Exploring neuroglial signaling: diversity of molecules implicated in microglia-to-astrocyte neuroimmune communication
-
Zainab B. Mohammad
, Samantha C. Y. Yudin , Benjamin J. Goldberg , Kursti L. Serra und Andis Klegeris
Abstract
Effective communication between different cell types is essential for brain health, and dysregulation of this process leads to neuropathologies. Brain glial cells, including microglia and astrocytes, orchestrate immune defense and neuroimmune responses under pathological conditions during which interglial communication is indispensable. Our appreciation of the complexity of these processes is rapidly increasing due to recent advances in molecular biology techniques, which have identified numerous phenotypic states of both microglia and astrocytes. This review focuses on microglia-to-astrocyte communication facilitated by secreted neuroimmune modulators. The combinations of interleukin (IL)-1α, tumor necrosis factor (TNF), plus complement component C1q as well as IL-1β plus TNF are already well-established microglia-derived stimuli that induce reactive phenotypes in astrocytes. However, given the large number of inflammatory mediators secreted by microglia and the rapidly increasing number of distinct functional states recognized in astrocytes, it can be hypothesized that many more intercellular signaling molecules exist. This review identifies the following group of cytokines and gliotransmitters that, while not established as interglial mediators yet, are known to be released by microglia and elicit functional responses in astrocytes: IL-10, IL-12, IL-18, transforming growth factor (TGF)-β, interferon (IFN)-γ, C–C motif chemokine ligand (CCL)5, adenosine triphosphate (ATP), l-glutamate, and prostaglandin E2 (PGE2). The review of molecular mechanisms engaged by these mediators reveals complex, partially overlapping signaling pathways implicated in numerous neuropathologies. Additionally, lack of human-specific studies is identified as a significant knowledge gap. Further research on microglia-to-astrocyte communication is warranted, as it could discover novel interglial signaling-targeted therapies for diverse neurological disorders.
Funding source: Natural Sciences and Engineering Research Council of Canada
Funding source: Jack Brown and Family Alzheimer Disease Research Foundation
Acknowledgments
The authors would like to thank all members of the Laboratory of Cellular and Molecular Pharmacology for the helpful discussions and comments on the manuscript.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: This research was supported by grants from the Jack Brown and Family Alzheimer’s Disease Research Foundation, the Natural Sciences and Engineering Research Council of Canada, and the University of British Columbia Okanagan Campus.
-
Data availability: Not applicable.
References
Abbracchio, M.P. and Ceruti, S. (2006). Roles of P2 receptors in glial cells: focus on astrocytes. Purinergic Signal. 2: 595–604, https://doi.org/10.1007/s11302-006-9016-0.Suche in Google Scholar PubMed PubMed Central
Abramov, A.Y., Jacobson, J., Wientjes, F., Hothersall, J., Canevari, L., and Duchen, M.R. (2005). Expression and modulation of an NADPH oxidase in mammalian astrocytes. J. Neurosci. 25: 9176–9184, https://doi.org/10.1523/jneurosci.1632-05.2005.Suche in Google Scholar
Ali, M.M., Ghouri, R.G., Ans, A.H., Akbar, A., and Toheed, A. (2019). Recommendations for anti-inflammatory treatments in Alzheimer’s disease: a comprehensive review of the literature. Cureus 11: e4620, https://doi.org/10.7759/cureus.4620.Suche in Google Scholar PubMed PubMed Central
Aloisi, F., Penna, G., Cerase, J., Iglesias, B.M., and Adorini, L. (1997). IL-12 production by central nervous system microglia is inhibited by astrocytes. J. Immunol. 159: 1604–1612, https://doi.org/10.4049/jimmunol.159.4.1604.Suche in Google Scholar
Andreadou, M., Ingelfinger, F., De Feo, D., Cramer, T.L.M., Tuzlak, S., Friebel, E., Schreiner, B., Eede, P., Schneeberger, S., Geesdorf, M., et al.. (2023). IL-12 sensing in neurons induces neuroprotective CNS tissue adaptation and attenuates neuroinflammation in mice. Nat. Neurosci. 26: 1701–1712, https://doi.org/10.1038/s41593-023-01435-z.Suche in Google Scholar PubMed PubMed Central
Andreasson, K. (2010). Emerging roles of PGE2 receptors in models of neurological disease. Prostag. Other Lipid Mediat. 91: 104–112, https://doi.org/10.1016/j.prostaglandins.2009.04.003.Suche in Google Scholar PubMed PubMed Central
Appay, V. and Rowland-Jones, S.L. (2001). CCL5: a versatile and controversial chemokine. Trends Immunol. 22: 83–87, https://doi.org/10.1016/s1471-4906(00)01812-3.Suche in Google Scholar PubMed
Arany, I., Tyring, S.K., Brysk, H., and Brysk, M.M. (1998). Induction by interferon-γ of its receptor varies with epithelial differentiation and cell type. Arch. Dermatol. Res. 290: 331–334, https://doi.org/10.1007/s004030050313.Suche in Google Scholar PubMed
Armada-Moreira, A., Gomes, J.I., Pina, C.C., Savchak, O.K., Gonçalves-Ribeiro, J., Rei, N., Pinto, S., Morais, T.P., Martins, R.S., Ribeiro, F.F., et al.. (2020). Going the extra (synaptic) mile: excitotoxicity as the road toward neurodegenerative diseases. Front. Cell. Neurosci. 14: 90, https://doi.org/10.3389/fncel.2020.00090.Suche in Google Scholar PubMed PubMed Central
Bai, K., Chuang, K., Chen, C., Jhan, M., Hsiao, T., Cheng, T., Chang, L., Chang, T., and Chuang, H. (2019). Microglial activation and inflammation caused by traffic-related particulate matter. Chem. Biol. Interact. 311: 108762, https://doi.org/10.1016/j.cbi.2019.108762.Suche in Google Scholar PubMed
Balak, C., Han, C.Z., and Glass, C.K. (2024). Deciphering microglia phenotypes in health and disease. Curr. Opin. Genet. Dev. 84: 102146, https://doi.org/10.1016/j.gde.2023.102146.Suche in Google Scholar PubMed
Balasingam, V. and Yong, V.W. (1996). Attenuation of astroglial reactivity by interleukin-10. J. Neurosci. 16: 2945–2955, https://doi.org/10.1523/jneurosci.16-09-02945.1996.Suche in Google Scholar PubMed PubMed Central
Barnes, D.A., Huston, M., Holmes, R., Benveniste, E.N., Yong, V.W., Scholz, P., and Perez, H.D. (1996). Induction of CCL5 expression by astrocytes and astrocytoma cell lines. J. Neuroimmunol. 71: 207–214, https://doi.org/10.1016/s0165-5728(96)00154-3.Suche in Google Scholar PubMed
Bartels, A.L. and Leenders, K.L. (2010). Cyclooxygenase and neuroinflammation in Parkinson’s disease neurodegeneration. Curr. Neuropharmacol. 8: 62–68, https://doi.org/10.2174/157015910790909485.Suche in Google Scholar PubMed PubMed Central
Becher, B., Dodelet, V., Fedorowicz, V., and Antel, J.P. (1996). Soluble tumor necrosis factor receptor inhibits interleukin 12 production by stimulated human adult microglial cells in vitro. J. Clin. Invest. 98: 1539–1543, https://doi.org/10.1172/jci118946.Suche in Google Scholar
Bernath, A.K., Murray, T.E., Yang, S., Gibon, J., and Klegeris, A. (2023). Microglia secrete distinct sets of neurotoxins in a stimulus-dependent manner. Brain Res. 1807: 148315, https://doi.org/10.1016/j.brainres.2023.148315.Suche in Google Scholar PubMed
Bernaus, A., Blanco, S., and Sevilla, A. (2020). Glia crosstalk in neuroinflammatory diseases. Front. Cell. Neurosci. 14: 539179, https://doi.org/10.3389/fncel.2020.00209.Suche in Google Scholar PubMed PubMed Central
Bhat, P., Leggatt, G.R., Waterhouse, N.J., and Frazer, I.H. (2017). Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity. Cell Death Dis. 8: e2836, https://doi.org/10.1038/cddis.2017.67.Suche in Google Scholar PubMed PubMed Central
Bianco, F., Pravettoni, E., Colombo, A., Schenk, U., Möller, T., Matteoli, M., and Verderio, C. (2005). Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. J. Immunol. 174: 7268–7277, https://doi.org/10.4049/jimmunol.174.11.7268.Suche in Google Scholar PubMed
Böhmwald, K., Andrade, C.A., and Kalergis, A.M. (2021). Contribution of pro-inflammatory molecules induced by respiratory virus infections to neurological disorders. Pharmaceuticals 14: 340, https://doi.org/10.3390/ph14040340.Suche in Google Scholar PubMed PubMed Central
Bonora, M., Patergnani, S., Rimessi, A., Marchi, E.D., Suski, J.M., Bononi, A., Giorgi, C., Marchi, S., Missiroli, S., Poletti, F., et al.. (2012). ATP synthesis and storage. Purinergic Signal. 8: 343–357, https://doi.org/10.1007/s11302-012-9305-8.Suche in Google Scholar PubMed PubMed Central
