Startseite The neurobiological mechanisms underlying the effects of exercise interventions in autistic individuals
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The neurobiological mechanisms underlying the effects of exercise interventions in autistic individuals

  • Genghong Tu ORCID logo , Nan Jiang , Weizhong Chen , Lining Liu , Min Hu und Bagen Liao EMAIL logo
Veröffentlicht/Copyright: 31. Juli 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Autism spectrum disorder is a pervasive and heterogeneous neurodevelopmental condition characterized by social communication difficulties and rigid, repetitive behaviors. Owing to the complex pathogenesis of autism, effective drugs for treating its core features are lacking. Nonpharmacological approaches, including education, social-communication, behavioral and psychological methods, and exercise interventions, play important roles in supporting the needs of autistic individuals. The advantages of exercise intervention, such as its low cost, easy implementation, and high acceptance, have garnered increasing attention. Exercise interventions can effectively improve the core features and co-occurring conditions of autism, but the underlying neurobiological mechanisms are unclear. Abnormal changes in the gut microbiome, neuroinflammation, neurogenesis, and synaptic plasticity may individually or interactively be responsible for atypical brain structure and connectivity, leading to specific autistic experiences and characteristics. Interestingly, exercise can affect these biological processes and reshape brain network connections, which may explain how exercise alleviates core features and co-occurring conditions in autistic individuals. In this review, we describe the definition, diagnostic approach, epidemiology, and current support strategies for autism; highlight the benefits of exercise interventions; and call for individualized programs for different subtypes of autistic individuals. Finally, the possible neurobiological mechanisms by which exercise improves autistic features are comprehensively summarized to inform the development of optimal exercise interventions and specific targets to meet the needs of autistic individuals.


Corresponding author: Bagen Liao, Department of Sports Medicine, 47878 Guangzhou Sport University , Guangzhou, Guangdong 510500, P.R. China; and Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, 47878 Guangzhou Sport University , 1268 Guangzhou Avenue Middle, Guangzhou, Guangdong 510500, P.R. China, E-mail:

Funding source: Municipal Basic Research Program Basic and Applied Basic Research Projects of Guangzhou City

Award Identifier / Grant number: 2023A04J0151

Award Identifier / Grant number: 32000837

Funding source: Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion

Award Identifier / Grant number: 2021B1212040014

Funding source: Projects of Guangdong Provincial Department of Education

Award Identifier / Grant number: 2022WCXTD017

Award Identifier / Grant number: 2022ZDJS004

  1. Research ethics: Not applicable.

  2. Author contributions: T.G., J.N., C.W., and L.L. collected the literature and drafted the work. L.B. and H.M. revised the manuscript. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work was supported by the National Natural Science Foundation of China (grant number 32000837), Municipal Basic Research Program Basic and Applied Basic Research Projects of Guangzhou City (grant number 2023A04J0151), Projects of Guangdong Provincial Department of Education (grant numbers 2022WCXTD017, 2022ZDJS004), and the Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion (grant number 2021B1212040014).

  5. Data availability: Not applicable.

References

Accogli, A., Addour-Boudrahem, N., and Srour, M. (2020). Neurogenesis, neuronal migration, and axon guidance. Handb. Clin. Neurol. 173: 25–42, https://doi.org/10.1016/b978-0-444-64150-2.00004-6.Suche in Google Scholar

Ahmed, H., Leyrolle, Q., Koistinen, V., Kärkkäinen, O., Layé, S., Delzenne, N., and Hanhineva, K. (2022). Microbiota-derived metabolites as drivers of gut–brain communication. Gut Microbes 14, https://doi.org/10.1080/19490976.2022.2102878.Suche in Google Scholar PubMed PubMed Central

Amar, M., Pramod, A.B., Yu, N.K., Herrera, V.M., Qiu, L.R., Moran-Losada, P., Zhang, P., Trujillo, C.A., Ellegood, J., Urresti, J., et al.. (2021). Autism-linked Cullin3 germline haploinsufficiency impacts cytoskeletal dynamics and cortical neurogenesis through RhoA signaling. Mol. Psychiatry 26: 3586–3613, https://doi.org/10.1038/s41380-021-01052-x.Suche in Google Scholar PubMed PubMed Central

Amatriain-Fernandez, S., Budde, H., Gronwald, T., Quiroga, C., Carreon, C., Viana-Torre, G., Yamamoto, T., Imperatori, C., Machado, S., and Murillo-Rodriguez, E. (2021). The endocannabinoid system as modulator of exercise benefits in mental health. Curr. Neuropharmacol. 19: 1304–1322, https://doi.org/10.2174/1570159x19666201218112748.Suche in Google Scholar PubMed PubMed Central

Anderson-Hanley, C., Tureck, K., and Schneiderman, R.L. (2011). Autism and exergaming: effects on repetitive behaviors and cognition. Psychol. Res. Behav. Manag. 4: 129–137, https://doi.org/10.2147/prbm.s24016.Suche in Google Scholar

Andoh, M., Shibata, K., Okamoto, K., Onodera, J., Morishita, K., Miura, Y., Ikegaya, Y., and Koyama, R. (2019). Exercise reverses behavioral and synaptic abnormalities after maternal inflammation. Cell. Rep. 27: 2817–2825.e2815, https://doi.org/10.1016/j.celrep.2019.05.015.Suche in Google Scholar PubMed

Ansari, S., Hosseinkhanzadeh, A.A., AdibSaber, F., Shojaei, M., and Daneshfar, A. (2021). The effects of aquatic versus kata techniques training on static and dynamic balance in children with autism spectrum disorder. J. Autism Dev. Disord. 51: 3180–3186, https://doi.org/10.1007/s10803-020-04785-w.Suche in Google Scholar PubMed

Apps, M.A.J., Rushworth, M.F.S., and Chang, S.W.C. (2016). The anterior cingulate gyrus and social cognition: tracking the motivation of others. Neuron 90: 692–707, https://doi.org/10.1016/j.neuron.2016.04.018.Suche in Google Scholar PubMed PubMed Central

Aran, A., Harel, M., Cassuto, H., Polyansky, L., Schnapp, A., Wattad, N., Shmueli, D., Golan, D., and Castellanos, F.X. (2021). Cannabinoid treatment for autism: a proof-of-concept randomized trial. Mol. Autism 12, https://doi.org/10.1186/s13229-021-00420-2.Suche in Google Scholar PubMed PubMed Central

Arteaga-Henríquez, G., Gisbert, L., and Ramos-Quiroga, J.A. (2023). Immunoregulatory and/or Anti-inflammatory agents for the management of core and associated symptoms in individuals with autism spectrum disorder: a narrative review of randomized, placebo-controlled trials. CNS Drugs 37: 215–229, https://doi.org/10.1007/s40263-023-00993-x.Suche in Google Scholar PubMed PubMed Central

Bahrami, F., Movahedi, A., Marandi, S.M., and Abedi, A. (2012). Kata techniques training consistently decreases stereotypy in children with autism spectrum disorder. Res. Dev. Disabil. 33: 1183–1193, https://doi.org/10.1016/j.ridd.2012.01.018.Suche in Google Scholar PubMed

Ball, J.B., Green-Fulgham, S.M., and Watkins, L.R. (2022). Mechanisms of microglia-mediated synapse turnover and synaptogenesis. Prog. Neurobiol. 218: 102336, https://doi.org/10.1016/j.pneurobio.2022.102336.Suche in Google Scholar PubMed

