Startseite Investigation of a hybrid piezo-electromagnetic energy harvester
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of a hybrid piezo-electromagnetic energy harvester

  • Murugesan Rajarathinam

    Mr. M. Rajarathinam received his B. E. in Mechanical Engineering from Periyar University, India. He received his M. E. in Engineering Design from Anna University, India. Currently, he is a research scholar in the Department of Applied Mechanics, Indian Institute of Technology Madras (IIT-M), India. His research area includes energy harvesting, smart structures, and nonlinear dynamics.

    und Shaikh Faruque Ali

    Dr. Shaikh Faruque Ali has received his Doctorate from Indian Institute of Science, India in 2008. He was a Newton International Fellow in the University of Swansea, Swansea, UK. Dr. Ali joined the Department of Applied Mechanics, Indian Institute of Technology Madras (IIT-M) on December 2011 and currently he is an Assistant Professor. His research interest includes vibration control, control of nonlinear systems, feedback linearisation, energy harvesting and structural dynamics.

    EMAIL logo
Veröffentlicht/Copyright: 18. August 2018

Abstract

A hybrid energy harvester combining piezoelectric and electromagnetic transduction mechanisms is designed to scavenge vibration energy. The system comprises of a cantilever beam, a piezoelectric harvester and a magnetic mass hung through a spring at the free end. The beam with piezoelectric harvests electrical energy due to the strain induced in the piezoelectric patch. The hung mass oscillates in and out a solenoid to harvest energy due to electromagnetic induction. The system can generate power from any vertically oscillating vibrating host structure. This paper studies the power harvested from the hybrid harvester under harmonic excitation using experimental and analytical evaluations. Comparisons are made with the standalone piezoelectric and electromagnetic harvester under the same excitation environment. The study shows that the present hybrid harvester can harvest energy at a broad range of frequencies. Furthermore few parametric studies are carried out for understanding the device performance. Finally, the efficiency of the proposed hybrid energy harvester is compared with the existing hybrid energy harvester.

Zusammenfassung

Ein hybrider Energy-Harvester, welcher piezoelektrische und elektromagnetische Umwandlungsmechanismen kombiniert, wurde entwickelt, um Vibrationsenergie zu gewinnen. Das System besteht aus einem Biegebalken (Cantilever), einem darauf befestigten piezoelektrischen Harvester und einer magnetischen Masse, die über eine Feder mit dem Biegebalken verbunden ist. Der Biegebalken gewinnt elektrische Energie aufgrund der im piezoelektrischen Harvester induzierten mechanischen Spannungen. Die aufgehängte magnetische Masse oszilliert innerhalb einer Spule und erlaubt die Gewinnung von Energie durch elektromagnetische Induktion. Das System kann Strom von jeder vertikal schwingenden, vibrierenden Trägerstruktur erzeugen. Im Aufsatz wird die vom hybriden Harvester unter harmonischer Erregung gewinnbare Energie sowohl analytisch als auch experimentell untersucht. Dabei werden Vergleiche mit einzelnen piezoelektrischen und elektromagnetischen Harvestern unter dem gleichen Anregungsszenario durchgeführt. Es wird gezeigt, dass der vorgestellte Harvester Energie in einem breiten Spektrum an Frequenzen gewinnen kann. Darüber hinaus werden einige parametrische Studien durchgeführt, um die Leistungsfähigkeit des Harvesters zu verstehen. Schließlich wird der vorgeschlagene hybride Energy-Harvester mit bestehenden Harvestern verglichen.

About the authors

Murugesan Rajarathinam

Mr. M. Rajarathinam received his B. E. in Mechanical Engineering from Periyar University, India. He received his M. E. in Engineering Design from Anna University, India. Currently, he is a research scholar in the Department of Applied Mechanics, Indian Institute of Technology Madras (IIT-M), India. His research area includes energy harvesting, smart structures, and nonlinear dynamics.

Shaikh Faruque Ali

Dr. Shaikh Faruque Ali has received his Doctorate from Indian Institute of Science, India in 2008. He was a Newton International Fellow in the University of Swansea, Swansea, UK. Dr. Ali joined the Department of Applied Mechanics, Indian Institute of Technology Madras (IIT-M) on December 2011 and currently he is an Assistant Professor. His research interest includes vibration control, control of nonlinear systems, feedback linearisation, energy harvesting and structural dynamics.