Brambilla, R., Bracchi-Ricard, V., Hu, W., Frydel, B.R., Bramwell, A., Karmally, S., Green, E.J., and Bethea, J.R. (2005). Inhibition of astroglial nuclear factor κB reduces inflammation and improves functional recovery after spinal cord injury. J. Exp. Med. 202: 145–156, https://doi.org/10.1084/jem.20041918.Suche in Google Scholar PubMed PubMed Central
Bruzzone, S., Verderio, C., Schenk, U., Fedele, E., Zocchi, E., Matteoli, M., and Flora, A.D. (2004). Glutamate-mediated overexpression of CD38 in astrocytes cultured with neurones. J. Neurochem. 89: 264–272, https://doi.org/10.1111/j.1471-4159.2003.02326.x.Suche in Google Scholar PubMed
Bukke, V.N., Archana, M., Villani, R., Romano, A.D., Wawrzyniak, A., Balawender, K., Orkisz, S., Beggiato, S., Serviddio, G., and Cassano, T. (2020). The dual role of glutamatergic neurotransmission in Alzheimer’s disease: from pathophysiology to pharmacotherapy. Int. J. Mol. Sci. 21: 7452, https://doi.org/10.3390/ijms21207452.Suche in Google Scholar PubMed PubMed Central
Burmeister, A.R. and Marriott, I. (2018). The interleukin-10 family of cytokines and their role in the CNS. Front. Cell. Neurosci. 12: 458, https://doi.org/10.3389/fncel.2018.00458.Suche in Google Scholar PubMed PubMed Central
Bustamante-Barrientos, F.A., Luque-Campos, N., Araya, M.J., Lara-Barba, E., de Solminihac, J., Pradenas, C., Molina, L., Herrera-Luna, Y., Utreras-Mendoza, Y., Elizondo-Vega, R., et al.. (2023). Mitochondrial dysfunction in neurodegenerative disorders: potential therapeutic application of mitochondrial transfer to central nervous system-residing cells. J. Transl. Med. 21: 613, https://doi.org/10.1186/s12967-023-04493-w.Suche in Google Scholar PubMed PubMed Central
Cartier, L., Hartley, O., Dubois-Dauphin, M., and Krause, K.H. (2005). Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res. Rev. 48: 16–42, https://doi.org/10.1016/j.brainresrev.2004.07.021.Suche in Google Scholar PubMed
Cekanaviciute, E., Fathali, N., Doyle, K.P., Williams, A.M., Han, J., and Buckwalter, M.S. (2014). Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia 62: 1227–1240, https://doi.org/10.1002/glia.22675.Suche in Google Scholar PubMed PubMed Central
Chai, H., Díaz-Castro, B., Shigetomi, E., Monte, E., Octeau, J.C., Yu, X., Cohn, W., Rajendran, P.S., Vondriska, T.M., Whitelegge, J.P., et al.. (2017). Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 95: 531–549.e9, https://doi.org/10.1016/j.neuron.2017.06.029.Suche in Google Scholar PubMed PubMed Central
Chen, H., Hu, B., Lv, X., Zhu, S., Zhen, G., Wan, M., Jain, A., Gao, B., Chai, Y., Yang, M., et al.. (2019). Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat. Commun. 10: 1–13, https://doi.org/10.1038/s41467-018-08097-7.Suche in Google Scholar PubMed PubMed Central
Chen, H., Sung, F., Oyarzabal, E.A., Tan, M., Leonard, J., Guo, M., Li, S., Wang, Q., Chu, H., Chen, L., et al.. (2018). Physiological concentration of prostaglandin E2 exerts anti-inflammatory effects by inhibiting microglial production of superoxide through a novel pathway. Mol. Neurobiol. 55: 8001–8013, https://doi.org/10.1007/s12035-018-0965-4.Suche in Google Scholar PubMed PubMed Central
Chen, H.B., Chan, T., Hung, A.C., Tsai, C., and Sun, S.H. (2006). Elucidation of ATP-stimulated stress protein expression of RBA-2 type-2 astrocytes: ATP potentiate HSP60 and Cu/Zn SOD expression and stimulates pI shift of peroxiredoxin II. J. Cell. Biochem. 97: 314–326, https://doi.org/10.1002/jcb.20547.Suche in Google Scholar PubMed
Chen, J., Tsai, C., Lin, H., Huang, C., Leung, Y., Lai, S., Tsai, C., Chang, P., Lu, D., and Lin, C. (2015). Interlukin-18 is a pivot regulatory factor on matrix metalloproteinase-13 expression and brain astrocytic migration. Mol. Neurobiol. 53: 6218–6227, https://doi.org/10.1007/s12035-015-9529-z.Suche in Google Scholar PubMed
Cheng, H., Huang, H., Guo, Z., Chang, Y., and Li, Z. (2021). Role of prostaglandin E2 in tissue repair and regeneration. Theranostics 11: 8836–8854, https://doi.org/10.7150/thno.63396.Suche in Google Scholar PubMed PubMed Central
Cho, C.E., Damle, S., Wancewicz, E.V., Mukhopadhyay, S., Hart, C.E., Mazur, C., Swayze, E.E., and Kamme, F. (2019). A modular analysis of microglia gene expression, insights into the aged phenotype. BMC Genomics 20: 164, https://doi.org/10.1186/s12864-019-5549-9.Suche in Google Scholar PubMed PubMed Central
Choi, S.S., Lee, H.J., Lim, I., and Kim, S.U. (2014). Human astrocytes: secretome profiles of cytokines and chemokines. PLoS One 9: e92325, https://doi.org/10.1371/journal.pone.0092325.Suche in Google Scholar PubMed PubMed Central
Clasadonte, J., Poulain, P., Hanchate, N.K., Corfas, G., Ojeda, S.R., and Prevot, V. (2011). Prostaglandin E2 release from astrocytes triggers gonadotropin-releasing hormone (GnRH) neuron firing via EP2 receptor activation. Proc. Natl. Acad. Sci. U. S. A. 108: 16104–16109, https://doi.org/10.1073/pnas.1107533108.Suche in Google Scholar PubMed PubMed Central
Conti, B., Park, L.C., Calingasan, N.Y., Kim, Y., Kim, H., Bae, Y., Gibson, G.E., and Joh, T.H. (1999). Cultures of astrocytes and microglia express interleukin 18. Mol. Brain Res. 67: 46–52, https://doi.org/10.1016/s0169-328x(99)00034-0.Suche in Google Scholar PubMed
Coomey, R., Stowell, R., Majewska, A., and Tropea, D. (2020). The role of microglia in neurodevelopmental disorders and their therapeutics. Curr. Top. Med. Chem. 20: 272–276, https://doi.org/10.2174/1568026620666200221172619.Suche in Google Scholar PubMed PubMed Central
Cuní-López, C., Stewart, R., Quek, H., and White, A.R. (2022). Recent advances in microglia modelling to address translational outcomes in neurodegenerative diseases. Cells 11: 1662, https://doi.org/10.3390/cells11101662.Suche in Google Scholar PubMed PubMed Central
Cunningham, C., Dunne, A., and López-Rodríguez, A.B. (2018). Astrocytes: heterogeneous and dynamic phenotypes in neurodegeneration and innate immunity. Neuroscientist 25: 455–474, https://doi.org/10.1177/1073858418809941.Suche in Google Scholar PubMed PubMed Central
Danbolt, N.C. (2001). Glutamate uptake. Prog. Neurobiol. 65: 1–105, https://doi.org/10.1016/s0301-0082(00)00067-8.Suche in Google Scholar PubMed
De Freitas, M.S., Spohr, T.C.L.S., Benedito, A.B., Caetano, M.S., Margulis, B.A., Lopes, U.G., and Moura‐Neto, V. (2002). Neurite outgrowth is impaired on HSP70-positive astrocytes through a mechanism that requires NF-κB activation. Brain Res. 958: 359–370, https://doi.org/10.1016/s0006-8993(02)03682-x.Suche in Google Scholar PubMed
Dey, I., Lejeune, M., and Chadee, K. (2006). Prostaglandin E2 receptor distribution and function in the gastrointestinal tract. Br. J. Pharmacol. 149: 611–623, https://doi.org/10.1038/sj.bjp.0706923.Suche in Google Scholar PubMed PubMed Central
Dinarello, C.A. (1999). IL-18: a TH1 -inducing, proinflammatory cytokine and new member of the IL-1 family. J. Allergy Clin. Immunol. 103: 11–24, https://doi.org/10.1016/s0091-6749(99)70518-x.Suche in Google Scholar PubMed
Dinarello, C.A. and Fantuzzi, G. (2003). Interleukin‐18 and host defense against infection. J. Infect. Dis. 187: S370–S384, https://doi.org/10.1086/374751.Suche in Google Scholar PubMed
Ding, X., Yan, Y., Li, X., Li, K., Ciric, B., Yang, J., Zhang, Y., Wu, S., Xu, H., Chen, W., et al.. (2015). Silencing IFN-γ binding/signaling in astrocytes versus microglia leads to opposite effects on central nervous system autoimmunity. J. Immunol. 194: 4251–4264, https://doi.org/10.4049/jimmunol.1303321.Suche in Google Scholar PubMed PubMed Central
Diniz, L.P., Almeida, J., Tortelli, V., Lopes, C.V., Setti-Perdigão, P., Stipursky, J., Kahn, S.A., Romão, L., De Miranda, J., Alves-Leon, S.V., et al.. (2012). Astrocyte-induced synaptogenesis is mediated by transforming growth factor β signaling through modulation of d-serine levels in cerebral cortex neurons. J. Biol. Chem. 287: 41432–41445, https://doi.org/10.1074/jbc.m112.380824.Suche in Google Scholar PubMed PubMed Central
Domercq, M., Brambilla, L., Pilati, E., Marchaland, J., Volterra, A., and Bezzi, P. (2006). P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-α and prostaglandins. J. Biol. Chem. 281: 30684–30696, https://doi.org/10.1074/jbc.m606429200.Suche in Google Scholar PubMed
Dou, Y., Wu, H., Li, H., Qin, S., Wang, Y., Li, J., Lou, H., Chen, Z., Li, X., Luo, Q., et al.. (2012). Microglial migration mediated by ATP-induced ATP release from lysosomes. Cell Res. 22: 1022–1033, https://doi.org/10.1038/cr.2012.10.Suche in Google Scholar PubMed PubMed Central
Dutta, G., Zhang, P., and Liu, B. (2008). The lipopolysaccharide Parkinson’s disease animal model: mechanistic studies and drug discovery. Fundam. Clin. Pharmacol. 22: 453–464, https://doi.org/10.1111/j.1472-8206.2008.00616.x.Suche in Google Scholar