Balsters, J.H., Mantini, D., Apps, M.A.J., Eickhoff, S.B., and Wenderoth, N. (2016). Connectivity-based parcellation increases network detection sensitivity in resting state fMRI: an investigation into the cingulate cortex in autism. NeuroImage: Clinical 11: 494–507, https://doi.org/10.1016/j.nicl.2016.03.016.Suche in Google Scholar PubMed PubMed Central

Barzegari, A., Amouzad Mahdirejei, H., Hanani, M., Esmaeili, M.H., and Salari, A.A. (2023). Adolescent swimming exercise following maternal valproic acid treatment improves cognition and reduces stress-related symptoms in offspring mice: role of sex and brain cytokines. Physiol. Behav. 269: 114264, https://doi.org/10.1016/j.physbeh.2023.114264.Suche in Google Scholar PubMed

Bass, M.M., Duchowny, C.A., and Llabre, M.M. (2009). The effect of therapeutic horseback riding on social functioning in children with autism. J. Autism Dev. Disord. 39: 1261–1267.10.1007/s10803-009-0734-3Suche in Google Scholar PubMed

Becker, J.A.J., Clesse, D., Spiegelhalter, C., Schwab, Y., Le Merrer, J., and Kieffer, B.L. (2014). Autistic-like syndrome in mu opioid receptor null mice is relieved by facilitated mGluR4 activity. Neuropsychopharmacology 39: 2049–2060, https://doi.org/10.1038/npp.2014.59.Suche in Google Scholar PubMed PubMed Central

Bent, C., Glencross, S., McKinnon, K., Hudry, K., Dissanayake, C., Victorian, A.T., and Vivanti, G. (2023). Predictors of developmental and adaptive behaviour outcomes in response to early intensive behavioural intervention and the early start Denver model. J. Autism Dev. Disord., https://doi.org/10.1007/s10803-023-05993-w.Suche in Google Scholar PubMed PubMed Central

Besnier, F., Labrunee, M., Pathak, A., Pavy-Le Traon, A., Gales, C., Senard, J.M., and Guiraud, T. (2017). Exercise training-induced modification in autonomic nervous system: an update for cardiac patients. Ann. Phys. Rehabil. Med. 60: 27–35, https://doi.org/10.1016/j.rehab.2016.07.002.Suche in Google Scholar PubMed

Bi, X., Fan, X., Mi, W., and He, H. (2021). Comparison of diagnostic criteria for autism spectrum disorder in ICD-11 and DSM-5. J. Int. Psychiat. 48: 193–196.Suche in Google Scholar

Bidinosti, M., Botta, P., Kruttner, S., Proenca, C.C., Stoehr, N., Bernhard, M., Fruh, I., Mueller, M., Bonenfant, D., Voshol, H., et al.. (2016). CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency. Science 351: 1199–1203, https://doi.org/10.1126/science.aad5487.Suche in Google Scholar PubMed

Bolte, S., Ciaramidaro, A., Schlitt, S., Hainz, D., Kliemann, D., Beyer, A., Poustka, F., Freitag, C., and Walter, H. (2015). Training-induced plasticity of the social brain in autism spectrum disorder. Br. J. Psychiatry 207: 149–157, https://doi.org/10.1192/bjp.bp.113.143784.Suche in Google Scholar PubMed

Bray, N.W., Pieruccini-Faria, F., Witt, S.T., Bartha, R., Doherty, T.J., Nagamatsu, L.S., Almeida, Q.J., Liu-Ambrose, T., Middleton, L.E., Bherer, L., et al.. (2023). Combining exercise with cognitive training and vitamin D(3) to improve functional brain connectivity (FBC) in older adults with mild cognitive impairment (MCI). Results from the SYNERGIC trial. GeroScience 45: 1967–1985, https://doi.org/10.1007/s11357-023-00805-6.Suche in Google Scholar PubMed PubMed Central

Bremer, E., Crozier, M., and Lloyd, M. (2016). A systematic review of the behavioural outcomes following exercise interventions for children and youth with autism spectrum disorder. Autism 20: 899–915, https://doi.org/10.1177/1362361315616002.Suche in Google Scholar PubMed

Brignell, A., Marraffa, C., Williams, K., and May, T. (2022). Memantine for autism spectrum disorder. Cochrane Database Syst. Rev. 2022, https://doi.org/10.1002/14651858.cd013845.pub2.Suche in Google Scholar

Cai, K.L., Wang, J.G., Liu, Z.M., Zhu, L.N., Xiong, X., Klich, S., Maszczyk, A., and Chen, A.G. (2020). Mini-basketball training program improves physical fitness and social communication in preschool children with autism spectrum disorders. J. Hum. Kinet. 73: 267–278, https://doi.org/10.2478/hukin-2020-0007.Suche in Google Scholar PubMed PubMed Central

Campaniello, D., Corbo, M.R., Sinigaglia, M., Speranza, B., Racioppo, A., Altieri, C., and Bevilacqua, A. (2022). How diet and physical activity modulate gut microbiota: evidence, and perspectives. Nutrients 14: 2456, https://doi.org/10.3390/nu14122456.Suche in Google Scholar PubMed PubMed Central

Carbone, E., Manduca, A., Cacchione, C., Vicari, S., and Trezza, V. (2021). Healing autism spectrum disorder with cannabinoids: a neuroinflammatory story. Neurosci. Biobehav. Rev. 121: 128–143, https://doi.org/10.1016/j.neubiorev.2020.12.009.Suche in Google Scholar PubMed

Careaga, M., Murai, T., and Bauman, M.D. (2017). Maternal immune activation and autism spectrum disorder: from rodents to nonhuman and human primates. Biol. Psychiatry 81: 391–401, https://doi.org/10.1016/j.biopsych.2016.10.020.Suche in Google Scholar PubMed PubMed Central

Carey, M., Sheehan, D., Healy, S., Knott, F., and Kinsella, S. (2022). The effects of a 16-week school-based exercise program on anxiety in children with autism spectrum disorder. Int. J. Environ. Res. Public Health 19: 5471, https://doi.org/10.3390/ijerph19095471.Suche in Google Scholar PubMed PubMed Central

Cassilhas, R.C., Tufik, S., and de Mello, M.T. (2016). Physical exercise, neuroplasticity, spatial learning and memory. Cell. Mol. Life Sci. 73: 975–983, https://doi.org/10.1007/s00018-015-2102-0.Suche in Google Scholar PubMed PubMed Central

Celora, L., Jaudon, F., Vitale, C., and Cingolani, L.A. (2023). Regulation of dendritic spine length in corticopontine layer V pyramidal neurons by autism risk gene β3 integrin. Mol. Brain 16, https://doi.org/10.1186/s13041-023-01031-z.Suche in Google Scholar PubMed PubMed Central

Chatzi, C., Zhang, Y., Hendricks, W.D., Chen, Y., Schnell, E., Goodman, R.H., and Westbrook, G.L. (2019). Exercise-induced enhancement of synaptic function triggered by the inverse BAR protein, Mtss1L. eLife 8, https://doi.org/10.7554/elife.45920.Suche in Google Scholar

