Home Mathematics Random fixed point theorem in generalized Banach space and applications
Article
Licensed
Unlicensed Requires Authentication

Random fixed point theorem in generalized Banach space and applications

  • Moulay Larbi Sinacer , Juan Jose Nieto and Abdelghani Ouahab EMAIL logo
Published/Copyright: April 12, 2016

Abstract

In this paper, we prove some random fixed point theorems in generalized Banach spaces. We establish a random version of a Krasnoselskii-type fixed point theorem for the sum of a contraction random operator and a compact operator. The results are used to prove the existence of solution for random differential equations with initial and boundary conditions. Finally, some examples are given to illustrate the results.

Award Identifier / Grant number: MTM2010-15314

Funding source: European Commission

Award Identifier / Grant number: FEDER

Funding statement: The research has partially been supported by Ministerio de Economía y Competitividad (Spain), project MTM2010-15314, and co-financed by the European Community fund FEDER.

This paper was completed while M. L. Sinacer and A. Ouahab visited the Department of MÁthematical AnÁlysis of the University of Santiago de Compostela. They would like to thank the department for its hospitality and support.

References

1 R. P. Agarwal, D. O'Regan and P. J. Y. Wong, Constant-sign solutions of a system of integral equations with integrable singularities, J. Integral Equations Appl. 19 (2007), 117–142. 10.1216/jiea/1182525211Search in Google Scholar

2 R. P. Agarwal, D. O'Regan and P. J. Y. Wong, Constant-sign solutions for systems of singular integral equations of Hammerstein type, Math. Comput. Modelling 50 (2009), 999–1025. 10.1016/j.mcm.2009.04.003Search in Google Scholar

3 R. P. Agarwal, D. O'Regan and P. J. Y. Wong, Constant-sign solutions for singular systems of Fredholm integral equations, Math. Methods Appl. Sci. 33 (2010), 1783–1793. 10.1002/mma.1287Search in Google Scholar

4 J. Andres and L. Górniewicz, Topological Fixed Point Principles for Boundary Value Problems, Kluwer, Dordrecht, 2003. 10.1007/978-94-017-0407-6Search in Google Scholar

5 T. N. Anh, Some general random coincidence point theorems, New Zealand J. Math. 41 (2011), 17–24. Search in Google Scholar

6 A. Arunchai and S. Plubtieng, Random fixed point theorem of Krasnoselskii type for the sum of two operators, Fixed Point Theory Appl. 2013 (2013), Article ID 142. 10.1186/1687-1812-2013-142Search in Google Scholar

7 I. Beg and N. Shahzad, Some random approximation theorems with applications, Nonlinear Anal. 35 (1999), 609–616. 10.1016/S0362-546X(98)00020-0Search in Google Scholar

8 A. T. Bharucha-Reid, Random Integral Equations, Academic Press, New York, 1972. Search in Google Scholar

9 A. T. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. (N.S.) 82 (1976), 641–657. 10.1090/S0002-9904-1976-14091-8Search in Google Scholar

10 I. Bihari, A generalisation of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta Math. Acad. Sci. Hungar. 7 (1956), 81–94. 10.1007/BF02022967Search in Google Scholar

11 O. Bolojan-Nica, G. Infante and R. Precup, Existence results for systems with coupled nonlocal initial conditions, Nonlinear Anal. 94 (2014), 231–242. 10.1016/j.na.2013.08.019Search in Google Scholar

12 R. Cristescu, Order Structures in Normed Vector Spaces (in Romanian), Editura Ştiin ţifică şi Enciclopedică, Bucureşti, 1983. Search in Google Scholar

13 J. Garcia-Falset, Existence of fixed points for the sum of two operators, Math. Nachr. 12 (2010), 1726–1757. 10.1002/mana.200710197Search in Google Scholar

14 J. Garcia-Falset, K. Latrach, E. Moreno-Gálvez and M. A. Taoudi, Schaefer–Krasnoselskii fixed points theorems using a usual measure of weak noncompactness, J. Differential Equations 352 (2012), 4, 3436–3452. 10.1016/j.jde.2011.11.012Search in Google Scholar

15 J. Garcia-Falset and O. Muñiz-Pérez, Fixed point theory for 1-set weakly contractive and pseudocontractive mappings, Appl. Math. Comput. 219 (2013), 12, 6843–6855. 10.1016/j.amc.2012.12.079Search in Google Scholar

16 L. Górniewicz, Topological Fixed Point Theory of Multi-Valued Mappings, Math. Appl. 495, Kluwer, Dordrecht, 1999. 10.1007/978-94-015-9195-9Search in Google Scholar

17 O. Hans̆, Random fixed point theorems, Transactions of the 1st Prague Conference on Information Theory, Statistical Decision Functions, Random Processes (Liblice 1956), Publishing House of the Czechoslovak Academy of Sciences, Prague (1957), 105–125. Search in Google Scholar

18 O. Hans̆, Random operator equations, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability. II: Contributions to Probability Theory, University California Press, Berkeley (1961), 185–202. Search in Google Scholar