Escartin, C., Galea, E., Lakatos, A., O’Callaghan, J.P., Petzold, G.C., Serrano-Pozo, A., Steinhäuser, C., Volterra, A., Carmignoto, G., Agarwal, A., et al.. (2021). Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 24: 312–325, https://doi.org/10.1038/s41593-020-00783-4.Suche in Google Scholar
Falcone, C. (2022). Evolution of astrocytes: from invertebrates to vertebrates. Front. Cell Dev. Biol. 10: 931311, https://doi.org/10.3389/fcell.2022.931311.Suche in Google Scholar
Fan, D., Grooms, S.Y., Araneda, R.C., Johnson, A.B., Dobrenis, K., Kessler, J.A., and Zukin, R.S. (1999). AMPA receptor protein expression and function in astrocytes cultured from hippocampus. J. Neurosci. Res. 57: 557–571, https://doi.org/10.1002/(sici)1097-4547(19990815)57:4<557::aid-jnr16>3.3.co;2-9.10.1002/(SICI)1097-4547(19990815)57:4<557::AID-JNR16>3.3.CO;2-9Suche in Google Scholar
Festa, B.P., Siddiqi, F.H., Jimenez-Sanchez, M., Won, H., Rob, M., Djajadikerta, A., Stamatakou, E., and Rubinsztein, D.C. (2023). Microglial-to-neuronal CCR5 signaling regulates autophagy in neurodegeneration. Neuron 111: 2021–2037.e12, https://doi.org/10.1016/j.neuron.2023.04.006.Suche in Google Scholar
Fiebich, B.L., Schleicher, S., Spleiss, O., Czygan, M., and Hüll, M. (2001). Mechanisms of prostaglandin E2-induced interleukin-6 release in astrocytes: possible involvement of EP4-like receptors, p38 mitogen-activated protein kinase and protein kinase C. J. Neurochem. 79: 950–958, https://doi.org/10.1046/j.1471-4159.2001.00652.x.Suche in Google Scholar
Fitz, J.G. (2006). Regulation of cellular Atp release. Trans. Am. Clin. Climatol. Assoc. 118: 199–208.Suche in Google Scholar
Flynn, G., Maru, S., Loughlin, J., Romero, I.A., and Male, D. (2003). Regulation of chemokine receptor expression in human microglia and astrocytes. J. Neuroimmunol. 136: 84–93, https://doi.org/10.1016/s0165-5728(03)00009-2.Suche in Google Scholar
Freitag, K., Eede, P., Ivanov, A., Sterczyk, N., Schneeberger, S., Borodina, T., Sauer, S., Beule, D., and Heppner, F.L. (2023). Diverse but unique astrocytic phenotypes during embryonic stem cell differentiation, culturing and development. Commun. Biol. 6: 40, https://doi.org/10.1038/s42003-023-04410-3.Suche in Google Scholar
Fujikawa, R. and Tsuda, M. (2023). The functions and phenotypes of microglia in Alzheimer’s disease. Cells 12: 1207, https://doi.org/10.3390/cells12081207.Suche in Google Scholar
Gabay, C., Fautrel, B., Rech, J., Spertini, F., Feist, E., Kötter, I., Hachulla, E., Morel, J., Schaeverbeke, T., Hamidou, M., et al.. (2018). Open-label, multicentre, dose-escalating phase II clinical trial on the safety and efficacy of tadekinig alfa (IL-18BP) in adult-onset Still’s disease. Ann. Rheum. Dis. 77: 840–847, https://doi.org/10.1136/annrheumdis-2017-212608.Suche in Google Scholar
Gao, C., Jiang, J., Tan, Y., and Chen, S. (2023). Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct. Target. Ther. 8: 359, https://doi.org/10.1038/s41392-023-01588-0.Suche in Google Scholar PubMed PubMed Central
Garland, E.F., Hartnell, I.J., and Boche, D. (2022). Microglia and astrocyte function and communication: what do we know in humans? Front. Neurosci. 16: 824888, https://doi.org/10.3389/fnins.2022.824888.Suche in Google Scholar PubMed PubMed Central
Garrido-Gil, P., Pedrosa, M.A., Garcia-Garrote, M., Pequeño-Valtierra, A., Rodríguez-Castro, J., García-Souto, D., Rodríguez-Pérez, A.I., and Labandeira-Garcia, J.L. (2022). Microglial angiotensin type 2 receptors mediate sex-specific expression of inflammatory cytokines independently of circulating estrogen. Glia 70: 2348–2360, https://doi.org/10.1002/glia.24255.Suche in Google Scholar PubMed PubMed Central
Gebicke-Haerter, P.J., Schobert, A., Dieter, P., Honegger, P., and Hertting, G. (1991). Regulation and glucocorticoid-independent induction of lipocortin I in cultured astrocytes. J. Neurochem. 57: 175–183, https://doi.org/10.1111/j.1471-4159.1991.tb02113.x.Suche in Google Scholar PubMed
Geirsdottir, L., David, E., Keren-Shaul, H., Weiner, A., Bohlen, S.C., Neuber, J., Balic, A., Giladi, A., Sheban, F., Dutertre, C.-A., et al.. (2019). Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell 179: 1609–1622.e16, https://doi.org/10.1016/j.cell.2019.11.010.Suche in Google Scholar PubMed
Giovannoni, F. and Quintana, F.J. (2020). The role of astrocytes in CNS inflammation. Trends Immunol. 41: 805–819, https://doi.org/10.1016/j.it.2020.07.007.Suche in Google Scholar PubMed PubMed Central
Gong, Q., Lin, Y., Lu, Z., and Xiao, Z. (2020). Microglia-astrocyte cross talk through IL-18/IL-18R signaling modulates migraine-like behavior in experimental models of migraine. Neuroscience 451: 207–215, https://doi.org/10.1016/j.neuroscience.2020.10.019.Suche in Google Scholar PubMed
Gordon, G.R., Choi, H.B., Rungta, R.L., Ellis-Davies, G.C., and MacVicar, B.A. (2008). Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456: 745–749, https://doi.org/10.1038/nature07525.Suche in Google Scholar PubMed PubMed Central
Gottlieb, A., Toledano-Furman, N.E., Prabhakara, K.S., Kumar, A., Caplan, H.W., Bedi, S.S., Cox, C.S., and Olson, S.D. (2022). Time dependent analysis of rat microglial surface markers in traumatic brain injury reveals dynamics of distinct cell subpopulations. Sci. Rep. 12: 6289, https://doi.org/10.1038/s41598-022-10419-1.Suche in Google Scholar PubMed PubMed Central
Hashioka, S., Klegeris, A., Schwab, C., and McGeer, P.L. (2009). Interferon-γ-dependent cytotoxic activation of human astrocytes and astrocytoma cells. Neurobiol. Aging 30: 1924–1935, https://doi.org/10.1016/j.neurobiolaging.2008.02.019.Suche in Google Scholar PubMed
Hattori, M. and Gouaux, E. (2012). Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 485: 207–212, https://doi.org/10.1038/nature11010.Suche in Google Scholar PubMed PubMed Central
Henry, C.J., Huang, Y., Wynne, A.M., and Godbout, J.P. (2009). Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain Behav. Immun. 23: 309–317, https://doi.org/10.1016/j.bbi.2008.09.002.Suche in Google Scholar PubMed PubMed Central
Hersh, J., Prah, J., Winters, A., Liu, R., and Yang, S.H. (2021). Modulation of astrocyte phenotype in response to T-cell interaction. J. Neuroimmunol. 351: 577455, https://doi.org/10.1016/j.jneuroim.2020.577455.Suche in Google Scholar PubMed PubMed Central
Heufler, C., Koch, F., Stanzl, U., Topar, G., Wysocka, M., Trinchieri, G., Enk, A., Steinman, R.M., Romani, N., and Schuler, G. (1996). Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. Eur. J. Immunol. 26: 659–668, https://doi.org/10.1002/eji.1830260323.Suche in Google Scholar PubMed
Higashi, Y., Segawa, S., Matsuo, T., Nakamura, S., Kikkawa, Y., Nishida, K., and Nagasawa, K. (2011). Microglial zinc uptake via zinc transporters induces ATP release and the activation of microglia. Glia 59: 1933–1945, https://doi.org/10.1002/glia.21235.Suche in Google Scholar PubMed
Höft, S., Griemsmann, S., Seifert, G., and Steinhäuser, C. (2014). Heterogeneity in expression of functional ionotropic glutamate and GABA receptors in astrocytes across brain regions: insights from the thalamus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369: 20130602, https://doi.org/10.1098/rstb.2013.0602.Suche in Google Scholar PubMed PubMed Central
Hoozemans, J.J., Veerhuis, R., Janssen, I., Van Elk, E., Rozemuller, A.J., and Eikelenboom, P. (2002). The role of cyclo-oxygenase 1 and 2 activity in prostaglandin E2 secretion by cultured human adult microglia: implications for Alzheimer’s disease. Brain Res. 951: 218–226, https://doi.org/10.1016/s0006-8993(02)03164-5.Suche in Google Scholar PubMed
Hu, S., Chao, C.C., Ehrlich, L.C., Sheng, W.S., Sutton, R.L., Rockswold, G.L., and Peterson, P.K. (1999). Inhibition of microglial cell CCL5 production by Il-10 and TGF-β. J. Leukoc. Biol. 65: 815–821, https://doi.org/10.1002/jlb.65.6.815.Suche in Google Scholar PubMed
Hynd, M.R., Scott, H.L., and Dodd, P.R. (2004). Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem. Int. 45: 583–595, https://doi.org/10.1016/j.neuint.2004.03.007.Suche in Google Scholar PubMed
Hyvärinen, T., Hagman, S., Ristola, M., Sukki, L., Veijula, K., Kreutzer, J., Kallio, P., and Narkilahti, S. (2019). Co-stimulation with IL-1β and TNF-α induces an inflammatory reactive astrocyte phenotype with neurosupportive characteristics in a human pluripotent stem cell model system. Sci. Rep. 9: 1–15, https://doi.org/10.1038/s41598-019-53414-9.Suche in Google Scholar PubMed PubMed Central