Chávez, C.E., Oyarzún, J.E., Avendaño, B.C., Mellado, L.A., Inostroza, C.A., Alvear, T.F., and Orellana, J.A. (2019). The opening of connexin 43 hemichannels alters hippocampal astrocyte function and neuronal survival in prenatally LPS-exposed adult offspring. Front. Cell. Neurosci. 13, https://doi.org/10.3389/fncel.2019.00460.Suche in Google Scholar PubMed PubMed Central

Chen, T., Wen, R., Liu, H., Zhong, X., and Jiang, C. (2022). Dance intervention for negative symptoms in individuals with autism spectrum disorder: a systematic review and meta-analysis. Complement Ther. Clin. Pract. 47: 101565, https://doi.org/10.1016/j.ctcp.2022.101565.Suche in Google Scholar PubMed

Chevalier, G., Siopi, E., Guenin-Macé, L., Pascal, M., Laval, T., Rifflet, A., Boneca, I.G., Demangel, C., Colsch, B., Pruvost, A., et al.. (2020). Effect of gut microbiota on depressive-like behaviors in mice is mediated by the endocannabinoid system. Nat. Commun. 11, https://doi.org/10.1038/s41467-020-19931-2.Suche in Google Scholar PubMed PubMed Central

Chidambaram, S.B., Rathipriya, A.G., Bolla, S.R., Bhat, A., Ray, B., Mahalakshmi, A.M., Manivasagam, T., Thenmozhi, A.J., Essa, M.M., Guillemin, G.J., et al.. (2019). Dendritic spines: revisiting the physiological role. Prog. Neuropsychopharmacol. Biol. Psychiatry 92: 161–193, https://doi.org/10.1016/j.pnpbp.2019.01.005.Suche in Google Scholar PubMed

Choi, G.B., Yim, Y.S., Wong, H., Kim, S., Kim, H., Kim, S.V., Hoeffer, C.A., Littman, D.R., and Huh, J.R. (2016). The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351: 933–939, https://doi.org/10.1126/science.aad0314.Suche in Google Scholar PubMed PubMed Central

Choi, S.H., Bylykbashi, E., Chatila, Z.K., Lee, S.W., Pulli, B., Clemenson, G.D., Kim, E., Rompala, A., Oram, M.K., Asselin, C., et al.. (2018). Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 361, https://doi.org/10.1126/science.aan8821.Suche in Google Scholar PubMed PubMed Central

Coccurello, R., Marrone, M.C., and Maccarrone, M. (2022). The endocannabinoids-microbiota partnership in gut-brain Axis homeostasis: implications for autism spectrum disorders. Front. Pharmacol. 13: 869606, https://doi.org/10.3389/fphar.2022.869606.Suche in Google Scholar PubMed PubMed Central

Coiro, P., Padmashri, R., Suresh, A., Spartz, E., Pendyala, G., Chou, S., Jung, Y., Meays, B., Roy, S., Gautam, N., et al.. (2015). Impaired synaptic development in a maternal immune activation mouse model of neurodevelopmental disorders. Brain Behav. Immun. 50: 249–258, https://doi.org/10.1016/j.bbi.2015.07.022.Suche in Google Scholar PubMed PubMed Central

Coley, A.A. and Gao, W.J. (2018). PSD95: a synaptic protein implicated in schizophrenia or autism? Prog. Neuro-psychopharmacol. Biol. Psychiatry 82: 187–194, https://doi.org/10.1016/j.pnpbp.2017.11.016.Suche in Google Scholar PubMed PubMed Central

Colgan, L.A. and Yasuda, R. (2014). Plasticity of dendritic spines: subcompartmentalization of signaling. Annu. Rev. Physiol. 76: 365–385, https://doi.org/10.1146/annurev-physiol-021113-170400.Suche in Google Scholar PubMed PubMed Central

Cotman, C.W., Berchtold, N.C., and Christie, L.A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30: 464–472, https://doi.org/10.1016/j.tins.2007.06.011.Suche in Google Scholar PubMed

d’Albis, M.A., Guevara, P., Guevara, M., Laidi, C., Boisgontier, J., Sarrazin, S., Duclap, D., Delorme, R., Bolognani, F., Czech, C., et al.. (2018). Local structural connectivity is associated with social cognition in autism spectrum disorder. Brain 141: 3472–3481, https://doi.org/10.1093/brain/awy275.Suche in Google Scholar PubMed

Dalton, A., Mermier, C., and Zuhl, M. (2019). Exercise influence on the microbiome-gut-brain axis. Gut Microbes 10: 555–568, https://doi.org/10.1080/19490976.2018.1562268.Suche in Google Scholar PubMed PubMed Central

Danforth, A.L., Grob, C.S., Struble, C., Feduccia, A.A., Walker, N., Jerome, L., Yazar-Klosinski, B., and Emerson, A. (2018). Reduction in social anxiety after MDMA-assisted psychotherapy with autistic adults: a randomized, double-blind, placebo-controlled pilot study. Psychopharmacology 235: 3137–3148, https://doi.org/10.1007/s00213-018-5010-9.Suche in Google Scholar PubMed PubMed Central

Dargenio, V.N., Dargenio, C., Castellaneta, S., De Giacomo, A., Laguardia, M., Schettini, F., Francavilla, R., and Cristofori, F. (2023). Intestinal barrier dysfunction and microbiota–gut–brain axis: possible implications in the pathogenesis and treatment of autism spectrum disorder. Nutrients 15: 1620, https://doi.org/10.3390/nu15071620.Suche in Google Scholar PubMed PubMed Central

Davoli-Ferreira, M., Thomson, C.A., and McCoy, K.D. (2021). Microbiota and microglia interactions in ASD. Front. Immunol. 12, https://doi.org/10.3389/fimmu.2021.676255.Suche in Google Scholar PubMed PubMed Central

Dawson, G. (2008). Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Dev. Psychopathol. 20: 775–803, https://doi.org/10.1017/s0954579408000370.Suche in Google Scholar PubMed

Dizitzer, Y., Meiri, G., Flusser, H., Michaelovski, A., Dinstein, I., and Menashe, I. (2020). Comorbidity and health services’ usage in children with autism spectrum disorder: a nested case–control study. Epidemiol. Psych. Sci. 29, https://doi.org/10.1017/s2045796020000050.Suche in Google Scholar PubMed PubMed Central

Dong, C., Zhao, C., Chen, X., Berry, K., Wang, J., Zhang, F., Liao, Y., Han, R., Ogurek, S., Xu, L., et al.. (2022). Conserved and distinct functions of the autism-related chromatin remodeler CHD8 in embryonic and adult forebrain neurogenesis. J. Neurosci. 42: 8373–8392, https://doi.org/10.1523/jneurosci.2400-21.2022.Suche in Google Scholar

Duan, G., Han, Q., Yao, M., and Li, R. (2022). Effects of rhythmic gymnastics on joint attention and emotional problems of autistic children: a preliminary investigation. Comput. Intell. Neurosci. 2022: 2596095, https://doi.org/10.1155/2022/2596095.Suche in Google Scholar PubMed PubMed Central

Eadie, B.D., Redila, V.A., and Christie, B.R. (2005). Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. J. Comp. Neurol. 486: 39–47, https://doi.org/10.1002/cne.20493.Suche in Google Scholar PubMed

