model Reference Adaptive Sliding Mode Control Method for Aero-Engine

  • Hongliang Xiao , Huacong Li EMAIL logo , Kai Peng und Jia Li
Veröffentlicht/Copyright: 25. Dezember 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, a model reference adaptive sliding mode control method is proposed for a variable cycle engine (VCE) which is a MIMO system with uncertainties and external disturbances. The reference model is designed based on optimal LQR method to provide ideal reference states. An adaptive sliding mode controller (ASMC) is designed for model reference adaptive control structure, which the adaptive law is derived based on Lyapunov function to estimate the unknown upper bound of uncertainties and external disturbances. Simulation results for VCE demonstrate the performance and fidelity of the proposed method.

Acknowledgements

The authors thank the support of National Science and Technology Major Project under Grant 2017-V-0010-0060 and 2017-V-0013-0065, National Natural Science Foundation of China under Grant 51506176 and Aeronautics Power Foundation under Grant 6141B090302.

Nomenclature

x

plant state vector

u

control input vector

y

plant output vector

H

altitude

M a

mach number

n l

RPM of low pressure spool

n h

torque of fan

T 4

total temperature of combustor

w f

mass of fuel flow

A 8

area of nozzle throat

A 163

area of rear variable area bypass injector

e p r s

static engine pressure ratio

l e p r

linear engine pressure ratio

e y I

error between the system output and control command

r c m d

control command

K x T

the reference model gain matrix

A , B , C , D

the system matrices with appropriate dimensions

A a u g , B a u g , C a u g , D a u g

the augmented matrices of system

A r e f , B r e f , C r e f

the matrices of reference model

Δ A

perturbation matrix of A

Δ B

perturbation matrix of B

η ( t )

unknown bounded disturbance vector

s

sliding function

G

gain matrix

e

tracking error of state

Φ

upper bound of perturbation matrix A

Θ

upper bound of perturbation matrix B

Ψ

upper bound of disturbance η ( t )

ξ ( t )

switch coefficient

V

Lyapunov function

Φ ˆ

estimated value Φ

Θ ˆ

estimated value Θ

Ψ ˆ

estimated value Ψ

ASMC

adaptive sliding mode controller

SMC

sliding mode controller

VCE

variable cycle engine

MRAC

Model reference adaptive control

FVABI

front variable area bypass injector

RVABI

rear variable area bypass injector

MSV

mode select valve

References

1. Liu TJ, Du X, Sun XM, Richter H, Zhu F. Robust tracking control of aero-engine rotor speed based on switched LPV model. Aerosp Sci Technol. 2019;91:382–90. DOI:10.1016/j.ast.2019.05.031.Suche in Google Scholar

2. Ruffles PC. Aero engines of the future. Aeronaut J. 2003;107:307–21.10.1017/S0001924000013610Suche in Google Scholar

3. Ahmadian N, Khosravi A, Sarhadi P. Adaptive control of a jet turboshaft engine driving a variable pitch propeller using multiple models. Mech Syst Signal Process. 2017;92:1–12. DOI:10.1016/j.ymssp.2017.01.023.Suche in Google Scholar

4. Di Massa G, Russo R, Strano S, Terzo M. System structure identification and adaptive control of a seismic isolator test rig. Mech Syst Signal Process. 2013;40:736–53. DOI:10.1016/j.ymssp.2013.06.029.Suche in Google Scholar

5. Pakmehr M, Yucelen T Adaptive control of uncertain systems with gain scheduled reference models and constrained control inputs. 2014 American Control Conference. IEEE, 2014:691–6.10.1109/ACC.2014.6859326Suche in Google Scholar

6. Yu J, Sideris A. H∞ Control with parametric lyapunov functions. Syst Control Lett. 1997;30:57–69. DOI:10.1016/s0167-6911(96)00075-8.Suche in Google Scholar

7. Khalil HK. Nonlinear systems. Upper Saddle River: Prentice Hall, 2002.Suche in Google Scholar

8. Ahmadian N, Khosravi A, Sarhadi P. A new approach to adaptive control of multi-input multi-output systems using multiple models. J Dyn Syst Meas Control. 2015;137:091009. DOI:10.1115/1.4030611.Suche in Google Scholar