References

1. J. W. Matiko, N. J. Grabham, S. P. Beeby, M. J. Tudor, Review of the application of energy harvesting in buildings, Measurement Science and Technology (2014) 1–23.10.1088/0957-0233/25/1/012002Suche in Google Scholar

2. M. A. Hannan, S. Mutashar, S. A. Samad, A. Hussain, Energy harvesting for the implantable biomedical devices: issues and challenges, BioMedical Engineering OnLine (2014) 1–23.10.1186/1475-925X-13-79Suche in Google Scholar PubMed PubMed Central

3. P. Gambier, S. R. Anton, N. Kong, A. Erturk, D. J. Inman, Piezoelectric, solar and thermal energy harvesting for hybrid low-power generator systems with thin-film batteries, Measurement Science and Technology (2012) 1–11.10.1088/0957-0233/23/1/015101Suche in Google Scholar

4. S. Roundy, P. K. Wright, A piezoelectric vibration based generator for wireless electronics, Smart Materials and structures (2004) 1131–1142.10.1088/0964-1726/13/5/018Suche in Google Scholar

5. Y. C. Shu, I. C. Lien, Analysis of power output for piezoelectric energy harvesting systems, Smart Materials and structures (2006) 1499–1512.10.1088/0964-1726/15/6/001Suche in Google Scholar

6. A. Erturk, D. J. Inman, On mechanical modeling of cantilevered piezoelectric vibration energy harvesters, Journal of Intelligent Material Systems and Structures (2008) 1311–1325.10.1177/1045389X07085639Suche in Google Scholar

7. A. Erturk, D. J. Inman, A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters, Journal of Vibration and Acoustics (2008) 1–15.10.1115/1.2890402Suche in Google Scholar

8. A. Erturk, D. J. Inman, An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations, Smart Materials and Structures (2009) 1–18.10.1088/0964-1726/18/2/025009Suche in Google Scholar

9. S. R. Anton, H. A. Sodano, A review of power harvesting using piezoelectric materials (2003–2006), Smart Materials and Structures (2007) 1–21.10.1088/0964-1726/16/3/R01Suche in Google Scholar

10. H. S. Kim, J. H. Kim, J. Kim, A Review of Piezoelectric Energy Harvesting Based on Vibration, International Journal of precision engineering and manufacturing:Springer (2011) 1129–1141.10.1007/s12541-011-0151-3Suche in Google Scholar

11. S. P. Beeby, R. N. Torah, M. J. Tudor, P. Glynne-Jones, T. O’Donnell, C. R. Saha, S. Roy, A micro electromagnetic generator for vibration energy harvesting, Journal of Micromechanics and microengineering (2007) 1257–1265.10.1088/0960-1317/17/7/007Suche in Google Scholar

12. Z. Hadas, M. Kluge, V. Singule, C. Ondrusek, Electromagnetic vibration power generator, IEEE: International Symposium on Diagnostics for Electric Machines Power Electronics and Drives 2007 (2007) 451–455.10.1109/DEMPED.2007.4393136Suche in Google Scholar

13. D. P. Arnold, Review of Microscale Magnetic Power Generation, IEEE Transactions on Magnetics:IEEE (2007) 3940–3951.10.1109/TMAG.2007.906150Suche in Google Scholar

14. S. D. Kwon, J. Park, K. Law, C. Ondrusek, Electromagnetic energy harvester with repulsively stacked multilayer magnets for low frequency vibrations, Smart Materials and Structures (2013) 1–12.10.1088/0964-1726/22/5/055007Suche in Google Scholar

15. S. F. Ali, M. I. Friswell, S. Adhikari, Piezoelectric energy harvesting with parametric uncertainty, Smart Materials and Structures (2010) 1–9.10.1088/0964-1726/19/10/105010Suche in Google Scholar

16. W. Zhou, G. R. Penamalli, L. Zuo, An efficient vibration energy harvester with a multi-mode dynamic magnifier, Smart Materials and Structures (2012) 1–9.10.1088/0964-1726/21/1/015014Suche in Google Scholar

17. S. C. Huang, K. A. Lin, A novel design of a map-tuning piezoelectric vibration energy harvester, Smart Materials and Structures (2012) 1–10.10.1088/0964-1726/21/8/085014Suche in Google Scholar

18. A. Marin, J. Turner, D. S. Ha, S. Priya, Broadband electromagnetic vibration energy harvesting system for powering wireless sensor nodes, Smart Materials and Structures (2013) 1–13.10.1088/0964-1726/22/7/075008Suche in Google Scholar