Ebrahimi-Fakhari, D. and Sahin, M. (2015). Autism and the synapse: emerging mechanisms and mechanism-based therapies. Curr. Opin. Neurol. 28: 91–102, https://doi.org/10.1097/wco.0000000000000186.Suche in Google Scholar PubMed

Elliott, R.O., Dobbin, A.R., and Rose, G.D. (1994). Vigorous, aerobic exercise versus general motor training activities effects on maladaptive and stereotypic behaviors of adults with both autism and mental retardation. J. Autism Dev. Disord. 24: 565–576.10.1007/BF02172138Suche in Google Scholar PubMed

Elliott, S.J., Marshall, D., Morley, K., Uphoff, E., Kumar, M., and Meader, N. (2021). Behavioural and cognitive behavioural therapy for obsessive compulsive disorder (OCD) in individuals with autism spectrum disorder (ASD). Cochrane Database Syst. Rev. 2021, https://doi.org/10.1002/14651858.cd013173.pub2.Suche in Google Scholar

Eltokhi, A., Janmaat, I.E., Genedi, M., Haarman, B.C.M., and Sommer, I.E.C. (2020). Dysregulation of synaptic pruning as a possible link between intestinal microbiota dysbiosis and neuropsychiatric disorders. J. Neurosci. Res. 98: 1335–1369, https://doi.org/10.1002/jnr.24616.Suche in Google Scholar PubMed

Eshraghi, R.S., Davies, C., Iyengar, R., Perez, L., Mittal, R., and Eshraghi, A.A. (2020). Gut-induced inflammation during development may compromise the blood-brain barrier and predispose to autism spectrum disorder. J. Clin. Med. 10: 27, https://doi.org/10.3390/jcm10010027.Suche in Google Scholar PubMed PubMed Central

Estes, A., Munson, J., Rogers, S.J., Greenson, J., Winter, J., and Dawson, G. (2015). Long-term outcomes of early intervention in 6-year-old children with autism spectrum disorder. J. Am. Acad. Child Adolesc. Psychiatry 54: 580–587, https://doi.org/10.1016/j.jaac.2015.04.005.Suche in Google Scholar PubMed PubMed Central

Fattorusso, A., Di Genova, L., Dell’Isola, G., Mencaroni, E., and Esposito, S. (2019). Autism spectrum disorders and the gut microbiota. Nutrients 11: 521, https://doi.org/10.3390/nu11030521.Suche in Google Scholar PubMed PubMed Central

Fernandez, M., Mollinedo-Gajate, I., and Penagarikano, O. (2018). Neural circuits for social cognition: implications for autism. Neuroscience 370: 148–162, https://doi.org/10.1016/j.neuroscience.2017.07.013.Suche in Google Scholar PubMed

Fernández de Cossío, L., Lacabanne, C., Bordeleau, M., Castino, G., Kyriakakis, P., and Tremblay, M.-È. (2021). Lipopolysaccharide-induced maternal immune activation modulates microglial CX3CR1 protein expression and morphological phenotype in the hippocampus and dentate gyrus, resulting in cognitive inflexibility during late adolescence. Brain Behav. Immun. 97: 440–454, https://doi.org/10.1016/j.bbi.2021.07.025.Suche in Google Scholar PubMed

Ferreira, J.P., Ghiarone, T., Junior, C.R.C., Furtado, G.E., Carvalho, H.M., Rodrigues, A.M., and Toscano, C.V.A. (2019). Effects of physical exercise on the stereotyped behavior of children with autism spectrum disorders. Medicina (Kaunas) 55, https://doi.org/10.3390/medicina55100685.Suche in Google Scholar PubMed PubMed Central

Fiddes, I.T., Lodewijk, G.A., Mooring, M., Bosworth, C.M., Ewing, A.D., Mantalas, G.L., Novak, A.M., van den Bout, A., Bishara, A., Rosenkrantz, J.L., et al.. (2018). Human-specific NOTCH2NL genes affect Notch signaling and cortical neurogenesis. Cell 173: 1356–1369 e1322, https://doi.org/10.1016/j.cell.2018.03.051.Suche in Google Scholar PubMed PubMed Central

Franz, L., Goodwin, C.D., Rieder, A., Matheis, M., and Damiano, D.L. (2022). Early intervention for very young children with or at high likelihood for autism spectrum disorder: an overview of reviews. Dev. Med. Child Neurol. 64: 1063–1076, https://doi.org/10.1111/dmcn.15258.Suche in Google Scholar PubMed PubMed Central

Frye, R.E., Slattery, J., Delhey, L., Furgerson, B., Strickland, T., Tippett, M., Sailey, A., Wynne, R., Rose, S., Melnyk, S., et al.. (2016). Folinic acid improves verbal communication in children with autism and language impairment: a randomized double-blind placebo-controlled trial. Mol. Psychiatry 23: 247–256, https://doi.org/10.1038/mp.2016.168.Suche in Google Scholar PubMed PubMed Central

Fung, T.C., Olson, C.A., and Hsiao, E.Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20: 145–155, https://doi.org/10.1038/nn.4476.Suche in Google Scholar PubMed PubMed Central

Gabriels, R.L., Pan, Z., Dechant, B., Agnew, J.A., Brim, N., and Mesibov, G. (2015). Randomized controlled trial of therapeutic horseback riding in children and adolescents with autism spectrum disorder. J. Am. Acad. Child Psy. 54: 541–549, https://doi.org/10.1016/j.jaac.2015.04.007.Suche in Google Scholar PubMed PubMed Central

Ganesan, H., Balasubramanian, V., Iyer, M., Venugopal, A., Subramaniam, M.D., Cho, S.-G., and Vellingiri, B. (2019). mTOR signalling pathway - a root cause for idiopathic autism? BMB Rep. 52: 424–433, https://doi.org/10.5483/bmbrep.2019.52.7.137.Suche in Google Scholar PubMed PubMed Central

Ge, L.K., Hu, Z., Wang, W., Siu, P.M., and Wei, G.X. (2021). Aerobic exercise decreases negative affect by modulating orbitofrontal-amygdala connectivity in adolescents. Life (Basel) 11, https://doi.org/10.3390/life11060577.Suche in Google Scholar PubMed PubMed Central

Gioia, R., Seri, T., Diamanti, T., Fimmano, S., Vitale, M., Ahlenius, H., Kokaia, Z., Tirone, F., Micheli, L., Biagioni, S., et al.. (2023). Adult hippocampal neurogenesis and social behavioural deficits in the R451C Neuroligin3 mouse model of autism are reverted by the antidepressant fluoxetine. J. Neurochem. 165: 318–333, https://doi.org/10.1111/jnc.15753.Suche in Google Scholar PubMed

Gkogkas, C.G., Khoutorsky, A., Ran, I., Rampakakis, E., Nevarko, T., Weatherill, D.B., Vasuta, C., Yee, S., Truitt, M., Dallaire, P., et al.. (2013). Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature 493: 371–377, https://doi.org/10.1038/nature11628.Suche in Google Scholar PubMed PubMed Central

Golden, S.A. and Russo, S.J. (2012). Mechanisms of psychostimulant-induced structural plasticity. Cold Spring Harb. Perspect. Med. 2, https://doi.org/10.1101/cshperspect.a011957.Suche in Google Scholar PubMed PubMed Central