Imura, Y., Morizawa, Y., Komatsu, R., Shibata, K., Shinozaki, Y., Kasai, H., Moriishi, K., Moriyama, Y., and Koizumi, S. (2013). Microglia release ATP by exocytosis. Glia 61: 1320–1330, https://doi.org/10.1002/glia.22517.Suche in Google Scholar PubMed
Iwata, Y., Miyao, M., Hirotsu, A., Tatsumi, K., Matsuyama, T., Uetsuki, N., and Tanaka, T. (2021). The inhibitory effects of Orengedokuto on inducible PGE2 production in BV-2 microglial cells. Heliyon 7: e07759, https://doi.org/10.1016/j.heliyon.2021.e07759.Suche in Google Scholar PubMed PubMed Central
Iyer, S.S. and Cheng, G. (2012). Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 32: 23–63, https://doi.org/10.1615/critrevimmunol.v32.i1.30.Suche in Google Scholar PubMed PubMed Central
Jana, M., Mondal, S., Jana, A., and Pahan, K. (2014). Interleukin-12 (IL-12), but not IL-23, induces the expression of IL-7 in microglia and macrophages: implications for multiple sclerosis. Immunology 141: 549–563, https://doi.org/10.1111/imm.12214.Suche in Google Scholar PubMed PubMed Central
Jayasooriya, R., Moon, D.-O., Chol, Y., Yoon, C.-H., and Kim, G.-Y. (2011). Methanol extract of Hydroclathrus clathratus inhibits production of nitric oxide, prostaglandin E2 and tumor necrosis factor-α in lipopolysaccharide-stimulated BV2 microglial cells via inhibition of NF-κB activity. Trop. J. Pharm. Res. 10: 723–730, https://doi.org/10.4314/tjpr.v10i6.4.Suche in Google Scholar
Jha, M.K., Jo, M., Kim, H., and Suk, K. (2018). Microglia-astrocyte crosstalk: an intimate molecular conversation. Neuroscientist 25: 227–240, https://doi.org/10.1177/1073858418783959.Suche in Google Scholar PubMed
Jo, S., Kang, T., Koppula, S., Cho, D., Kim, J., Kim, I., and Choi, D. (2021). Mitigating effect of Lindera obtusiloba blume extract on neuroinflammation in microglial cells and scopolamine-induced amnesia in mice. Molecules 26: 2870, https://doi.org/10.3390/molecules26102870.Suche in Google Scholar PubMed PubMed Central
Jurga, A.M., Paleczna, M., and Kuter, K. (2020). Overview of general and discriminating markers of differential microglia phenotypes. Front. Cell. Neurosci. 14: 198, https://doi.org/10.3389/fncel.2020.00198.Suche in Google Scholar PubMed PubMed Central
Kawanokuchi, J., Mizuno, T., Takeuchi, H., Kato, H., Wang, J., Mitsuma, N., and Suzumura, A. (2006). Production of interferon-γ by microglia. Mult. Scler. J. 12: 558–564, https://doi.org/10.1177/1352458506070763.Suche in Google Scholar PubMed
Kelder, W., McArthur, J.C., Nance‐Sproson, T., McClernon, D., and Griffin, D.E. (1998). Β‐chemokines MCP‐1 and rantes are selectively increased in cerebrospinal fluid of patients with human immunodeficiency virus–associated dementia. Ann. Neurol. 44: 831–835, https://doi.org/10.1002/ana.410440521.Suche in Google Scholar PubMed
Kim, J., Yoo, I.D., Lim, J., and Moon, J. (2024). Pathological phenotypes of astrocytes in Alzheimer’s disease. Exp. Mol. Med. 56: 95–99, https://doi.org/10.1038/s12276-023-01148-0.Suche in Google Scholar PubMed PubMed Central
Kim, S.Y., Moon, J.H., Lee, H.G., Kim, S.U., and Lee, Y.B. (2007). ATP released from β‐amyloid-stimulated microglia induces reactive oxygen species production in an autocrine fashion. Exp. Mol. Med. 39: 820–827, https://doi.org/10.1038/emm.2007.89.Suche in Google Scholar PubMed
Kim, Y.H., Park, J., and Choi, Y.K. (2019). The role of astrocytes in the central nervous system focused on BK channel and heme oxygenase metabolites: a review. Antioxidants 8: 121, https://doi.org/10.3390/antiox8050121.Suche in Google Scholar PubMed PubMed Central
Kirkley, K.S., Popichak, K.A., Afzali, M.F., Legare, M.E., and Tjalkens, R.B. (2017). Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J. Neuroinflammation 14: 99, https://doi.org/10.1186/s12974-017-0871-0.Suche in Google Scholar PubMed PubMed Central
Klegeris, A., Walker, D.G., and McGeer, P.L. (1997). Regulation of glutamate in cultures of human monocytic THP-1 and astrocytoma U-373 MG cells. J. Neuroimmunol. 78: 152–161, https://doi.org/10.1016/s0165-5728(97)00094-5.Suche in Google Scholar PubMed
Klein, R.S., Williams, K.C., Alvarez-Hernandez, X., Westmoreland, S., Force, T., Lackner, A.A., and Luster, A.D. (1999). Chemokine receptor expression and signaling in macaque and human fetal neurons and astrocytes: implications for the neuropathogenesis of AIDS. J. Immunol. 163: 1636–1646, https://doi.org/10.4049/jimmunol.163.3.1636.Suche in Google Scholar
Kremlev, S.G., Gaurnier-Hausser, A.L., Del Valle, L., Perez-Liz, G., Dimitrov, S., and Tuszynski, G. (2008). Angiocidin promotes pro-inflammatory cytokine production and antigen presentation in multiple sclerosis. J. Neuroimmunol. 194: 132–142, https://doi.org/10.1016/j.jneuroim.2007.11.003.Suche in Google Scholar PubMed
Kulesza, A., Paczek, L., and Burdzinska, A. (2023). The role of COX-2 and PGE2 in the regulation of immunomodulation and other functions of mesenchymal stromal cells. Biomedicines 11: 445, https://doi.org/10.3390/biomedicines11020445.Suche in Google Scholar PubMed PubMed Central
Kulkarni, A., Ganesan, P., and O’Donnell, L.A. (2016). Interferon gamma: influence on neural stem cell function in neurodegenerative and neuroinflammatory disease. Clin. Med. Insights Pathol. 9: 9–19, https://doi.org/10.4137/CPath.S40497.Suche in Google Scholar PubMed PubMed Central
Kuno, R., Wang, J., Kawanokuchi, J., Takeuchi, H., Mizuno, T., and Suzumura, A. (2005). Autocrine activation of microglia by tumor necrosis factor-α. J. Neuroimmunol. 162: 89–96, https://doi.org/10.1016/j.jneuroim.2005.01.015.Suche in Google Scholar PubMed
Kwon, H.S. and Koh, S. (2020). Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegener. 9: 42, https://doi.org/10.1186/s40035-020-00221-2.Suche in Google Scholar PubMed PubMed Central
Lanfranco, M.F., Mocchetti, I., Burns, M.P., and Villapol, S. (2018). Glial- and neuronal-specific expression of CCL5 mRNA in the rat brain. Front. Neuroanat. 11: 137, https://doi.org/10.3389/fnana.2017.00137.Suche in Google Scholar PubMed PubMed Central
Lanjakornsiripan, D., Pior, B.J., Kawaguchi, D., Furutachi, S., Tahara, T., Katsuyama, Y., Suzuki, Y., Fukazawa, Y., and Gotoh, Y. (2018). Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers. Nat. Commun. 9: 1623, https://doi.org/10.1038/s41467-018-03940-3.Suche in Google Scholar PubMed PubMed Central
Lawrence, J.M., Schardien, K., Wigdahl, B., and Nonnemacher, M.R. (2023). Roles of neuropathology-associated reactive astrocytes: a systematic review. Acta Neuropathol. Commun. 11: 42, https://doi.org/10.1186/s40478-023-01526-9.Suche in Google Scholar PubMed PubMed Central
Lee, R.K.K., Knapp, S., and Wurtman, R.J. (1999). Prostaglandin E2 stimulates amyloid precursor protein gene expression: inhibition by immunosuppressants. J. Neurosci. 19: 940–947, https://doi.org/10.1523/jneurosci.19-03-00940.1999.Suche in Google Scholar
Lee, S.Y. and Chung, W. (2021). The roles of astrocytic phagocytosis in maintaining homeostasis of brains. J. Pharmacol. Sci. 145: 223–227, https://doi.org/10.1016/j.jphs.2020.12.007.Suche in Google Scholar PubMed
Levy, N., Milikovsky, D.Z., Baranauskas, G., Vinogradov, E., David, Y., Ketzef, M., Abutbul, S., Weissberg, I., Kamintsky, L., Fleidervish, I.A., et al.. (2015). Differential TGF-Β signaling in glial subsets underlies IL-6–mediated epileptogenesis in mice. J. Immunol. 195: 1713–1722, https://doi.org/10.4049/jimmunol.1401446.Suche in Google Scholar PubMed
Li, J., Shui, X., Sun, R., Wan, L., Zhang, B., Xiao, B., and Luo, Z. (2021). Microglial phenotypic transition: signaling pathways and influencing modulators involved in regulation in central nervous system diseases. Front. Cell. Neurosci. 15: 736310, https://doi.org/10.3389/fncel.2021.736310.Suche in Google Scholar PubMed PubMed Central
Li, K., Li, J., Zheng, J., and Qin, S. (2019). Reactive astrocytes in neurodegenerative diseases. Aging Dis. 10: 664–675, https://doi.org/10.14336/ad.2018.0720.Suche in Google Scholar PubMed PubMed Central
Li, N., Sul, J.Y., and Haydon, P.G. (2003). A calcium-induced calcium influx factor, nitric oxide, modulates the refilling of calcium stores in astrocytes. J. Neurosci. 23: 10302–10310, https://doi.org/10.1523/jneurosci.23-32-10302.2003.Suche in Google Scholar
Li, S., Gu, X., and Yi, S. (2017). The regulatory effects of transforming growth factor-Β on nerve regeneration. Cell Transplant. 26: 381–394, https://doi.org/10.3727/096368916x693824.Suche in Google Scholar PubMed PubMed Central
Liddelow, S.A., Guttenplan, K.A., Clarke, L.E., Bennett, F.C., Bohlen, C.J., Schirmer, L., Bennett, M.L., Münch, A.E., Chung, W., Peterson, T.C., et al.. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541: 481–487, https://doi.org/10.1038/nature21029.Suche in Google Scholar PubMed PubMed Central
