Home Numerical investigation of nonlinear mechanical and constitutive effects on piezoelectric vibration-based energy harvesting
Article
Licensed
Unlicensed Requires Authentication

Numerical investigation of nonlinear mechanical and constitutive effects on piezoelectric vibration-based energy harvesting

  • Ana Carolina Cellular

    Ana Carolina S. Cellular is Ph.D. in Mechanical Engineering and Mathematician. Nowadays she is teaching at Universidade Candido Mendes and Centro Universitário La Salle. Research interests are related to nonlinear dynamics and energy harvesting.

    , Luciana L. da Silva Monteiro

    Luciana L. Silva Monteiro is Ph.D. in Metallurgical and Materials Science Engineering and Physicist. Professor at CEFET/RJ, she develops research and teaching activities. Research interests are related to nonlinear dynamics, energy harvesting, and smart materials and structures.

    and Marcelo A. Savi

    Marcelo A. Savi is Ph.D. in Mechanical Engineering and Professor at Federal University of Rio de Janeiro (COPPE – Department of Mechanical Engineering) where develops research and teaching activities, being the Head of the Center for Nonlinear Mechanics. Research interests are related to nonlinear mechanics where it should be highlighted smart material and structures; nonlinear dynamics, chaos and control; biomechanics and ecology.

    EMAIL logo
Published/Copyright: June 7, 2018

Abstract

Vibration-based energy harvesting has the main objective to convert available environmental mechanical energy into electrical energy. Piezoelectric materials are usually employed to promote the mechanical-electrical conversion. This work deals with a numerical investigation that analyzes the influence of nonlinear effects in piezoelectric vibration-based energy harvesting. Duffing-type oscillator that can be either monostable or bistable represents mechanical nonlinearities. A quadratic constitutive electro-mechanical coupling model represents piezoelectric nonlinearities. The system performance is evaluated for different system characteristics being monitored by the input and the generated power. Numerical simulations are carried out exploring dynamical behavior of energy harvesting system evaluating different kinds of responses, including periodic and chaotic regimes.

Zusammenfassung

Schwingungsbasiertes Energy Harvesting hat das Hauptziel, die verfügbare mechanische Energie der Umgebung in elektrische Energie umzuwandeln. Piezoelektrische Materialien werden häufig verwendet, um die mechanische und elektrische Energieumwandlung zu fördern. Diese Arbeit beschäftigt sich mit einer numerischen Untersuchung, die den Einfluss von nichtlinearen Effekten in der piezoelektrischen schwingungsbasierten Energy Harvesting untersucht. Duffing-Oszillator, der entweder monostabil oder bistabil sein kann, stellt die mechanische Nichtlinearitäten dar. Ein quadratisches und konstitutives elektromechanisches Kopplungsmodell stellt die piezoelektrische Nichtlinearitäten dar. Die Systemleistung wird für verschiedene Systemeigenschaften eingeschätzt, die durch die Eingabe und die erzeugte Leistung beaufsichtigt werden. Numerische Simulationen werden durchgeführt, umdas dynamische Verhalten des Energy-Harvesting-Systems zu untersuchen, wobei verschiedene Arten von Reaktionen ausgewertet werden, einschließlich periodischer und chaotischer Verhalten.

Funding statement: The authors would like to acknowledge the support of the Brazilian Research Agencies CNPq, CAPES and FAPERJ. The Air Force Office of Scientific Research (AFOSR) is also acknowledged.

About the authors

Ana Carolina Cellular

Ana Carolina S. Cellular is Ph.D. in Mechanical Engineering and Mathematician. Nowadays she is teaching at Universidade Candido Mendes and Centro Universitário La Salle. Research interests are related to nonlinear dynamics and energy harvesting.

Luciana L. da Silva Monteiro

Luciana L. Silva Monteiro is Ph.D. in Metallurgical and Materials Science Engineering and Physicist. Professor at CEFET/RJ, she develops research and teaching activities. Research interests are related to nonlinear dynamics, energy harvesting, and smart materials and structures.

Marcelo A. Savi

Marcelo A. Savi is Ph.D. in Mechanical Engineering and Professor at Federal University of Rio de Janeiro (COPPE – Department of Mechanical Engineering) where develops research and teaching activities, being the Head of the Center for Nonlinear Mechanics. Research interests are related to nonlinear mechanics where it should be highlighted smart material and structures; nonlinear dynamics, chaos and control; biomechanics and ecology.

References

1. Badel A., Guyomar D., Lefeuvre E. and Richard C., 2005, “Efficiency enhancement of a piezoelectric energy harvesting device in pulsed operation by synchronous charge inversion”, Journal of Intelligent Material Systems and Structures, Vol. 16, pp. 889–901.10.1177/1045389X05053150Search in Google Scholar

2. Bai Y., Carl M. and Button T. W., 2014, “Investigation of using free-standing thick-film piezoelectric energy harvesters to develop wideband devices”, International Journal of Structural Stability and Dynamics, Vol. 14(8), 1440016.10.1142/S0219455414400161Search in Google Scholar

3. Betts D. N., Kim H. A., Bowen C. R. and Inman D. J., 2012, “Optimal configurations of bistable piezo-composites for energy harvesting”, Applied Physics Letters, Vol. 100(11), 114104.10.1063/1.3693523Search in Google Scholar

4. Crawley, E. F. and Anderson, E. H., 1990, “Detailed models of piezoceramic actuation of beams”, Journal of Intelligent Material Systems and Structures, Vol. 1, pp. 4–25.10.1177/1045389X9000100102Search in Google Scholar

5. Cottone, F., Vocca, H. and Gammaitoni, L., 2009, “Nonlinear energy harvesting”, Physical Review Letters, Vol. 102, 080601.10.1103/PhysRevLett.102.080601Search in Google Scholar PubMed