Guo, D., Peng, Y., Wang, L., Sun, X., Wang, X., Liang, C., Yang, X., Li, S., Xu, J., Ye, W.-C., et al.. (2019). Autism-like social deficit generated by Dock4 deficiency is rescued by restoration of Rac1 activity and NMDA receptor function. Mol. Psychiatry 26: 1505–1519, https://doi.org/10.1038/s41380-019-0472-7.Suche in Google Scholar PubMed PubMed Central

Guzzetta, K.E., Cryan, J.F., and Leary, O.F.O. (2022). Microbiota-gut-brain axis regulation of adult hippocampal neurogenesis. Brain Plast. 8: 97–119, https://doi.org/10.3233/bpl-220141.Suche in Google Scholar

Han, V.X., Patel, S., Jones, H.F., and Dale, R.C. (2021). Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat. Rev. Neurol. 17: 564–579, https://doi.org/10.1038/s41582-021-00530-8.Suche in Google Scholar PubMed

Harris, S.R. (2017). Early motor delays as diagnostic clues in autism spectrum disorder. Eur. J. Pediatr. 176: 1259–1262, https://doi.org/10.1007/s00431-017-2951-7.Suche in Google Scholar PubMed

Horowitz, A.M., Fan, X., Bieri, G., Smith, L.K., Sanchez-Diaz, C.I., Schroer, A.B., Gontier, G., Casaletto, K.B., Kramer, J.H., Williams, K.E., et al.. (2020). Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science 369: 167–173, https://doi.org/10.1126/science.aaw2622.Suche in Google Scholar PubMed PubMed Central

Howes, O.D., Rogdaki, M., Findon, J.L., Wichers, R.H., Charman, T., King, B.H., Loth, E., McAlonan, G.M., McCracken, J.T., Parr, J.R., et al.. (2017). Autism spectrum disorder: consensus guidelines on assessment, treatment and research from the British Association for Psychopharmacology. J. Psychopharmacol. 32: 3–29, https://doi.org/10.1177/0269881117741766.Suche in Google Scholar PubMed PubMed Central

Hughes, H.K., Moreno, R.J., and Ashwood, P. (2023). Innate immune dysfunction and neuroinflammation in autism spectrum disorder (ASD). Brain Behav. Immun. 108: 245–254, https://doi.org/10.1016/j.bbi.2022.12.001.Suche in Google Scholar PubMed

Hutsler, J.J. and Zhang, H. (2010). Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 1309: 83–94, https://doi.org/10.1016/j.brainres.2009.09.120.Suche in Google Scholar PubMed

Ikuta, T., Frith, E., Ponce, P., and Loprinzi, P.D. (2019). Association of physical activity on the functional connectivity of the hippocampal-orbitofrontal pathway. Phys. Sportsmed. 47: 290–294, https://doi.org/10.1080/00913847.2018.1549461.Suche in Google Scholar PubMed

Jarmołowska, B., Bukało, M., Fiedorowicz, E., Cieślińska, A., Kordulewska, N.K., Moszyńska, M., Świątecki, A., and Kostyra, E. (2019). Role of milk-derived opioid peptides and proline dipeptidyl peptidase-4 in autism spectrum disorders. Nutrients 11: 87, https://doi.org/10.3390/nu11010087.Suche in Google Scholar PubMed PubMed Central

Ji, C., Yang, J., Lin, L., and Chen, S. (2022). Executive function improvement for children with autism spectrum disorder: a comparative study between virtual training and physical exercise methods. Children 9, https://doi.org/10.3390/children9040507.Suche in Google Scholar PubMed PubMed Central

Jia, S., Guo, C., Li, S., Zhou, X., Wang, X., and Wang, Q. (2023). The effect of physical exercise on disordered social communication in individuals with autism Spectrum disorder: a systematic review and meta-analysis of randomized controlled trials. Front. Pediatr. 11, https://doi.org/10.3389/fped.2023.1193648.Suche in Google Scholar PubMed PubMed Central

Jiang, C.-C., Lin, L.-S., Long, S., Ke, X.-Y., Fukunaga, K., Lu, Y.-M., and Han, F. (2022). Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduction Targeted Ther. 7, https://doi.org/10.1038/s41392-022-01081-0.Suche in Google Scholar PubMed PubMed Central

Johansson, M.E., Cameron, I.G.M., Van der Kolk, N.M., de Vries, N.M., Klimars, E., Toni, I., Bloem, B.R., and Helmich, R.C. (2022). Aerobic exercise alters brain function and structure in Parkinson’s disease: a randomized controlled trial. Ann. Neurol. 91: 203–216, https://doi.org/10.1002/ana.26291.Suche in Google Scholar PubMed PubMed Central

Johnson, D., Letchumanan, V., Thurairajasingam, S., and Lee, L.-H. (2020). A revolutionizing approach to autism spectrum disorder using the microbiome. Nutrients 12: 1983, https://doi.org/10.3390/nu12071983.Suche in Google Scholar PubMed PubMed Central

Kamp-Becker, I. (2024). Autism spectrum disorder in ICD-11—a critical reflection of its possible impact on clinical practice and research. Mol. Psychiatry 29: 633–638, https://doi.org/10.1038/s41380-023-02354-y.Suche in Google Scholar PubMed PubMed Central

Kandola, A., Ashdown-Franks, G., Hendrikse, J., Sabiston, C.M., and Stubbs, B. (2019). Physical activity and depression: towards understanding the antidepressant mechanisms of physical activity. Neurosci. Biobehav. Rev. 107: 525–539, https://doi.org/10.1016/j.neubiorev.2019.09.040.Suche in Google Scholar PubMed

Kaur, M. and Bhat, A. (2019). Creative Yoga Intervention Improves Motor and imitation skills of children with autism spectrum disorder. Phys. Ther. 99: 1520–1534, https://doi.org/10.1093/ptj/pzz115.Suche in Google Scholar PubMed PubMed Central

Kawano, S., Baba, M., Fukushima, H., Miura, D., Hashimoto, H., and Nakazawa, T. (2022). Autism-associated ANK2 regulates embryonic neurodevelopment. Biochem. Biophys. Res. Commun. 605: 45–50, https://doi.org/10.1016/j.bbrc.2022.03.058.Suche in Google Scholar PubMed

Keogh, C.E., Kim, D.H.J., Pusceddu, M.M., Knotts, T.A., Rabasa, G., Sladek, J.A., Hsieh, M.T., Honeycutt, M., Brust-Mascher, I., Barboza, M., et al.. (2021). Myelin as a regulator of development of the microbiota-gut-brain axis. Brain Behav. Immun. 91: 437–450, https://doi.org/10.1016/j.bbi.2020.11.001.Suche in Google Scholar PubMed PubMed Central

Kern, J.K., Geier, D.A., Sykes, L.K., and Geier, M.R. (2015). Relevance of neuroinflammation and encephalitis in autism. Front. Cell. Neurosci. 9: 519, https://doi.org/10.3389/fncel.2015.00519.Suche in Google Scholar PubMed PubMed Central

Kern, L., Koegel, R.L., Dyer, K., Blew, P.A., and Fenton, L.R. (1982). The effects of physical exercise on self-stimulation and appropriate responding in autistic children. J. Autism Dev. Disord. 12: 399–419.10.1007/BF01538327Suche in Google Scholar PubMed