Lindholm, D., Ċastrén, E., Kiefer, R., Zafra, F., and Thoenen, H. (1992). Transforming growth factor-beta 1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. J. Cell Biol. 117: 395–400, https://doi.org/10.1083/jcb.117.2.395.Suche in Google Scholar PubMed PubMed Central
Lindhout, I.A., Murray, T.E., Richards, C.M., and Klegeris, A. (2021). Potential neurotoxic activity of diverse molecules released by microglia. Neurochem. Int. 148: 105117, https://doi.org/10.1016/j.neuint.2021.105117.Suche in Google Scholar PubMed
Liu, C., Cui, G., Zhu, M., Kang, X., and Guo, H. (2014a). Neuroinflammation in Alzheimer’s disease: chemokines produced by astrocytes and chemokine receptors. Int. J. Clin. Exp. Pathol. 7: 8342–8355.Suche in Google Scholar
Liu, X., Shah, A., Gangwani, M.R., Silverstein, P.S., Fu, M., and Kumar, A. (2014b). HIV-1 Nef induces CCL5 production in astrocytes through p38-MAPK and PI3K/AKT pathway and utilizes NF-KB, CEBP and AP-1 transcription factors. Sci. Rep. 4: 4450, https://doi.org/10.1038/srep04450.Suche in Google Scholar PubMed PubMed Central
Liu, G.J., Kalous, A., Werry, E.L., and Bennett, M.R. (2006). Purine release from spinal cord microglia after elevation of calcium by glutamate. Mol. Pharmacol. 70: 851–859, https://doi.org/10.1124/mol.105.021436.Suche in Google Scholar PubMed
Liu, J., Cao, S., Kim, S., Chung, E.Y., Homma, Y., Guan, X., Jimenez, V., and Ma, X. (2005). Interleukin-12: an update on its immunological activities, signaling and regulation of gene expression. Curr. Immunol. Rev. 1: 119–137, https://doi.org/10.2174/1573395054065115.Suche in Google Scholar PubMed PubMed Central
Luchena, C., Zuazo-Ibarra, J., Valero, J., Matute, C., Alberdi, E., and Capetillo‐Zarate, E. (2022). A neuron, microglia, and astrocyte triple co-culture model to study Alzheimer’s disease. Front. Aging Neurosci. 14: 844534, https://doi.org/10.3389/fnagi.2022.844534.Suche in Google Scholar PubMed PubMed Central
Luo, J. (2022). TGF-β as a key modulator of astrocyte reactivity: disease relevance and therapeutic implications. Biomedicines 10: 1206, https://doi.org/10.3390/biomedicines10051206.Suche in Google Scholar PubMed PubMed Central
Luo, Y., Berman, M.A., Zhai, Q., Fischer, F.R., Abromson-Leeman, S.R., Zhang, Y., Kuziel, W.A., Gerard, C., and Dorf, M.E. (2002). RANTES stimulates inflammatory cascades and receptor modulation in murine astrocytes. Glia 39: 19–30, https://doi.org/10.1002/glia.10079.Suche in Google Scholar PubMed
Madeira, C., Vargas-Lopes, C., Brandão, C.O., Reis, T., Laks, J., Panizzutti, R., and Ferreira, S.T. (2018). Elevated glutamate and glutamine levels in the cerebrospinal fluid of patients with probable Alzheimer’s disease and depression. Front. Psychiatry 9: 561, https://doi.org/10.3389/fpsyt.2018.00561.Suche in Google Scholar PubMed PubMed Central
Mahmoud, S., Gharagozloo, M., Simard, C., and Gris, D. (2019). Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells 8: 184, https://doi.org/10.3390/cells8020184.Suche in Google Scholar PubMed PubMed Central
Mäkelä, J., Koivuniemi, R., Korhonen, L., and Lindholm, D. (2010). Interferon-γ produced by microglia and the neuropeptide PACAP have opposite effects on the viability of neural progenitor cells. PLoS One 5: e11091, https://doi.org/10.1371/journal.pone.0011091.Suche in Google Scholar PubMed PubMed Central
Mastenbroek, L.J.M., Kooistra, S.M., Eggen, B.J.L., and Prins, J.R. (2024). The role of microglia in early neurodevelopment and the effects of maternal immune activation. Semin. Immunopathol. 46: 1, https://doi.org/10.1007/s00281-024-01017-6.Suche in Google Scholar PubMed PubMed Central
Matejuk, A. and Ransohoff, R.M. (2020). Crosstalk between astrocytes and microglia: an overview. Front. Immunol. 11: 1416, https://doi.org/10.3389/fimmu.2020.01416.Suche in Google Scholar PubMed PubMed Central
McKenna, M.C. (2007). The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J. Neurosci. Res. 85: 3347–3358, https://doi.org/10.1002/jnr.21444.Suche in Google Scholar PubMed
McTigue, D.M., Popovich, P.G., Morgan, T.E., and Stokes, B.T. (2000). Localization of transforming growth factor-β1 and receptor mRNA after experimental spinal cord injury. Exp. Neurol. 163: 220–230, https://doi.org/10.1006/exnr.2000.7372.Suche in Google Scholar PubMed
Michaelson, M.D., Mehler, M.F., Xu, H., Gross, R.E., and Kessler, J.A. (1996). Interleukin-7 is trophic for embryonic neurons and is expressed in developing brain. Dev. Biol. 179: 251–263, https://doi.org/10.1006/dbio.1996.0255.Suche in Google Scholar PubMed
Miller, K.E., Hoffman, E.M., Sutharshan, M., and Schechter, R. (2011). Glutamate pharmacology and metabolism in peripheral primary afferents: physiological and pathophysiological mechanisms. Pharmacol. Ther. 130: 283–309, https://doi.org/10.1016/j.pharmthera.2011.01.005.Suche in Google Scholar PubMed PubMed Central
Miller, M.W. and Luo, J. (2000). Effects of ethanol and basic fibroblast growth factor on the transforming growth factor beta1 regulated proliferation of cortical astrocytes and C6 astrocytoma cells. Alcohol Clin. Exp. Res. 26: 671–676, https://doi.org/10.1097/00000374-200205000-00011.Suche in Google Scholar
Minkiewicz, J., Vaccari, R., and Keane, R.W. (2013). Human astrocytes express a novel NLRP2 inflammasome. Glia 61: 1113–1121, https://doi.org/10.1002/glia.22499.Suche in Google Scholar PubMed
Miyoshi, K., Obata, K., Kondo, T., Okamura, H., and Noguchi, K. (2008). Interleukin-18-mediated microglia/astrocyte interaction in the spinal cord enhances neuropathic pain processing after nerve injury. J. Neurosci. 28: 12775–12787, https://doi.org/10.1523/jneurosci.3512-08.2008.Suche in Google Scholar PubMed PubMed Central
Mizuno, T., Sawada, M., Marunouchi, T., and Suzumura, A. (1994). Production of interleukin-10 by mouse glial cells in culture. Biochem. Biophys. Res. Commun. 205: 1907–1915, https://doi.org/10.1006/bbrc.1994.2893.Suche in Google Scholar PubMed
Mölders, A., Koch, A., Menke, R., and Klöcker, N. (2018). Heterogeneity of the astrocytic AMPA-receptor transcriptome. Glia 66: 2604–2616, https://doi.org/10.1002/glia.23514.Suche in Google Scholar PubMed
Montine, T.J., Sidell, K.R., Crews, B.C., Markesbery, W.R., Marnett, L.J., Roberts, L.J., and Morrow, J.D. (1999). Elevated CSF prostaglandin E2 levels in patients with probable AD. Neurology 53: 1495–1498, https://doi.org/10.1212/wnl.53.7.1495.Suche in Google Scholar PubMed
Morel, L., Chiang, M.S.R., Higashimori, H., Shoneye, T., Iyer, L.K., Yelick, J., Tai, A., and Yang, Y. (2017). Molecular and functional properties of regional astrocytes in the adult brain. J. Neurosci. 37: 8706–8717, https://doi.org/10.1523/jneurosci.3956-16.2017.Suche in Google Scholar
Moussa, N. and Dayoub, N. (2023). Exploring the role of COX-2 in Alzheimer’s disease: potential therapeutic implications of COX-2 inhibitors. Saudi Pharm. J. 31: 101729, https://doi.org/10.1016/j.jsps.2023.101729.Suche in Google Scholar PubMed PubMed Central
Muller, M.S. and Taylor, C.W. (2017). ATP evokes Ca2+ signals in cultured foetal human cortical astrocytes entirely through G protein-coupled P2Y receptors. J. Neurochem. 142: 876–885, https://doi.org/10.1111/jnc.14119.Suche in Google Scholar PubMed PubMed Central
Murana, E., Pagani, F., Basilico, B., Sundukova, M., Batti, L., Di Angelantonio, S., Cortese, B., Grimaldi, A., Francioso, A., Heppenstall, P., et al.. (2017). ATP release during cell swelling activates a Ca2+-dependent Cl- current by autocrine mechanism in mouse hippocampal microglia. Sci. Rep. 7: 4184.10.1038/s41598-017-04452-8Suche in Google Scholar PubMed PubMed Central
Murray, T.E., Richards, C.M., Robert-Gostlin, V.N., Bernath, A.K., Lindhout, I.A., and Klegeris, A. (2022). Potential neurotoxic activity of diverse molecules released by astrocytes. Brain Res. Bull. 189: 80–101, https://doi.org/10.1016/j.brainresbull.2022.08.015.Suche in Google Scholar PubMed
Nagano, T., Tsuda, N., Fujimura, K., Ikezawa, Y., Higashi, Y., and Kimura, S.H. (2021). Prostaglandin E2 increases the expression of cyclooxygenase-2 in cultured rat microglia. J. Neuroimmunol. 361: 577724, https://doi.org/10.1016/j.jneuroim.2021.577724.Suche in Google Scholar PubMed
Nash, B., Ioannidou, K., and Barnett, S.C. (2010). Astrocyte phenotypes and their relationship to myelination. J. Anat. 219: 44–52, https://doi.org/10.1111/j.1469-7580.2010.01330.x.Suche in Google Scholar PubMed PubMed Central
