Startseite Mathematik Exponential stability for stochastic neutral functional differential equations driven by Rosenblatt process with delay and Poisson jumps
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Exponential stability for stochastic neutral functional differential equations driven by Rosenblatt process with delay and Poisson jumps

  • El Hassan Lakhel EMAIL logo
Veröffentlicht/Copyright: 12. April 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this note we consider a class of neutral stochastic functional differential equations with finite delays driven simultaneously by a Rosenblatt process and Poisson process in a Hilbert space. We prove an existence and uniqueness result and we establish some conditions ensuring the exponential decay to zero in mean square for the mild solution by means of the Banach fixed point principle. Finally, an illustrative example is given to demonstrate the effectiveness of the obtained result.

References

1 B. Boufoussi and S. Hajji, Functional differential equations driven by a fractional Brownian motion, Comput. Math. Appl. 62 (2011), 746–754. 10.1016/j.camwa.2011.05.055Suche in Google Scholar

2 B. Boufoussi and S. Hajji, Neutral stochastic functional differential equation driven by a fractional Brownian motion in a Hilbert space, Statist. Probab. Lett. 82 (2012), 1549–1558. 10.1016/j.spl.2012.04.013Suche in Google Scholar

3 B. Boufoussi, S. Hajji and E. Lakhel, Functional differential equations in Hilbert spaces driven by a fractional Brownian motion, Afr. Mat. 23 (2012), 2, 173–194. 10.1007/s13370-011-0028-8Suche in Google Scholar

4 T. Caraballo, M. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal. 74 (2011), 3671–3684. 10.1016/j.na.2011.02.047Suche in Google Scholar

5 G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. 10.1017/CBO9780511666223Suche in Google Scholar

6 M. Ferrante and C. Rovira, Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H > 1/2, Bernoulli 12 (2006), 1, 85–100. Suche in Google Scholar

7 M. Ferrante and C. Rovira, Convergence of delay differential equations driven by fractional Brownian motion with Hurst parameter H > 1/2, J. Evol. Equ. 10 (2010), 4, 761–783. 10.1007/s00028-010-0069-8Suche in Google Scholar

8 G. Goldstein and A. Jerome, Semigroups of Linear Operators and Applications, Oxford Math. Monogr., Oxford University Press, New York, 1985. Suche in Google Scholar

9 N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1989. Suche in Google Scholar

10 C. Jing, Y. Litan and S. Xichao, Exponential stability for neutral stochastic partial differential equations with delay and poisson jumps, Statist. Probab. Lett. 81 (2011), 1970–1977. 10.1016/j.spl.2011.08.010Suche in Google Scholar

11 V. B. Kolmanovskii and A. D. Myshkis, Applied Theory of Functional Differential Equations, Kluwer, Dordrecht, 1992. 10.1007/978-94-015-8084-7Suche in Google Scholar

12 E. Lakhel, Controllability of neutral stochastic functional integro-differential equations driven by fractional Brownian motion, preprint 2015, http://arxiv.org/abs/1503.07985. 10.1080/07362994.2016.1149718Suche in Google Scholar

13 E. Lakhel and S. Hajji, Existence and uniqueness of mild solutions to neutral SFDEs driven by a fractional Brownian motion with non-Lipschitz coefficients, J. Numer. Math. Stoch. 7 (2015), 1, 14–29. Suche in Google Scholar

14 E. Lakhel and M. A. McKibben, Controllability of impulsive neutral stochastic functional integro-differential equations driven by fractional Brownian motion, Brownian Motion: Elements, Dynamics, and Applications, Nova Science, New York (2015), 131–148. Suche in Google Scholar

15 J. León and S. Tindel, Malliavin calculus for fractional delay equations, J. Theoret. Probab. 25 (2012), 3, 854–889. 10.1007/s10959-011-0349-4Suche in Google Scholar

16 N. N. Leonenko and V. V. Ahn, Rate of convergence to the Rosenblatt distribution for additive functionals of stochastic processes with long-range dependence, J. Appl. Math. Stochastic Anal. 14 (2001), 27–46. 10.1155/S1048953301000041Suche in Google Scholar

17 J. Luo and K. Liu, Stability of infinite dimentional stochastic evolution equations with memory and Markovian jumps, Stochastic Process. Appl. 118 (2008), 864–895. 10.1016/j.spa.2007.06.009Suche in Google Scholar

18 M. Maejima and C. A. Tudor, Wiener integrals with respect to the Hermite process and a non-central limit theorem, Stoch. Anal. Appl. 25 (2007), 1043–1056. 10.1080/07362990701540519Suche in Google Scholar

19 M. Maejima and C. A. Tudor, On the distribution of the Rosenblatt process, Statist. Probab. Lett. 83 (2013), 1490–1495. 10.1016/j.spl.2013.02.019Suche in Google Scholar

20 A. Neuenkirch, I. Nourdin and S. Tindel, Delay equations driven by rough paths, Electron. J. Probab. 13 (2008), 2031–2068. 10.1214/EJP.v13-575Suche in Google Scholar

21 A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer, New York, 1983. 10.1007/978-1-4612-5561-1Suche in Google Scholar

22 V. Pipiras and M. S. Taqqu, Integration questions related to the fractional Brownian motion, Probab. Theory Related Fields 118 (2001), 251–281. 10.1007/s440-000-8016-7Suche in Google Scholar

23 M. Röckner and T. Zhang, Stochastic evolution equation of jump type: Existence, uniqueness and large deviation principles, Potential Anal. 26 (2007), 255–279. 10.1007/s11118-006-9035-zSuche in Google Scholar

24 M. Rosenblatt, Independence and dependence, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Contributions to Probability Theory, University of California, Berkeley (1961), 431–443. Suche in Google Scholar

25 M. S. Taqqu, Weak convergence to fractional Brownian motion and the Rosenblatt process, Z. Wahrscheinlichkeitstheor. Verw. Geb. 31 (1975), 287–302. 10.1007/BF00532868Suche in Google Scholar

26 M. Taqqu, Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrscheinlichkeitstheor. Verw. Geb. 50 (1979), 53–83. 10.1007/BF00535674Suche in Google Scholar

27 C. A. Tudor, Analysis of the Rosenblatt process, ESAIM Probab. Stat. 12 (2008), 230–257. 10.1051/ps:2007037Suche in Google Scholar

Received: 2014-12-1
Accepted: 2016-2-28
Published Online: 2016-4-12
Published in Print: 2016-6-1

© 2016 by De Gruyter

Heruntergeladen am 5.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/rose-2016-0008/html
Button zum nach oben scrollen