Kim, S., Kim, H., Yim, Y.S., Ha, S., Atarashi, K., Tan, T.G., Longman, R.S., Honda, K., Littman, D.R., Choi, G.B., et al.. (2017). Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549: 528–532, https://doi.org/10.1038/nature23910.Suche in Google Scholar PubMed PubMed Central

Kim, Y., Todd, T., Fujii, T., Lim, J.C., Vrongistinos, K., and Jung, T. (2016). Effects of Taekwondo intervention on balance in children with autism spectrum disorder. J. Exerc. Rehabil. 12: 314–319, https://doi.org/10.12965/jer.1632634.317.Suche in Google Scholar PubMed PubMed Central

Kirkman, D.L., Lee, D.-c., and Carbone, S. (2022). Resistance exercise for cardiac rehabilitation. Prog. Cardiovasc. Dis. 70: 66–72, https://doi.org/10.1016/j.pcad.2022.01.004.Suche in Google Scholar PubMed PubMed Central

Kirsch, A.C., Huebner, A.R.S., Mehta, S.Q., Howie, F.R., Weaver, A.L., Myers, S.M., Voigt, R.G., and Katusic, S.K. (2020). Association of comorbid mood and anxiety disorders with autism spectrum disorder. JAMA Pediatr. 174: 63, https://doi.org/10.1001/jamapediatrics.2019.4368.Suche in Google Scholar PubMed PubMed Central

Kloosterboer, S.M., de Winter, B.C.M., Reichart, C.G., Kouijzer, M.E.J., de Kroon, M.M.J., van Daalen, E., Ester, W.A., Rieken, R., Dieleman, G.C., van Altena, D., et al.. (2020). Risperidone plasma concentrations are associated with side effects and effectiveness in children and adolescents with autism spectrum disorder. Br. J. Clin. Pharmacol. 87: 1069–1081, https://doi.org/10.1111/bcp.14465.Suche in Google Scholar PubMed PubMed Central

Kohman, R.A., DeYoung, E.K., Bhattacharya, T.K., Peterson, L.N., and Rhodes, J.S. (2012). Wheel running attenuates microglia proliferation and increases expression of a proneurogenic phenotype in the hippocampus of aged mice. Brain Behav. Immun. 26: 803–810, https://doi.org/10.1016/j.bbi.2011.10.006.Suche in Google Scholar PubMed PubMed Central

Kuo, S.S., van der Merwe, C., Fu, J.M., Carey, C.E., Talkowski, M.E., Bishop, S.L., and Robinson, E.B. (2022). Developmental variability in autism across 17 000 autistic individuals and 4000 siblings without an autism diagnosis. JAMA Pediatr. 176: 915, https://doi.org/10.1001/jamapediatrics.2022.2423.Suche in Google Scholar PubMed PubMed Central

Kwon, H.-K., Choi, G.B., and Huh, J.R. (2022). Maternal inflammation and its ramifications on fetal neurodevelopment. Trends Immunol. 43: 230–244, https://doi.org/10.1016/j.it.2022.01.007.Suche in Google Scholar PubMed PubMed Central

Lai, M.-C., Lombardo, M.V., and Baron-Cohen, S. (2014). Autism. Lancet 383: 896–910, https://doi.org/10.1016/s0140-6736(13)61539-1.Suche in Google Scholar

Lalanne, S., Fougerou-Leurent, C., Anderson, G.M., Schroder, C.M., Nir, T., Chokron, S., Delorme, R., Claustrat, B., Bellissant, E., Kermarrec, S., et al.. (2021). Melatonin: from pharmacokinetics to clinical use in autism spectrum disorder. Int. J. Mol. Sci. 22: 1490, https://doi.org/10.3390/ijms22031490.Suche in Google Scholar PubMed PubMed Central

Landa, R.J. (2018). Efficacy of early interventions for infants and young children with, and at risk for, autism spectrum disorders. Int. Rev. Psychiatry 30: 25–39, https://doi.org/10.1080/09540261.2018.1432574.Suche in Google Scholar PubMed PubMed Central

LeBarton, E.S. and Landa, R.J. (2019). Infant motor skill predicts later expressive language and autism spectrum disorder diagnosis. Infant Behav. Dev. 54: 37–47, https://doi.org/10.1016/j.infbeh.2018.11.003.Suche in Google Scholar PubMed

Leiter, O., Zhuo, Z., Rust, R., Wasielewska, J.M., Gronnert, L., Kowal, S., Overall, R.W., Adusumilli, V.S., Blackmore, D.G., Southon, A., et al.. (2022). Selenium mediates exercise-induced adult neurogenesis and reverses learning deficits induced by hippocampal injury and aging. Cell Metab. 34: 408–423 e408, https://doi.org/10.1016/j.cmet.2022.01.005.Suche in Google Scholar PubMed

Levinson, L.J. and Reid, G. (1993). The effects of exercise intensity on the stereotypic behaviors of individuals with autism. Adapt. Phys. Act. Q. 10: 255–268.10.1123/apaq.10.3.255Suche in Google Scholar

Li, H., Guo, W., Li, S., Sun, B., Li, N., Xie, D., Dong, Z., Luo, D., Chen, W., Fu, W., et al.. (2024a). Alteration of the gut microbiota profile in children with autism spectrum disorder in China. Front. Microbiol. 14, https://doi.org/10.3389/fmicb.2023.1326870.Suche in Google Scholar PubMed PubMed Central

Li, L., Jia, S., Wang, P., Li, S., Wang, X., and Zhu, X. (2024b). A network meta-analysis of the effect of physical exercise on core symptoms in patients with autism spectrum disorders. Front. Neurol. 15, https://doi.org/10.3389/fneur.2024.1360434.Suche in Google Scholar PubMed PubMed Central

Li, Q., Han, Y., Dy, A.B.C., and Hagerman, R.J. (2017). The gut microbiota and autism spectrum disorders. Front. Cell. Neurosci. 11, https://doi.org/10.3389/fncel.2017.00120.Suche in Google Scholar PubMed PubMed Central

Li, E., Xia, S., Zhao, P., and Li, L. (2019). Intervention methods for children with autism spectrum disorder based on applied behavior analysis. J. Int. Psychiat. 46: 217–219.Suche in Google Scholar

Li, Z., Yang, L., Chen, H., Fang, Y., Zhang, T., Yin, X., Man, J., Yang, X, and Lu, M. (2022). Global, regional and national burden of autism spectrum disorder from 1990 to 2019 results from the Global Burden of Disease Study 2019. Epidemiol. Psych. Sci. 31: e33, https://doi.org/10.1017/s2045796022000178.Suche in Google Scholar

Linker, S.B., Mendes, A.P.D., and Marchetto, M.C. (2020). IGF-1 treatment causes unique transcriptional response in neurons from individuals with idiopathic autism. Mol. Autism 11, https://doi.org/10.1186/s13229-020-00359-w.Suche in Google Scholar PubMed PubMed Central

Lo, L.H. and Lai, K.O. (2020). Dysregulation of protein synthesis and dendritic spine morphogenesis in ASD: studies in human pluripotent stem cells. Mol. Autism 11: 40, https://doi.org/10.1186/s13229-020-00349-y.Suche in Google Scholar PubMed PubMed Central