Neniskyte, U. and Gross, C. (2017). Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disorders. Nat. Rev. Neurosci. 18: 658–670, https://doi.org/10.1038/nrn.2017.110.Suche in Google Scholar PubMed
Niswender, C.M. and Conn, P.J. (2010). Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol. 50: 295–322, https://doi.org/10.1146/annurev.pharmtox.011008.145533.Suche in Google Scholar PubMed PubMed Central
Noguchi, Y., Shinozaki, Y., Fujishita, K., Shibata, K., Imura, Y., Morizawa, Y., Gachet, C., and Koizumi, S. (2013). Astrocytes protect neurons against methylmercury via ATP/P2Y1 receptor-mediated pathways in astrocytes. PLoS One 8: e57898, https://doi.org/10.1371/journal.pone.0057898.Suche in Google Scholar PubMed PubMed Central
Norden, D.M., Fenn, A.M., Dugan, A., and Godbout, J.P. (2014). TGFβ produced by IL-10 redirected astrocytes attenuates microglial activation. Glia 62: 881–895, https://doi.org/10.1002/glia.22647.Suche in Google Scholar PubMed PubMed Central
Ojala, J., Alafuzoff, I., Herukka, S., Van Groen, T., Tanila, H., and Pirttilä, T. (2009). Expression of interleukin-18 is increased in the brains of Alzheimer’s disease patients. Neurobiol. Aging 30: 198–209, https://doi.org/10.1016/j.neurobiolaging.2007.06.006.Suche in Google Scholar PubMed
Oppermann, M. (2004). Chemokine receptor CCR5: insights into structure, function, and regulation. Cell. Signal. 16: 1201–1210, https://doi.org/10.1016/j.cellsig.2004.04.007.Suche in Google Scholar PubMed
Orlando, A., Manuel, V., Belem, T., Howe, A.G., Patricia, D., Miquelajáuregui Graf, A., María, A., and Estrada-Sánchez, A.M. (2023). Revealing the contribution of astrocytes to glutamatergic neuronal transmission. Front. Cell. Neurosci. 16: 1037641, https://doi.org/10.3389/fncel.2022.1037641.Suche in Google Scholar PubMed PubMed Central
Panagiotakopoulou, V., Ivanyuk, D., De Cicco, S., Haq, W., Arsić, A., Yu, C., Messelodi, D., Oldrati, M., Schöndorf, D.C., Perez, M., et al.. (2020). Interferon-γ signaling synergizes with LRRK2 in neurons and microglia derived from human induced pluripotent stem cells. Nat. Commun. 11: 5163, https://doi.org/10.1038/s41467-020-18755-4.Suche in Google Scholar PubMed PubMed Central
Paolicelli, R.C., Sierra, A., Stevens, B., Tremblay, M., Aguzzi, A., Ajami, B., Amit, I., Audinat, E., Bechmann, I., Bennett, M.L., et al.. (2022). Microglia states and nomenclature: a field at its crossroads. Neuron 110: 3458–3483, https://doi.org/10.1016/j.neuron.2022.10.020.Suche in Google Scholar PubMed PubMed Central
Park, J.Y., Pillinger, M.H., and Abramson, S.B. (2006). Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clin. Immunol. 119: 229–240, https://doi.org/10.1016/j.clim.2006.01.016.Suche in Google Scholar PubMed
Park, K.W., Lee, H.G., Jin, B.K., and Lee, Y.B. (2007). Interleukin-10 endogenously expressed in microglia prevents lipopolysaccharide-induced neurodegeneration in the rat cerebral cortex in vivo. Exp. Mol. Med. 39: 812–819, https://doi.org/10.1038/emm.2007.88.Suche in Google Scholar PubMed
Pascual, O., Ben Achour, S., Rostaing, P., Triller, A., and Bessis, A. (2012). Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc. Natl. Acad. Sci. U. S. A. 109: E197–E205, https://doi.org/10.1073/pnas.1111098109.Suche in Google Scholar PubMed PubMed Central
Pellerin, L. and Magistretti, P.J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci. U. S. A. 91: 10625–10629, https://doi.org/10.1073/pnas.91.22.10625.Suche in Google Scholar PubMed PubMed Central
Perlmutter, L.S., Scott, S.A., Barrón, E., and Chui, H.C. (1992). MHC class II-positive microglia in human brain: association with Alzheimer lesions. J. Neurosci. Res. 33: 549–558, https://doi.org/10.1002/jnr.490330407.Suche in Google Scholar PubMed
Pittaluga, A. (2017). CCL5–glutamate cross-talk in astrocyte-neuron communication in multiple sclerosis. Front. Immunol. 8: 1079, https://doi.org/10.3389/fimmu.2017.01079.Suche in Google Scholar PubMed PubMed Central
Planas-Fontánez, T.M., Dreyfus, C.F., and Saitta, K.S. (2020). Reactive astrocytes as therapeutic targets for brain degenerative diseases: roles played by metabotropic glutamate receptors. Neurochem. Res. 45: 541–550, https://doi.org/10.1007/s11064-020-02968-6.Suche in Google Scholar PubMed PubMed Central
Porro, C., Cianciulli, A., and Panaro, M.A. (2020). The regulatory role of IL-10 in neurodegenerative diseases. Biomolecules 10: 1017, https://doi.org/10.3390/biom10071017.Suche in Google Scholar PubMed PubMed Central
Prehn, J.H. and Miller, R.J. (1996). Opposite effects of TGF-β1 on rapidly- and slowly-triggered excitotoxic injury. Neuropharmacology 35: 249–256, https://doi.org/10.1016/0028-3908(96)00001-9.Suche in Google Scholar PubMed
Rampe, D., Wang, L., and Ringheim, G.E. (2004). P2X7 receptor modulation of β-amyloid- and LPS-induced cytokine secretion from human macrophages and microglia. J. Neuroimmunol. 147: 56–61, https://doi.org/10.1016/j.jneuroim.2003.10.014.Suche in Google Scholar PubMed
Rasley, A., Marriott, I., Halberstadt, C.R., Bost, K.L., and Anguita, J. (2004). Substance P augments Borrelia burgdorferi-induced prostaglandin E2 production by murine microglia. J. Immunol. 172: 5707–5713, https://doi.org/10.4049/jimmunol.172.9.5707.Suche in Google Scholar PubMed
Rasley, A., Tranguch, S.L., Rati, D.M., and Marriott, I. (2006). Murine glia express the immunosuppressive cytokine, interleukin-10, following exposure to Borrelia burgdorferi or Neisseria meningitidis. Glia 53: 583–592, https://doi.org/10.1002/glia.20314.Suche in Google Scholar PubMed
Rezaie, P., Trillo‐Pazos, G., Everall, I.P., and Male, D.K. (2001). Expression of β‐chemokines and chemokine receptors in human fetal astrocyte and microglial co‐cultures: potential role of chemokines in the developing CNS. Glia 37: 64–75, https://doi.org/10.1002/glia.1128.Suche in Google Scholar PubMed
Ricciotti, E. and FitzGerald, G.A. (2011). Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 31: 986–1000, https://doi.org/10.1161/atvbaha.110.207449.Suche in Google Scholar
Rich, J., Zhang, M., Datto, M.B., Bigner, D.D., and Wang, X.F. (1999). Transforming growth factor-Β-mediated p15(INK4B) induction and growth inhibition in astrocytes is SMAD3-dependent and a pathway prominently altered in human glioma cell lines. J. Biol. Chem. 274: 35053–35058, https://doi.org/10.1074/jbc.274.49.35053.Suche in Google Scholar PubMed
Rivera, A., Vanzulli, I., and Butt, A.M. (2016). A central role for ATP signalling in glial interactions in the CNS. Curr. Drug Targets 17: 1829–1833, https://doi.org/10.2174/1389450117666160711154529.Suche in Google Scholar PubMed
Rodrigues, R.J., Tomé, A.R., and Cunha, R.A. (2015). ATP as a multi-target danger signal in the brain. Front. Neurosci. 9: 148, https://doi.org/10.3389/fnins.2015.00148.Suche in Google Scholar PubMed PubMed Central
Rose, C.R., Felix, L., Zeug, A., Dietrich, D., Reiner, A., and Henneberger, C. (2017). Astroglial glutamate signaling and uptake in the hippocampus. Front. Mol. Neurosci. 10: 451, https://doi.org/10.3389/fnmol.2017.00451.Suche in Google Scholar PubMed PubMed Central
Rostène, W., Kitabgi, P., and Parsadaniantz, S.M. (2007). Chemokines: a new class of neuromodulator? Nat. Rev. Neurosci. 8: 895–903, https://doi.org/10.1038/nrn2255.Suche in Google Scholar PubMed
Rottman, J.B., Ganley, K.P., Williams, K., Wu, L., Mackay, C.R., and Ringler, D.J. (1997). Cellular localization of the chemokine receptor CCR5: correlation to cellular targets of HIV-1 infection. Am. J. Pathol. 151: 1341–1351.Suche in Google Scholar
Roy, A., Mondal, S., Kordower, J.H., and Pahan, K. (2015). Attenuation of microglial CCL5 by NEMO-binding domain peptide inhibits the infiltration of CD8+ T cells in the nigra of hemiparkinsonian monkey. Neuroscience 302: 36–46, https://doi.org/10.1016/j.neuroscience.2015.03.011.Suche in Google Scholar PubMed PubMed Central
Schafer, D.P., Lehrman, E.K., Kautzman, A.G., Koyama, R., Mardinly, A.R., Yamasaki, R., Ransohoff, R.M., Greenberg, M.E., Barres, B.A., and Stevens, B. (2012). Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74: 691–705, https://doi.org/10.1016/j.neuron.2012.03.026.Suche in Google Scholar PubMed PubMed Central
Schmidt, S.I., Bogetofte, H., Ritter, L., Agergaard, J.B., Hammerich, D., Kabiljagic, A.A., Włodarczyk, A., López, S.G., Sørensen, M.D., Jørgensen, M.L., et al.. (2021). Microglia-secreted factors enhance dopaminergic differentiation of tissue- and IPSC-derived human neural stem cells. Stem Cell Rep. 16: 281–294, https://doi.org/10.1016/j.stemcr.2020.12.011.Suche in Google Scholar PubMed PubMed Central