19 O. Hans̆ and A. S̆pacek, Random fixed point approximation by differentiable trajectories, Transactions of the 2nd Prague Conference Information Theory, Statistical Decision Functions, Random Processes (Liblice 1959), Publishing House of the Czechoslovak Academy of Sciences, Prague (1960), 203–213. Search in Google Scholar

20 J. Henderson, S. K. Ntouyas and I. K. Purnaras, Positive solutions for systems of second order four-point nonlinear boundary value problems, Commun. Appl. Anal. 12 (2008), 29–40. Search in Google Scholar

21 S. Itoh, Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (1979), 261–273. 10.1016/0022-247X(79)90023-4Search in Google Scholar

22 M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer, Dordrecht, 1991. Search in Google Scholar

23 M. A. Krasnoselskii, Some problems of nonlinear analysis, Amer. Math. Soc. Transl. Ser. 2 10 (1958), 345–409. 10.1090/trans2/010/13Search in Google Scholar

24 K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 397–403. Search in Google Scholar

25 M. Moshinsky, Sobre los problemas de condiciones a la frontiera en una dimension de caracteristicas discontinuas, Bol. Soc. Mat. Mex. 7 (1950), 1–25. Search in Google Scholar

26 A. Mukherjea, Transformations aléatoires separables. Théorème du point fixe aléatoire, C. R. Acad. Sci. Paris Sér. A 263 (1966), 393–395. Search in Google Scholar

27 A. Mukherjea, Random transformations of Banach spaces, Ph.D. thesis, Wayne State University, Detroit, 1968. Search in Google Scholar

28 W. Padgett and C. Tsokos, Random Integral Equations with Applications to Life Science and Engineering, Academic Press, New York, 1976. Search in Google Scholar

29 P. K. Palamides, Positive and monotone solutions of an m-point boundary value problem, Electron. J. Differential Equations 18 (2002), 1–16. Search in Google Scholar

30 A. I. Perov, On the Cauchy problem for a system of ordinary differential equations (in Russian), Pviblizhen. Met. Reshen. Differ. Uvavn. 2 (1964), 115–134. Search in Google Scholar

31 I. R. Petre, A multi-valued version of Krasnoselskii's theorem in generalized Banach spaces, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 22 (2014), 177–192. 10.2478/auom-2014-0041Search in Google Scholar

32 I. R. Petre and A. Petrusel, Krasnoselskii's theorem in generalized Banach spaces and application, Electron. J. Qual. Theory Differ. Equ. 2012 (2012), Paper No. 85. 10.14232/ejqtde.2012.1.85Search in Google Scholar

33 B. L. S. Prakasa Rao, Stochastic integral equations of mixed type II, J. Math. Phys. Sci. 7 (1973), 245–260. Search in Google Scholar

34 R. Precup, Componentwise compression-expansion conditions for systems of nonlinear operator equations and applications, Mathematical Models in Engineering, Biology and Medicine, AIP Conf. Proc. 1124, American Institute of Physics, Melville (2009), 284–239. 10.1063/1.3142943Search in Google Scholar

35 R. Precup, Existence, localization and multiplicity results for positive radial solutions of semilinear elliptic systems, J. Math. Anal. Appl. 352 (2009), 48–56. 10.1016/j.jmaa.2008.01.097Search in Google Scholar

36 R. Precup, The role of matrices that are convergent to zero in the study of semilinear operator systems, Math. Comput. Modelling 49 (2009), 703–708. 10.1016/j.mcm.2008.04.006Search in Google Scholar

37 A. Ouahab, Some Pervo's and Krasnoselskii type fixed point results and application, Comm. Appl. Nonlinear Anal. 19 (2015), 623–642. Search in Google Scholar

38 N. Shahzad, Random fixed point theorems for various classes of 1-set-ontractive maps in Banach spaces, J. Math. Anal. Appl. 203 (1996), 712–718. 10.1006/jmaa.1996.0407Search in Google Scholar

39 N. Shahzad and S. Latif, Random fixed points for several classes of 1-ball-contractive and 1-set-contractive random maps, J. Math. Anal. Appl. 237 (1999), 83–92. 10.1006/jmaa.1999.6454Search in Google Scholar

40 A. Skorohod, Random Linear Operators, Reidel, Boston, 1985. 10.1007/978-94-009-6063-3Search in Google Scholar

41 A. S̆pac̆ek, Zufällige Gleichungen, Czech. Math. J. 5 (1955), 462–466. 10.21136/CMJ.1955.100162Search in Google Scholar

42 H. D. Thang and P. T. Anh, Random fixed points of completely random operators, Random Oper. Stoch. Equ. 21 (2013), 1, 1–20. 10.1515/rose-2013-0001Search in Google Scholar

43 R. S. Varga, Matrix Iterative Analysis, Springer Ser. Comput. Math. 27, Springer, Berlin, 2000. 10.1007/978-3-642-05156-2Search in Google Scholar

44 J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: A unified approach, J. Lond. Math. Soc. (2) 74 (2006), 673–693. 10.1112/S0024610706023179Search in Google Scholar

Received: 2015-7-1
Revised: 2015-9-14
Accepted: 2016-1-14
Published Online: 2016-4-12
Published in Print: 2016-6-1

© 2016 by De Gruyter

Downloaded on 5.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/rose-2016-0007/html
Scroll to top button