Lopez-Torres Hidalgo, J., Dep-Exercise Group (2019). Effectiveness of physical exercise in the treatment of depression in older adults as an alternative to antidepressant drugs in primary care. BMC Psychiatry 19: 21, https://doi.org/10.1186/s12888-018-1982-6.Suche in Google Scholar PubMed PubMed Central

Lord, C., Elsabbagh, M., Baird, G., and Veenstra-Vanderweele, J. (2018). Autism spectrum disorder. The Lancet 392: 508–520, https://doi.org/10.1016/s0140-6736(18)31129-2.Suche in Google Scholar

Lu-Culligan, A. and Iwasaki, A. (2020). The role of immune factors in shaping fetal neurodevelopment. Annu. Rev. Cell Dev. Biol. 36: 441–468, https://doi.org/10.1146/annurev-cellbio-021120-033518.Suche in Google Scholar PubMed PubMed Central

Mahmood, U., Ahn, S., Yang, E.-J., Choi, M., Kim, H., Regan, P., Cho, K., and Kim, H.-S. (2018). Dendritic spine anomalies and PTEN alterations in a mouse model of VPA-induced autism spectrum disorder. Pharmacol. Res. 128: 110–121, https://doi.org/10.1016/j.phrs.2017.08.006.Suche in Google Scholar PubMed

Marko, M.K., Crocetti, D., Hulst, T., Donchin, O., Shadmehr, R., and Mostofsky, S.H. (2015). Behavioural and neural basis of anomalous motor learning in children with autism. Brain 138: 784–797, https://doi.org/10.1093/brain/awu394.Suche in Google Scholar PubMed PubMed Central

McDew-White, M., Lee, E., Premadasa, L.S., Alvarez, X., Okeoma, C.M., and Mohan, M. (2023). Cannabinoids modulate the microbiota-gut-brain axis in HIV/SIV infection by reducing neuroinflammation and dysbiosis while concurrently elevating endocannabinoid and indole-3-propionate levels. J. Neuroinflammation 20: 62, https://doi.org/10.1186/s12974-023-02729-6.Suche in Google Scholar PubMed PubMed Central

Memari, A.H., Ghaheri, B., Ziaee, V., Kordi, R., Hafizi, S., and Moshayedi, P. (2013). Physical activity in children and adolescents with autism assessed by triaxial accelerometry. Pediatr. Obes. 8: 150–158, https://doi.org/10.1111/j.2047-6310.2012.00101.x.Suche in Google Scholar PubMed

Meng, J., Han, L., Zheng, N., Wang, T., Xu, H., Jiang, Y., Wang, Z., Liu, Z., Zheng, Q., Zhang, X., et al.. (2022a). Microglial Tmem59 deficiency impairs phagocytosis of synapse and leads to autism-like behaviors in mice. J. Neurosci. 42: 4958–4979, https://doi.org/10.1523/jneurosci.1644-21.2022.Suche in Google Scholar PubMed PubMed Central

Meng, Y., Xu, D., Zhang, W., Meng, W., Lan, X., Wang, X., Li, M., Zhang, X., Zhao, Y., Yang, H., et al.. (2022b). Effect of early swimming on the behavior and striatal transcriptome of the shank3 knockout rat model of autism. Neuropsychiatr. Dis. Treat. 18: 681–694, https://doi.org/10.2147/ndt.s357338.Suche in Google Scholar PubMed PubMed Central

Ming, X., Brimacombe, M., and Wagner, G.C. (2007). Prevalence of motor impairment in autism spectrum disorders. Brain Dev. 29: 565–570, https://doi.org/10.1016/j.braindev.2007.03.002.Suche in Google Scholar PubMed

Monk, R., Whitehouse, A.J.O., and Waddington, H. (2022). The use of language in autism research. Trends Neurosci. 45: 791–793, https://doi.org/10.1016/j.tins.2022.08.009.Suche in Google Scholar PubMed

Monteiro, P. and Feng, G. (2017). SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat. Rev. Neurosci. 18: 147–157, https://doi.org/10.1038/nrn.2016.183.Suche in Google Scholar PubMed

Morton, J.T., Jin, D.-M., Mills, R.H., Shao, Y., Rahman, G., McDonald, D., Zhu, Q., Balaban, M., Jiang, Y., Cantrell, K., et al.. (2023). Multi-level analysis of the gut–brain axis shows autism spectrum disorder-associated molecular and microbial profiles. Nat. Neurosci. 26: 1208–1217, https://doi.org/10.1038/s41593-023-01361-0.Suche in Google Scholar PubMed PubMed Central

Movahedi, A., Bahrami, F., Marandi, S.M., and Abedi, A. (2013). Improvement in social dysfunction of children with autism spectrum disorder following long term Kata techniques training. Res. Autism Spectr. Disord. 7: 1054–1061.10.1016/j.rasd.2013.04.012Suche in Google Scholar

Mu, L., Cai, J., Gu, B., Yu, L., Li, C., Liu, Q.S., and Zhao, L. (2022). Treadmill exercise prevents decline in spatial learning and memory in 3xTg-AD mice through enhancement of structural synaptic plasticity of the hippocampus and prefrontal cortex. Cells 11, https://doi.org/10.3390/cells11020244.Suche in Google Scholar PubMed PubMed Central

Mukaetova‐Ladinska, E.B., Arnold, H., Jaros, E., Perry, R., and Perry, E. (2004). Depletion of MAP2 expression and laminar cytoarchitectonic changes in dorsolateral prefrontal cortex in adult autistic individuals. Neuropathol. Appl. Neurobiol. 30: 615–623, https://doi.org/10.1111/j.1365-2990.2004.00574.x.Suche in Google Scholar PubMed

Must, A., Phillips, S.M., Curtin, C., Anderson, S.E., Maslin, M., Lividini, K., and Bandini, L.G. (2014). Comparison of sedentary behaviors between children with autism spectrum disorders and typically developing children. Autism 18: 376–384, https://doi.org/10.1177/1362361313479039.Suche in Google Scholar PubMed PubMed Central

Nair, A., Jalal, R., Liu, J., Tsang, T., McDonald, N.M., Jackson, L., Ponting, C., Jeste, S.S., Bookheimer, S.Y., and Dapretto, M. (2021). Altered thalamocortical connectivity in 6-week-old infants at high familial risk for autism spectrum disorder. Cereb. Cortex 31: 4191–4205, https://doi.org/10.1093/cercor/bhab078.Suche in Google Scholar PubMed PubMed Central

Najafabadi, M.G., Sheikh, M., Hemayattalab, R., Memari, A.H., Aderyani, M.R., and Hafizi, S. (2018). The effect of SPARK on social and motor skills of children with autism. Pediatr. Neonatol. 59: 481–487, https://doi.org/10.1016/j.pedneo.2017.12.005.Suche in Google Scholar PubMed

Nakanishi, M., Anderson, M.P., and Takumi, T. (2019). Recent genetic and functional insights in autism spectrum disorder. Curr. Opin. Neurol. 32: 627–634, https://doi.org/10.1097/wco.0000000000000718.Suche in Google Scholar

National Institute for Health and Care Excellence (Great Britain) (2021). Autism spectrum disorder in under 19s – support and management. NICE.Suche in Google Scholar