Shanaki-Bavarsad, M., Almolda, B., González, B., and Castellano, B. (2022). Astrocyte-targeted overproduction of IL-10 reduces neurodegeneration after TBI. Exp. Neurobiol. 31: 173–195, https://doi.org/10.5607/en21035.Suche in Google Scholar PubMed PubMed Central
Sheng, W.S., Hu, S., Kravitz, F.H., Peterson, P.K., and Chao, C.C. (1995). Tumor necrosis factor alpha upregulates human microglial cell production of interleukin-10 in vitro. Clin. Diagn. Lab. Immunol. 2: 604–608, https://doi.org/10.1128/cdli.2.5.604-608.1995.Suche in Google Scholar PubMed PubMed Central
Shi, S., Liang, D., Chen, Y., Xie, Y., Wang, Y., Wang, L., Wang, Z., and Qiao, Z. (2016). Gx-50 reduces β-amyloid-induced TNF-α, IL-1β, NO, and PGE2 expression and inhibits NF-κB signaling in a mouse model of Alzheimer’s disease. Eur. J. Immunol. 46: 665–676, https://doi.org/10.1002/eji.201545855.Suche in Google Scholar PubMed
Shinozaki, Y., Nomura, M., Iwatsuki, K., Moriyama, Y., Gachet, C., and Koizumi, S. (2013). Microglia trigger astrocyte-mediated neuroprotection via purinergic gliotransmission. Sci. Rep. 4: 4329, https://doi.org/10.1038/srep04329.Suche in Google Scholar PubMed PubMed Central
Šimončičová, E., Gonçalves de Andrade, E., Vecchiarelli, H.A., Awogbindin, I.O., Delage, C., and Tremblay, M. (2022). Present and future of microglial pharmacology. Trends Pharmacol. Sci. 43: 669–685, https://doi.org/10.1016/j.tips.2021.11.006.Suche in Google Scholar PubMed
Skowronska, K., Obara-Michlewska, M., Zielinska, M., and Albrecht, J. (2019). NMDA receptors in astrocytes: in search for roles in neurotransmission and astrocytic homeostasis. Int. J. Mol. Sci. 20: 309.10.3390/ijms20020309Suche in Google Scholar PubMed PubMed Central
Smith, B.C., Sinyuk, M., Jenkins, J.E., Psenicka, M.W., and Williams, J.L. (2020). The impact of regional astrocyte interferon-γ signaling during chronic autoimmunity: a novel role for the immunoproteasome. J. Neuroinflammation 17: 184, https://doi.org/10.1186/s12974-020-01861-x.Suche in Google Scholar PubMed PubMed Central
Smith, J.A., Das, A., Ray, S.K., and Banik, N.L. (2012). Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res. Bull. 87: 10–20, https://doi.org/10.1016/j.brainresbull.2011.10.004.Suche in Google Scholar PubMed PubMed Central
Sørensen, C.E. and Novak, I. (2001). Visualization of ATP release in pancreatic acini in response to cholinergic stimulus: use of fluorescent probes and confocal microscopy. J. Biol. Chem. 276: 32925–32932, https://doi.org/10.1074/jbc.m103313200.Suche in Google Scholar
Spielman, L.J., Bahniwal, M., Little, J.P., Walker, D.G., and Klegeris, A. (2015). Insulin modulates in vitro secretion of cytokines and cytotoxins by human glial cells. Curr. Alzheimer Res. 12: 684–693, https://doi.org/10.2174/1567205012666150710104428.Suche in Google Scholar PubMed
Stanbrough, M., Rowen, D.W., and Magasanik, B. (1995). Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. Proc. Natl. Acad. Sci. U. S. A. 92: 9450–9454, https://doi.org/10.1073/pnas.92.21.9450.Suche in Google Scholar PubMed PubMed Central
Stock, J.L., Shinjo, K., Burkhardt, J., Roach, M., Taniguchi, K., Ishikawa, T., Kim, S., Flannery, P.J., Coffman, T.M., McNeish, J.D., et al.. (2001). The prostaglandin E2 EP1 receptor mediates pain perception and regulates blood pressure. J. Clin. Invest. 107: 325–331, https://doi.org/10.1172/jci6749.Suche in Google Scholar
Strle, K., Zhou, J.H., Shen, W.H., Broussard, S.R., Johnson, R.W., Freund, G.G., Dantzer, R., and Kelley, K.W. (2001). Interleukin-10 in the brain. Crit. Rev. Immunol. 21: 427–449.10.1615/CritRevImmunol.v21.i5.20Suche in Google Scholar
Sugimoto, Y., Inazumi, T., and Tsuchiya, S. (2015). Roles of prostaglandin receptors in female reproduction. J. Biochem. 157: 73–80, https://doi.org/10.1093/jb/mvu081.Suche in Google Scholar PubMed
Suk, K., Kim, S.Y., and Kim, H. (2001). Regulation of IL-18 production by IFNγ and PGE2 in mouse microglial cells: involvement of NF-kB pathway in the regulatory processes. Immunol. Lett. 77: 79–85, https://doi.org/10.1016/s0165-2478(01)00209-7.Suche in Google Scholar PubMed
Sun, M., You, H., Hu, X., Luo, Y., Zhang, Z., Song, Y., An, J., and Lu, H. (2023). Microglia-astrocyte interaction in neural development and neural pathogenesis. Cells 12: 1942, https://doi.org/10.3390/cells12151942.Suche in Google Scholar PubMed PubMed Central
Suzumura, A., Sawada, M., and Takayanagi, T. (1998). Production of interleukin-12 and expression of its receptors by murine microglia. Brain Res. 787: 139–142, https://doi.org/10.1016/s0006-8993(97)01166-9.Suche in Google Scholar PubMed
Sznejder-Pachołek, A., Joniec-Maciejak, I., Wawer, A., Ciesielska, A., and Mirowska‐Guzel, D. (2017). The effect of α-synuclein on gliosis and IL-1α, TNFα, IFNγ, TGFβ expression in murine brain. Pharmacol. Rep. 69: 242–251, https://doi.org/10.1016/j.pharep.2016.11.003.Suche in Google Scholar PubMed
Ta, T., Dikmen, H., Schilling, S., Chausse, B., Lewen, A., Hollnagel, J., and Kann, O. (2019). Priming of microglia with IFN-γ slows neuronal gamma oscillations in situ. Proc. Natl. Acad. Sci. U. S. A. 116: 4637–4642, https://doi.org/10.1073/pnas.1813562116.Suche in Google Scholar PubMed PubMed Central
Takaki, J., Fujimori, K., Miura, M., Suzuki, T., Sekino, Y., and Sato, K. (2012). L-glutamate released from activated microglia downregulates astrocytic L-glutamate transporter expression in neuroinflammation: the “collusion” hypothesis for increased extracellular L-glutamate concentration in neuroinflammation. J. Neuroinflammation 9: 275, https://doi.org/10.1186/1742-2094-9-275.Suche in Google Scholar PubMed PubMed Central
Takeuchi, H., Jin, S., Wang, J., Zhang, G., Kawanokuchi, J., Kuno, R., Sonobe, Y., Mizuno, T., and Suzumura, A. (2006). Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J. Biol. Chem. 281: 21362–21368, https://doi.org/10.1074/jbc.m600504200.Suche in Google Scholar PubMed
Takeuchi, H. and Suzumura, A. (2014). Gap junctions and hemichannels composed of connexins: potential therapeutic targets for neurodegenerative diseases. Front. Cell. Neurosci. 8: 189, https://doi.org/10.3389/fncel.2014.00189.Suche in Google Scholar PubMed PubMed Central
Tan, J.J., Boudreault, F., Adam, D., Brochiero, E., and Grygorczyk, R. (2019). Type 2 secretory cells are primary source of ATP release in mechanically stretched lung alveolar cells. Am. J. Physiol. Lung Cell Mol. Physiol. 318: L49–L58, https://doi.org/10.1152/ajplung.00321.2019.Suche in Google Scholar PubMed
Taoufik, Y., de Goër de Herve, M.G., Giron-Michel, J., Durali, D., Cazes, E., Tardieu, M., Azzarone, B., and Delfraissy, J.F. (2001). Human microglial cells express a functional IL-12 receptor and produce IL-12 following IL-12 stimulation. Eur. J. Immunol. 31: 3228–3239, https://doi.org/10.1002/1521-4141(200111)31:11<3228::aid-immu3228>3.0.co;2-7.10.1002/1521-4141(200111)31:11<3228::AID-IMMU3228>3.0.CO;2-7Suche in Google Scholar
Tau, G. and Rothman, P. (1999). Biologic functions of the IFN-gamma receptors. Allergy 54: 1233–1251, https://doi.org/10.1034/j.1398-9995.1999.00099.x.Suche in Google Scholar
Tichauer, J.E., Arellano, G., Acuña, E.F., González, L., Kannaiyan, N., Murgas, P., Panadero-Medianero, C., Ibañez-Vega, J., Burgos, P.I., Loda, E., et al.. (2023). Interferon-gamma ameliorates experimental autoimmune encephalomyelitis by inducing homeostatic adaptation of microglia. Front. Immunol. 14: 1191838, https://doi.org/10.3389/fimmu.2023.1191838.Suche in Google Scholar
Tripathy, D., Thirumangalakudi, L., and Grammas, P. (2010). CCL5 upregulation in the Alzheimer’s disease brain: a possible neuroprotective role. Neurobiol. Aging 31: 8–16, https://doi.org/10.1016/j.neurobiolaging.2008.03.009.Suche in Google Scholar
Tse, K.H., Chow, K.B.S., and Wise, H. (2016). PGE2 released by primary sensory neurons modulates toll-like receptor 4 activities through an EP4 receptor-dependent process. J. Neuroimmunol. 293: 8–16, https://doi.org/10.1016/j.jneuroim.2016.02.005.Suche in Google Scholar PubMed
Tsilioni, I. and Theoharides, T.C. (2023). Recombinant SARS-COV-2 spike protein and its receptor binding domain stimulate release of different pro-inflammatory mediators via activation of distinct receptors on human microglia cells. Mol. Neurobiol. 60: 6704–6714, https://doi.org/10.1007/s12035-023-03493-7.Suche in Google Scholar PubMed
Valerio, A., Ferrario, M., Martinez, F.O., Locati, M., Ghisi, V., Bresciani, L.G., Mantovani, A., and Spano, P. (2004). Gene expression profile activated by the chemokine CCL5/RANTES in human neuronal cells. J. Neurosci. Res. 78: 371–382, https://doi.org/10.1002/jnr.20250.Suche in Google Scholar PubMed