19. H. Liu, L. Dhakar, D. S. Ha, C. Lee, Ultra-broadband electromagnetic MEMS vibration energyharvesting, Journal of Physics:Conference Series (2013) 1–4.10.1088/1742-6596/476/1/012049Suche in Google Scholar

20. J. Twiefel, H. Westermann, Survey on broadband techniques for vibration energy harvesting, Journal of Intelligent Material Systems and Structures (2013) 1–12.10.1177/1045389X13476149Suche in Google Scholar

21. J. Q. Liu, H. B. Fang, Z. Y. Xu, X. H. Mao, X. C. Shen, D. Chen, H. Liao, B. C. Cai, A MEMS-based piezoelectric power generator array for vibration energy harvesting, Microelectronics Journal (2008) 802–806.10.1016/j.mejo.2007.12.017Suche in Google Scholar

22. S. M. Shahruz, Design of mechanical band-pass filters for energy scavenging, Journal of Sound and Vibration (2006) 987–998.10.1016/j.jsv.2005.08.018Suche in Google Scholar

23. B. Yang, C. Lee, W. Xiang, J. Xie, J. H. He, R. K. Kotlanka, S. P. Low, H. Feng, Electromagnetic energy harvesting from vibrations of multiple frequencies, Journal of Micromechanics and Microengineering (2009) 1–8.10.1088/0960-1317/19/3/035001Suche in Google Scholar

24. S. J. Jang, E. Rustighi, M. J. Brennan, Y. P. Lee, H. J. Jung, Design of a 2DOF vibrational energy harvesting device, Journal of Intelligent Material Systems and Structures (2011) 443–448.10.1177/1045389X10393766Suche in Google Scholar

25. O. Aldraihem, A. Baz, Energy harvester with a dynamic magnifier, Journal of Intelligent Material Systems and Structures (2011) 1–10.10.1177/1045389X11402706Suche in Google Scholar

26. S. F. Ali, S. Adhikari, Energy harvesting dynamic vibration absorbers, Journal of Applied Mechanics (2013) 1–9.10.1115/1.4007967Suche in Google Scholar

27. M. M. Magdy, A. M. El-Bab, S. F. Assal, Design Methodology of a Micro-Scale 2-DOF Energy Harvesting Device for Low Frequency and Wide Bandwidth, Journal of Sensor Technology (2014) 37–47.10.4236/jst.2014.42005Suche in Google Scholar

28. Y. Tadesse, S. Zhang, S. Priya, Multimodal energy harvesting system: piezoelectric and electromagnetic, Intelligent Material Systems and Structures (2009) 625–632.10.1177/1045389X08099965Suche in Google Scholar

29. H. Xia, R. Chen, L. Ren, Analysis of piezoelectric–electromagnetic hybrid vibration energy harvester under different electrical boundary conditions, Sensors and Actuators A: Physical (2015) 87–98.10.1016/j.sna.2015.08.014Suche in Google Scholar

30. V. R. Challa, M. G. Prasad, F. T. Fisher, A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching, Smart Materials and Structures (2009) 1–11.10.1088/0964-1726/18/9/095029Suche in Google Scholar

31. B. Yang, C. Lee, W. L. Kee, S. P. Lim, Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms, Journal of Micro/Nanolithography, MEMS, and MOEMS (2010) 1–10.10.1117/1.3373516Suche in Google Scholar

32. P. Li, S. Gao, H. Liu, H. Cai, An analysis of the coupling effect for a hybrid piezoelectric and electromagnetic energy harvester, Smart Materials and Structures (2014) 1–17.10.1088/0964-1726/23/6/065016Suche in Google Scholar

33. M. Gürgöze, On the representation of a cantilevered beam carrying a tip mass by an equivalent spring–mass system, Journal of sound and vibration (2005) 538–542.10.1016/j.jsv.2004.04.006Suche in Google Scholar

34. W. T. Thomson, Theory of vibration with applications, United States: CRC Press (1996) 24–25.Suche in Google Scholar

35. Z. Xu, X. Shan, D. Chen, T. Xie, A novel tunable multi-frequency hybrid vibration energy harvester using piezoelectric and electromagnetic conversion mechanism, Applied Sciences (2016) 1–16.10.3390/app6010010Suche in Google Scholar

Received: 2017-07-11
Accepted: 2018-08-05
Published Online: 2018-08-18
Published in Print: 2018-09-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/teme-2017-0086/html
Button zum nach oben scrollen