Startseite Sampling distributions of skew normal populations associated with closed skew normal distributions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sampling distributions of skew normal populations associated with closed skew normal distributions

  • Xiaonan Zhu , Baokun Li EMAIL logo , Tonghui Wang und Arjun K. Gupta
Veröffentlicht/Copyright: 6. April 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The sample mean and sample variance are commonly used statistics in our study. In this paper, distributions of the sample mean and sample variance from a skew normal population are derived under closed skew normal (CSN) settings. The noncentral closed skew chi-square distribution is defined, and the distribution of quadratic forms is discussed. Our results generalize the corresponding results given under skew normal settings. Several examples are given for illustration of our results.

MSC 2010: 62H10

Communicated by Vyacheslav L. Girko


References

[1] A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Stat. 12 (1985), 171–178. Suche in Google Scholar

[2] A. Azzalini, The Skew-normal and Related Families. Volume 3, Cambridge University, New York, 2013. 10.1017/CBO9781139248891Suche in Google Scholar

[3] A. Azzalini and A. Capitanio, Statistical applications of the multivariate skew normal distribution, J. R. Stat. Soc. 61 (1999), 579–602. 10.1111/1467-9868.00194Suche in Google Scholar

[4] A. Azzalini and A. Dalla Valle, The multivariate skew-normal distribution, Biometrika 83 (1996), 715–726. 10.1093/biomet/83.4.715Suche in Google Scholar

[5] J. T. Chen, A. K. Gupta and T. T. Nguyen, The density of the skew normal sample mean and its applications, J. Stat. Comput. Simul. 74 (2004), 487–494. 10.1080/0094965031000147687Suche in Google Scholar

[6] M. G. Genton, Skew-elliptical Distributions and Their Applications: A Journey Beyond Normality, CRC Press, Boca Raton, 2004. 10.1201/9780203492000Suche in Google Scholar

[7] M. G. Genton, L. He and X. Liu, Moments of skew-normal random vectors and their quadratic forms, Statist. Probab. Lett. 51 (2001), 319–325. 10.1016/S0167-7152(00)00164-4Suche in Google Scholar

[8] M. G. Genton and N. M. Loperfido, Generalized skew-elliptical distributions and their quadratic forms, Ann. Inst. Statist. Math. 57 (2005), 389–401. 10.1007/BF02507031Suche in Google Scholar

[9] G. González-Farías, A. Domínguez-Molina and A. K. Gupta, Additive properties of skew normal random vectors, J. Statist. Plann. Inference 126 (2004), 521–534. 10.1016/j.jspi.2003.09.008Suche in Google Scholar

[10] A. K. Gupta, G. González-Farías and A. Domínguez-Molina, A multivariate skew normal distribution, J. Multivariate Anal. 89 (2004), 181–190. 10.1016/S0047-259X(03)00131-3Suche in Google Scholar

[11] A. K. Gupta and W. J. Huang, Quadratic forms in skew normal variates, J. Math. Anal. Appl. 273 (2002), 558–564. 10.1016/S0022-247X(02)00270-6Suche in Google Scholar

[12] W. J. Huang and Y. H. Chen, Quadratic forms of multivariate skew normal-symmetric distributions, Statist. Probab. Lett. 76 (2006), 871–879. 10.1016/j.spl.2005.10.018Suche in Google Scholar

[13] N. Loperfido, Quadratic forms of skew-normal random vectors, Statist. Probab. Lett. 54 (2001), 381–387. 10.1016/S0167-7152(01)00103-1Suche in Google Scholar

[14] E. Lukacs, A characterization of the normal distribution, Ann. Math. Stat. 13 (1942), 91–93. 10.1214/aoms/1177731647Suche in Google Scholar

[15] S. Nadarajah and R. Li, The exact density of the sum of independent skew normal random variables, J. Comput. Appl. Math. 311 (2017), 1–10. 10.1016/j.cam.2016.06.032Suche in Google Scholar

[16] W. Tian, C. Wang, M. Wu and T. Wang, The multivariate extended skew normal distribution and its quadratic forms, Causal Inference in Econometrics, Springer, Berlin (2016), 153–169. 10.1007/978-3-319-27284-9_9Suche in Google Scholar

[17] W. Tian and T. Wang, Quadratic forms of refined skew normal models based on stochastic representation, Random Oper. Stoch. Equ. 24 (2016), 225–234. 10.1515/rose-2016-0016Suche in Google Scholar

[18] T. Wang, B. Li and A. K. Gupta, Distribution of quadratic forms under skew normal settings, J. Multivariate Anal. 100 (2009), 533–545. 10.1016/j.jmva.2008.06.003Suche in Google Scholar

[19] C. Wong, J. Masaro and T. Wang, Multivariate versions of Cochran’s theorems, J. Multivariate Anal. 39 (1991), 154–174. 10.1016/0047-259X(91)90011-PSuche in Google Scholar

[20] R. Ye and T. Wang, Inferences in linear mixed models with skew-normal random effects, Acta Math. Sin. (Engl. Ser.) 31 (2015), 576–594. 10.1007/s10114-015-3326-5Suche in Google Scholar

[21] R. Ye, T. Wang and A. K. Gupta, Distribution of matrix quadratic forms under skew-normal settings, J. Multivariate Anal. 131 (2014), 229–239. 10.1016/j.jmva.2014.07.001Suche in Google Scholar

[22] X. Zhu, B. Li, M. Wu and T. Wang, Plausibility regions on parameters of the skew normal distribution based on inferential models, International Conference of the Thailand Econometrics Society—TES 2018, Springer, Berlin (2018), 287–302. 10.1007/978-3-319-70942-0_21Suche in Google Scholar

Received: 2018-04-18
Accepted: 2018-12-14
Published Online: 2019-04-06
Published in Print: 2019-06-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rose-2018-2007/html
Button zum nach oben scrollen