Vandenberg, R.J. and Ryan, R.M. (2013). Mechanisms of glutamate transport. Physiol. Rev. 93: 1621–1657, https://doi.org/10.1152/physrev.00007.2013.Suche in Google Scholar PubMed
Vargas, J.R., Takahashi, D.K., Thomson, K.E., and Wilcox, K.S. (2013). The expression of kainate receptor subunits in hippocampal astrocytes following experimentally induced status epilepticus. J. Neuropathol. Exp. Neurol. 72: 919–932, https://doi.org/10.1097/nen.0b013e3182a4b266.Suche in Google Scholar
Verderio, C. and Matteoli, M. (2001). ATP mediates calcium signaling between astrocytes and microglial cells: modulation by IFN-γ. J. Immunol. 166: 6383–6391, https://doi.org/10.4049/jimmunol.166.10.6383.Suche in Google Scholar PubMed
Vignali, D.A. and Kuchroo, V.K. (2012). IL-12 family cytokines: immunological playmakers. Nat. Immunol. 13: 722–728, https://doi.org/10.1038/ni.2366.Suche in Google Scholar PubMed PubMed Central
von Kügelgen, I. and Hoffmann, K. (2016). Pharmacology and structure of P2Y receptors. Neuropharmacology 104: 50–61, https://doi.org/10.1016/j.neuropharm.2015.10.030.Suche in Google Scholar PubMed
Walter, M.R. (2014). The molecular basis of IL-10 function: from receptor structure to the onset of signaling. Curr. Top. Microbiol. Immunol. 380: 191–212, https://doi.org/10.1007/978-3-662-43492-5_9.Suche in Google Scholar PubMed PubMed Central
Wang, J., Liu, M., Zhang, X., Yang, G., and Chen, L. (2018). Physiological and pathophysiological implications of PGE2 and the PGE2 synthases in the kidney. Prostag. Other Lipid Mediat. 134: 1–6, https://doi.org/10.1016/j.prostaglandins.2017.10.006.Suche in Google Scholar PubMed
Wang, T., Qin, L., Liu, B., Liu, Y., Wilson, B., Eling, T.E., Langenbach, R., Taniura, S., and Hong, J.-S. (2004). Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J. Neurochem. 88: 939–947, https://doi.org/10.1046/j.1471-4159.2003.02242.x.Suche in Google Scholar PubMed
Wang, W.Y., Tan, M.S., Yu, J.T., and Tan, L. (2015). Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med. 3: 136, https://doi.org/10.3978/j.issn.2305-5839.2015.03.49.Suche in Google Scholar PubMed PubMed Central
Wang, X. and Suzuki, Y. (2007). Microglia produce IFN-γ independently from T cells during acute toxoplasmosis in the brain. J. Interferon Cytokine Res. 27: 599–605, https://doi.org/10.1089/jir.2006.0157.Suche in Google Scholar PubMed
Wei, Y. and Li, X. (2022). Different phenotypes of microglia in animal models of Alzheimer disease. Immun. Ageing 19: 44, https://doi.org/10.1186/s12979-022-00300-0.Suche in Google Scholar PubMed PubMed Central
Wendimu, M. and Hooks, S.B. (2022). Microglia phenotypes in aging and neurodegenerative diseases. Cells 11: 2091, https://doi.org/10.3390/cells11132091.Suche in Google Scholar PubMed PubMed Central
Werry, E.L., Liu, G.J., Lovelace, M.D., Nagarajah, R., Hickie, I.B., and Bennett, M.R. (2011). Lipopolysaccharide-stimulated interleukin-10 release from neonatal spinal cord microglia is potentiated by glutamate. Neuroscience 175: 93–103, https://doi.org/10.1016/j.neuroscience.2010.10.080.Suche in Google Scholar PubMed
Westmoreland, S.V., Halpern, E., and Lackner, A.A. (1998). Simian immunodeficiency virus encephalitis in rhesus macaques is associated with rapid disease progression. J. Neurovirol. 4: 260–268, https://doi.org/10.3109/13550289809114527.Suche in Google Scholar PubMed
Williams, K., Dooley, N., Ulvestad, E., Becher, B., and Antel, J.P. (1996). IL-10 production by adult human derived microglial cells. Neurochem. Int. 29: 55–64, https://doi.org/10.1016/0197-0186(95)00138-7.Suche in Google Scholar PubMed
Wilson, J.X., Peters, C.E., Sitar, S.M., Daoust, P., and Gelb, A.W. (2000). Glutamate stimulates ascorbate transport by astrocytes. Brain Res. 858: 61–66, https://doi.org/10.1016/s0006-8993(99)02433-6.Suche in Google Scholar PubMed
Woo, J.J., Han, D., Wang, J.I., Park, J., Kim, H., and Kim, Y. (2017). Quantitative proteomics reveals temporal proteomic changes in signaling pathways during BV2 mouse microglial cell activation. J. Proteome Res. 16: 3419–3432, https://doi.org/10.1021/acs.jproteome.7b00445.Suche in Google Scholar PubMed
Xie, L., Yin, Y., and Benowitz, L. (2021). Chemokine CCL5 promotes robust optic nerve regeneration and mediates many of the effects of CNTF gene therapy. Proc. Natl. Acad. Sci. U. S. A. 118: e2017282118, https://doi.org/10.1073/pnas.2017282118.Suche in Google Scholar PubMed PubMed Central
Yamanishi, K., Doe, N., Mukai, K., Hashimoto, T., Gamachi, N., Hara, M., Watanabe, Y., Yamanishi, C., Yagi, H., Okamura, H., et al.. (2022). Acute stress induces severe neural inflammation and overactivation of glucocorticoid signaling in interleukin-18-deficient mice. Transl. Psychiatry 12: 404, https://doi.org/10.1038/s41398-022-02175-7.Suche in Google Scholar PubMed PubMed Central
Yang, S., Simtchouk, S., Gibon, J., and Klegeris, A. (2023). Regulation of the phagocytic activity of astrocytes by neuroimmune mediators endogenous to the central nervous system. PLoS One 18: e0289169, https://doi.org/10.1371/journal.pone.0289169.Suche in Google Scholar PubMed PubMed Central
Yoo, H.-J. and Kwon, M.-S. (2022). Aged microglia in neurodegenerative diseases: microglia lifespan and culture methods. Front. Aging Neurosci. 13: 766267, https://doi.org/10.3389/fnagi.2021.766267.Suche in Google Scholar PubMed PubMed Central
Zhang, D., Hu, X., Qian, L., Wilson, B., Lee, C., Flood, P., Langenbach, R., and Hong, J. (2009). Prostaglandin E2 released from activated microglia enhances astrocyte proliferation in vitro. Toxicol. Appl. Pharmacol. 238: 64–70, https://doi.org/10.1016/j.taap.2009.04.015.Suche in Google Scholar PubMed PubMed Central
Zhang, H.-Y., Wang, Y., He, Y., Wang, T., Huang, X.-H., Zhao, C.-M., Zhang, L., Li, S.-W., Wang, C., Qu, Y.-N., et al.. (2020). A1 astrocytes contribute to murine depression-like behavior and cognitive dysfunction, which can be alleviated by IL-10 or fluorocitrate treatment. J. Neuroinflammation 17: 200, https://doi.org/10.1186/s12974-020-01871-9.Suche in Google Scholar PubMed PubMed Central
Zhang, Y., Sloan, S.A., Clarke, L.E., Caneda, C., Plaza, C.A., Blumenthal, P.D., Vogel, H., Steinberg, G.K., Edwards, M.S., Li, G., et al.. (2016). Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89: 37–53, https://doi.org/10.1016/j.neuron.2015.11.013.Suche in Google Scholar PubMed PubMed Central
Zhou, J., Geng, Y., Su, T., Wang, Q., Ren, Y., Zhao, J., Fu, C., Weber, M., Lin, H., Kaminker, J.S., et al.. (2022). NMDA receptor-dependent prostaglandin-endoperoxide synthase 2 induction in neurons promotes glial proliferation during brain development and injury. Cell Rep. 38: 110557, https://doi.org/10.1016/j.celrep.2022.110557.Suche in Google Scholar PubMed
Zhou, X., Spittau, B., and Krieglstein, K. (2012). TGFβ signalling plays an important role in IL4-induced alternative activation of microglia. J. Neuroinflammation 9: 210, https://doi.org/10.1186/1742-2094-9-210.Suche in Google Scholar PubMed PubMed Central
Zhou, Y. and Danbolt, N.C. (2014). Glutamate as a neurotransmitter in the healthy brain. J. Neural. Transm. 121: 799–817, https://doi.org/10.1007/s00702-014-1180-8.Suche in Google Scholar PubMed PubMed Central
Zonta, M., Angulo, M.C., Gobbo, S., Rosengarten, B., Hossmann, K., Pozzan, T., and Carmignoto, G. (2003). Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6: 43–50, https://doi.org/10.1038/nn980.Suche in Google Scholar PubMed
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- A review of the application of exercise intervention on improving cognition in patients with Alzheimer’s disease: mechanisms and clinical studies
- The neurobiological mechanisms underlying the effects of exercise interventions in autistic individuals
- Unraveling mitochondrial dysfunction: comprehensive perspectives on its impact on neurodegenerative diseases
- Exploring neuroglial signaling: diversity of molecules implicated in microglia-to-astrocyte neuroimmune communication
Artikel in diesem Heft
- Frontmatter
- A review of the application of exercise intervention on improving cognition in patients with Alzheimer’s disease: mechanisms and clinical studies
- The neurobiological mechanisms underlying the effects of exercise interventions in autistic individuals
- Unraveling mitochondrial dysfunction: comprehensive perspectives on its impact on neurodegenerative diseases
- Exploring neuroglial signaling: diversity of molecules implicated in microglia-to-astrocyte neuroimmune communication