Startseite Stochastic partial functional integrodifferential equations driven by a sub-fractional Brownian motion, existence and asymptotic behavior
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Stochastic partial functional integrodifferential equations driven by a sub-fractional Brownian motion, existence and asymptotic behavior

  • Fulbert Kuessi Allognissode , Mamadou Abdoul Diop ORCID logo EMAIL logo , Khalil Ezzinbi und Carlos Ogouyandjou
Veröffentlicht/Copyright: 10. Mai 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper deals with the existence and uniqueness of mild solutions to stochastic partial functional integro-differential equations driven by a sub-fractional Brownian motion SQH(t), with Hurst parameter H(12,1). By the theory of resolvent operator developed by R. Grimmer (1982) to establish the existence of mild solutions, we give sufficient conditions ensuring the existence, uniqueness and the asymptotic behavior of the mild solutions. An example is provided to illustrate the theory.

MSC 2010: 60H15; 60G15

Communicated by Vyacheslav L. Girko


Funding statement: The authors are supported by CEA-MITIC (Gaston Berger University (UGB), UFR Sciences Appliquées et de Technologie, Saint-Louis, Sénégal, CEA-SMA (Université d’Abomey-Calavi (UAC), Institut de Mathématiques et de Sciences Physiques, Porto Novo, Benin) and Réseau EDP Modélisation et Contrôle.

Acknowledgements

The authors are very much thankful to the editor and the referees for the interesting remarks and comments which helped to improve the paper.

References

[1] T. Bojdecki, L. G. Gorostiza and A. Talarczyk, Sub-fractional Brownian motion and its relation to occupation times, Statist. Probab. Lett. 69 (2004), no. 4, 405–419. 10.1016/j.spl.2004.06.035Suche in Google Scholar

[2] T. Caraballo and M. A. Diop, Neutral stochastic delay partial functional integro-differential equations driven by a fractional Brownian motion, Front. Math. China 8 (2013), no. 4, 745–760. 10.1007/s11464-013-0300-3Suche in Google Scholar

[3] T. Caraballo, M. A. Diop and A. A. Ndiaye, Asymptotic behavior of neutral stochastic partial functional integro-differential equations driven by a fractional Brownian motion, J. Nonlinear Sci. Appl. 7 (2014), no. 6, 407–421. 10.22436/jnsa.007.06.04Suche in Google Scholar

[4] T. Caraballo, M. A. Diop and A. A. Ndiaye, Existence results for time-dependent stochastic neutral functional integrodifferential equations driven by a fractional Brownian motion, J. Numer. Math. Stoch. 6 (2014), no. 1, 84–99. Suche in Google Scholar

[5] T. Caraballo, M. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal. 74 (2011), no. 11, 3671–3684. 10.1016/j.na.2011.02.047Suche in Google Scholar

[6] Y.-K. Chang and J. J. Nieto, Existence of solutions for impulsive neutral integro-differential inclusions with nonlocal initial conditions via fractional operators, Numer. Funct. Anal. Optim. 30 (2009), no. 3–4, 227–244. 10.1080/01630560902841146Suche in Google Scholar

[7] M. Dieye, M. A. Diop and K. Ezzinbi, On exponential stability of mild solutions for some stochastics partial integrodifferential equations., Statist. Probab. Lett. 123 (2017), 61–76. 10.1016/j.spl.2016.10.031Suche in Google Scholar

[8] M. A. Diop and T. Caraballo, Asymptotic stability of neutral stochastic functional integro-differential equations, Electron. Commun. Probab. 20 (2015), Paper No. 1. 10.1214/ECP.v19-3036Suche in Google Scholar

[9] M. A. Diop, T. Caraballo and A. A. Ndiaye, Exponential behavior of solutions to stochastic integrodifferential equations with distributed delays, Stoch. Anal. Appl. 33 (2015), no. 3, 399–412. 10.1080/07362994.2014.1000070Suche in Google Scholar

[10] M. A. Diop, K. Ezzinbi and M. Lo, Existence and uniqueness of mild solutions to some neutral stochastic partial functional integrodifferential equations with non-Lipschitz coefficients, Int. J. Math. Math. Sci. 2012 (2012), Article ID 748590. 10.1155/2012/748590Suche in Google Scholar

[11] M. A. Diop, K. Ezzinbi and M. Lo, Mild solution of neutral stochastic partial functional integrodifferential equations with non-Lipschitz coefficients, Afr. Mat. 24 (2013), no. 4, 671–682. 10.1007/s13370-012-0089-3Suche in Google Scholar

[12] M. A. Diop, K. Ezzinbi and M. Lo, Asymptotic stability of impulsive stochastic partial integrodifferential equations with delays, Stochastics 86 (2014), no. 4, 696–706. 10.1080/17442508.2013.879143Suche in Google Scholar

[13] M. A. Diop, K. Ezzinbi and M. Lo, Existence and exponential stability for some stochastic neutral partial functional integrodifferential equations, Random Oper. Stoch. Equ. 22 (2014), no. 2, 73–83. 10.1515/rose-2014-0008Suche in Google Scholar

[14] K. Dzhaparidze and H. van Zanten, A series expansion of fractional Brownian motion, Probab. Theory Related Fields 130 (2004), no. 1, 39–55. 10.1007/s00440-003-0310-2Suche in Google Scholar

[15] R. C. Grimmer, Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc. 273 (1982), no. 1, 333–349. 10.1090/S0002-9947-1982-0664046-4Suche in Google Scholar

[16] I. Mendy, Parametric estimation for sub-fractional Ornstein–Uhlenbeck process, J. Statist. Plann. Inference 143 (2013), no. 4, 663–674. 10.1016/j.jspi.2012.10.013Suche in Google Scholar

[17] D. Nualart, The Malliavin Calculus and Related Topics, 2nd ed., Probab. Appl. (N. Y.), Springer, Berlin, 2006. Suche in Google Scholar

[18] J. Prüss, Evolutionary Integral Equations and Applications, Mod. Birkhäuser Class., Birkhäuser/Springer, Basel, 1993. 10.1007/978-3-0348-8570-6Suche in Google Scholar

[19] R. Ravi Kumar, Nonlocal Cauchy problem for analytic resolvent integrodifferential equations in Banach spaces, Appl. Math. Comput. 204 (2008), no. 1, 352–362. 10.1016/j.amc.2008.06.050Suche in Google Scholar

[20] C. Tudor, Some properties of the sub-fractional Brownian motion, Stochastics 79 (2007), no. 5, 431–448. 10.1080/17442500601100331Suche in Google Scholar

[21] C. Tudor, Berry–Esséen bounds and almost sure CLT for the quadratic variation of the sub-fractional Brownian motion, J. Math. Anal. Appl. 375 (2011), no. 2, 667–676. 10.1016/j.jmaa.2010.10.002Suche in Google Scholar

[22] J. Wu, Theory and Applications of Partial Functional-Differential Equations, Appl. Math. Sci. 119, Springer, New York, 1996. 10.1007/978-1-4612-4050-1Suche in Google Scholar

Received: 2018-03-19
Accepted: 2019-02-15
Published Online: 2019-05-10
Published in Print: 2019-06-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/rose-2019-2009/html
Button zum nach oben scrollen