6. De Paula A. S., Inman D. J., and Savi M. A., 2015 “Energy harvesting in a nonlinear piezomagnetoelastic beam subjected to random excitation”, Mechanical Systems and Signal Processing, Vol. 54, pp. 405–416.10.1016/j.ymssp.2014.08.020Search in Google Scholar

7. Erturk, A. and Inman, D. J., 2009, “An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations”, Smart Materials and Structures, Vol. 18, 025009.10.1088/0964-1726/18/2/025009Search in Google Scholar

8. Erturk, A. and Inman D. J., 2011. “Piezoelectric Energy Harvesting”, John Wiley & Sons Ltd., Chichester, UK.10.1002/9781119991151Search in Google Scholar

9. Friswell, M. I., Ali, S. F., Adhikari, S., Lees, A. W., Bilgen, O. and Litak, G., 2012, “Nonlinear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass”, Journal of Intelligent Material Systems and Structures, Vol. 23, pp. 1505–1521.10.1177/1045389X12455722Search in Google Scholar

10. Lallart, M., Magnet, C., Richard, C., Lefeuvre, Élie, Petit, L., Guyomar, D. and Bouillault, F., 2008, “New synchronized switch damping methods using dual transformations”, Sensors and Actuators A: Physical, Vol. 143, pp. 302–314.10.1016/j.sna.2007.12.001Search in Google Scholar

11. Leadenham, S. and Erturk, A., 2015. “Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation”, Nonlinear Dynamics, Vol. 79, pp. 1727–1743.10.1007/s11071-014-1770-xSearch in Google Scholar

12. Lefeuvre, E., Badel, A., Richard, C. and Guyomar, D., 2005, “Piezoelectric energy harvesting device optimization by synchronous electric charge extraction”, Journal of Intelligent Material Systems and Structures, Vol. 16, pp. 865–876.10.1177/1045389X05056859Search in Google Scholar

13. Lefeuvre, E., Badel, A., Richard, C., Petit, L. and Guyomar, D., 2006, “A comparison between several vibration-powered piezoelectric generators for standalone systems”, Sensors Actuators A, Vol. 126, pp. 405–416.10.1016/j.sna.2005.10.043Search in Google Scholar

14. Mann, B. P. and Sims, N. D., 2009, “Energy harvesting from the nonlinear oscillations of magnetic levitation”, Journal of Sound and Vibration, Vol. 319(1), pp. 515–530.10.1016/j.jsv.2008.06.011Search in Google Scholar

15. Ottman, G. K. and George, A., Lesieutre, G. A., 2003, “Optimized Piezoelectric Energy Harvesting Circuit Using Step-Down Converter in Discontinuous Conduction Mode”, IEEE Transactions on Power Electronics, Vol. 18(2).10.1109/PSEC.2002.1023106Search in Google Scholar

16. Ramlan, R., Brennan, M. J., Mace, B. R. and Kovacic, I., 2010, “Potential benefits of a nonlinear stiffness in an energy harvesting device”, Nonlinear Dynamics, Vol. 59(4), pp. 545–558.10.1007/s11071-009-9561-5Search in Google Scholar

17. Sebald, G., Kuwano, H., Guyomar, D. and Ducharne, B., 2011, “Experimental Duffing oscillator for broadband piezoelectric energy harvesting”, Smart Materials and Structures, Vol. 20(10), 102001.10.1088/0964-1726/20/10/102001Search in Google Scholar

18. Shen, H., Qiu, J., Ji, H., Zhu, K. and Balsi, M., 2010, “Enhanced synchronized switch harvesting: a new energy harvesting scheme for efficient energy extraction”, Smart Material and Structures, Vol. 19, 115017.10.1088/0964-1726/19/11/115017Search in Google Scholar

19. Stanton, S. C., McGehee, C. C. and Mann, B. P., 2009, “Reversible hysteresis for broadband magnetopiezoelastic energy harvesting”, Applied Physics Letters, Vol. 95(17), 174103.10.1063/1.3253710Search in Google Scholar

20. Stanton, S. C., Erturk, A., Mann, B. P. and Inman, D. J., 2010, “Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification”, Journal of Applied Physics, Vol. 108(7), 074903.10.1063/1.3486519Search in Google Scholar

21. Silva, L. L., Monteiro, P. C., Savi, M. A. and Netto, T. A., 2013, “Effect of the piezoelectric hysteretic behavior on the vibration-based energy harvesting”, Journal of Intelligent Material Systems and Structures, Vol. 24(10), pp. 1285.10.1177/1045389X12473377Search in Google Scholar

22. Silva, L. L., Monteiro, P. C., Savi, M. A. and Netto, T. A., 2015, “On the Nonlinear Behavior of the Piezoelectric Coupling on Vibration-Based Energy Harvesters”, Shock and Vibration, Vol. 2015, Article ID 739381.10.1155/2015/739381Search in Google Scholar

23. Silva, L. L., Oliveira, S. A., Pacheco, P. M. C. L. and Savi, M. A., 2015, “Synergistic Use of Smart Materials for Vibration-Based Energy Harvesting”, European Physical Journal – Special Topics, Vol. 224(14–15), pp. 3005–3012.10.1140/epjst/e2015-02603-8Search in Google Scholar

24. Triplett, A. and Quinn, D. D., 2009, “The Effect of Non-linear Piezoelectric Coupling on Vibration-based Energy Harvesting”, Journal of Intelligent Material Systems and Structures”, Vol. 20(16), pp. 1959–1967.10.1177/1045389X09343218Search in Google Scholar

Received: 2017-07-04
Accepted: 2018-05-21
Published Online: 2018-06-07
Published in Print: 2018-09-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/teme-2017-0070/html
Scroll to top button