9. Lavretsky E, Wise KA. Robust and adaptive control. London: Springer, 2013.10.1007/978-1-4471-4396-3Suche in Google Scholar

10. Gadient R. Adaptive control with aerospace applications. PHD diss. University of Southern California, 2013.Suche in Google Scholar

11. Han JQ. Active disturbance rejection control technique-the technique for estimating and compensating the uncertainties. Beijing: National Defense Industry Press, 2008.Suche in Google Scholar

12. Gao WB. Variable structure control theory basis. Beijing: Science and Technology of China Press, 1998.Suche in Google Scholar

13. Miao ZG, Xie SS, Zhang B. Adaptive global fast non-singular Terminal sliding mode control for aero-engine. J Aerospace Power. 2013;28:2634–40.Suche in Google Scholar

14. Miao ZG, Xie SS, He XR. Global sliding mode control for aeroengine based on PSO network. J Aerospace Power. 2011;32:220–224+234.Suche in Google Scholar

15. Ren LT, Xie SS, Pen JB. Adaptive robust sliding mode control for aeroengine T-S distributed system. J Propul Technol. 2016;37:2366–76.Suche in Google Scholar

16. Sun H, Liu SM, Deng QC. Research of optimizing sliding mode control using reaching law in aero-engine. Thermal Turbine. 2015;44:30–34+45.Suche in Google Scholar

17. Sun H, Liu SM, Deng QC. Comparative research on adaptive sliding mode control in aero-engine. Gas Turbinge Technol. 2015;28:10–15+34.Suche in Google Scholar

18. Richter H. Multiple sliding modes with override logic: Limit management in aircraft engine controls. J Guidance, Control, Dyn. 2012;35:1132–42. DOI:10.2514/1.55922.Suche in Google Scholar

19. Richter H. A multi-regulator sliding mode control strategy for output-constrained systems. Automatica. 2011;47:2251–9. DOI:10.1016/j.automatica.2011.08.003.Suche in Google Scholar

20. Richter H. Advanced control of turbofan engines. London: Springer Science & Business Media, 2011.10.1007/978-1-4614-1171-0Suche in Google Scholar

21. Du X, Richter H, Guo Y. Multivariable sliding-mode strategy with output constraints for aeroengine propulsion control. J guidance, Control, and Dyn. 2016;39:1631–42. DOI:10.2514/1.g001802.Suche in Google Scholar

22. Pakmehr M, Wang T, Jobredeaux R. Verifiable control system development for gas turbine engines. In: CoRR abs/1311.1885. 2013;78.Suche in Google Scholar

23. Flack RD. Fundamentals of jet propulsion with applications. New York: Cambridge University Press, 2010.Suche in Google Scholar

24. Kulikov GG, Thompson HA. Dynamic modelling of gas turbines. London: Springer London, Limited, 2013.Suche in Google Scholar

25. Xiao HL, Li HC, Li J. Modeling method of VCE based on QPSO hybrid algorithm. J Beijing Univ Aeronaut Astronaut. 2018;44:305–15.Suche in Google Scholar

26. Menon P, Sweriduk G, Vaddi S. Nonlinear control of a high-performance aircraft engine. AIAA Guidance, Navigation, and Control Conference and Exhibit, 2006:6087.10.2514/6.2006-6087Suche in Google Scholar

27. Edwards C, Spurgeon SK. Sliding mode control. London: Taylor and Francis, 1998.10.1201/9781498701822Suche in Google Scholar

28. Utkin VI. Sliding modes in control and optimization. Commun Control Eng. 1992;189:1372–9.10.1007/978-3-642-84379-2Suche in Google Scholar

29. Utkin VI. Sliding modes in control and optimization. Berlin: Springer-Verlag, 1992.10.1007/978-3-642-84379-2Suche in Google Scholar

Received: 2019-11-16
Accepted: 2019-12-04
Published Online: 2019-12-25
Published in Print: 2022-12-16

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/tjj-2019-0041/html
Button zum nach oben scrollen