Neely, L., Rispoli, M., Gerow, S., and Ninci, J. (2015). Effects of antecedent exercise on academic engagement and stereotypy during instruction. Behav. Modif. 39: 98–116, https://doi.org/10.1177/0145445514552891.Suche in Google Scholar PubMed

Nie, J. and Yang, X. (2017). Modulation of synaptic plasticity by exercise training as a basis for ischemic stroke rehabilitation. Cell. Mol. Neurobiol. 37: 5–16, https://doi.org/10.1007/s10571-016-0348-1.Suche in Google Scholar PubMed

Nishiyama, J. (2019). Plasticity of dendritic spines: molecular function and dysfunction in neurodevelopmental disorders. Psychiatry Clin. Neurosci. 73: 541–550, https://doi.org/10.1111/pcn.12899.Suche in Google Scholar PubMed

Oh, W.C., Parajuli, L.K., and Zito, K. (2015). Heterosynaptic structural plasticity on local dendritic segments of hippocampal CA1 neurons. Cell Rep. 10: 162–169, https://doi.org/10.1016/j.celrep.2014.12.016.Suche in Google Scholar PubMed PubMed Central

Okamoto, Y., Kitada, R., Miyahara, M., Kochiyama, T., Naruse, H., Sadato, N., Okazawa, H., and Kosaka, H. (2018). Altered perspective-dependent brain activation while viewing hands and associated imitation difficulties in individuals with autism spectrum disorder. Neuroimage Clin. 19: 384–395, https://doi.org/10.1016/j.nicl.2018.04.030.Suche in Google Scholar PubMed PubMed Central

Packer, A. (2016). Neocortical neurogenesis and the etiology of autism spectrum disorder. Neurosci. Biobehav. Rev. 64: 185–195, https://doi.org/10.1016/j.neubiorev.2016.03.002.Suche in Google Scholar PubMed

Pan, C.Y. (2010). Effects of water exercise swimming program on aquatic skills and social behaviors in children with autism spectrum disorders. Autism 14: 9–28, https://doi.org/10.1177/1362361309339496.Suche in Google Scholar PubMed

Pan, C.Y., Chu, C.H., Tsai, C.L., Sung, M.C., Huang, C.Y., and Ma, W.Y. (2017). The impacts of physical activity intervention on physical and cognitive outcomes in children with autism spectrum disorder. Autism 21: 190–202, https://doi.org/10.1177/1362361316633562.Suche in Google Scholar PubMed

Pan, Z.-Y., Zhong, H.-J., Huang, D.-N., Wu, L.-H., and He, X.-X. (2022). Beneficial effects of repeated washed microbiota transplantation in children with autism. Front. Pediatr. 10, https://doi.org/10.3389/fped.2022.928785.Suche in Google Scholar PubMed PubMed Central

Parker, A., Fonseca, S., and Carding, S.R. (2019). Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 11: 135–157, https://doi.org/10.1080/19490976.2019.1638722.Suche in Google Scholar PubMed PubMed Central

Pedersen, B.K. (2019). Physical activity and muscle–brain crosstalk. Nat. Rev. Endocrinol. 15: 283–392, https://doi.org/10.1038/s41574-019-0174-x.Suche in Google Scholar PubMed

Phung, J.N. and Goldberg, W.A. (2019). Promoting executive functioning in children with autism spectrum disorder through mixed martial arts training. J. Autism Dev. Disord. 49: 3669–3684, https://doi.org/10.1007/s10803-019-04072-3.Suche in Google Scholar PubMed

Pickles, A., Le Couteur, A., Leadbitter, K., Salomone, E., Cole-Fletcher, R., Tobin, H., Gammer, I., Lowry, J., Vamvakas, G., Byford, S., et al.. (2016). Parent-mediated social communication therapy for young children with autism (PACT): long-term follow-up of a randomised controlled trial. Lancet 388: 2501–2509, https://doi.org/10.1016/s0140-6736(16)31229-6.Suche in Google Scholar PubMed PubMed Central

Plaza-Diaz, J., Radar, A.M., Baig, A.T., Leyba, M.F., Costabel, M.M., Zavala-Crichton, J.P., Sanchez-Martinez, J., MacKenzie, A.E., and Solis-Urra, P. (2022). Physical activity, gut microbiota, and genetic background for children and adolescents with autism spectrum disorder. Children 9, https://doi.org/10.3390/children9121834.Suche in Google Scholar PubMed PubMed Central

Procyshyn, T.L., Lombardo, M.V., Lai, M.-C., Jassim, N., Auyeung, B., Crockford, S.K., Deakin, J.B., Soubramanian, S., Sule, A., Terburg, D., et al.. (2022). Oxytocin enhances basolateral amygdala activation and functional connectivity while processing emotional faces: preliminary findings in autistic vs non-autistic women. Soc. Cogn. Affect. Neur. 17: 929–938, https://doi.org/10.1093/scan/nsac016.Suche in Google Scholar PubMed PubMed Central

Quiroga, R., Nistal, E., Estébanez, B., Porras, D., Juárez-Fernández, M., Martínez-Flórez, S., García-Mediavilla, M.V., de Paz, J.A., González-Gallego, J., Sánchez-Campos, S., et al.. (2020). Exercise training modulates the gut microbiota profile and impairs inflammatory signaling pathways in obese children. Exp. Mol. Med. 52: 1048–1061, https://doi.org/10.1038/s12276-020-0459-0.Suche in Google Scholar PubMed PubMed Central

Rafie, F., Ghasemi, A., Zamani Jam, A., and Jalali, S. (2017). Effect of exercise intervention on the perceptual-motor skills in adolescents with autism. J. Sports Med. Phys. Fitness 57: 53–59, https://doi.org/10.23736/s0022-4707.16.05919-3.Suche in Google Scholar

Ranieri, A., Mennitti, C., Falcone, N., La Monica, I., Di Iorio, M.R., Tripodi, L., Gentile, A., Vitale, M., Pero, R., Pastore, L., et al.. (2023). Positive effects of physical activity in autism spectrum disorder: how influences behavior, metabolic disorder and gut microbiota. Front. Psychiatry 14, https://doi.org/10.3389/fpsyt.2023.1238797.Suche in Google Scholar PubMed PubMed Central

Raymond, G.V., Bauman, M.L., and Kemper, T.L. (1996). Hippocampus in autism–a Golgi analysis. Acta Neuropathol. 91: 117–119, https://doi.org/10.1007/s004010050401.Suche in Google Scholar PubMed

Reddihough, D.S., Marraffa, C., Mouti, A., O’Sullivan, M., Lee, K.J., Orsini, F., Hazell, P., Granich, J., Whitehouse, A.J.O., Wray, J., et al.. (2019). Effect of fluoxetine on obsessive-compulsive behaviors in children and adolescents with autism spectrum disorders. Jama 322: 1561, https://doi.org/10.1001/jama.2019.14685.Suche in Google Scholar PubMed PubMed Central

Reichow, B., Hume, K., Barton, E.E., and Boyd, B.A. (2018). Early intensive behavioral intervention (EIBI) for young children with autism spectrum disorders (ASD). Cochrane Database Syst. Rev. 2018, https://doi.org/10.1002/14651858.cd009260.pub3.Suche in Google Scholar PubMed PubMed Central

Ribaric, S. (2022). Physical exercise, a potential non-pharmacological intervention for attenuating neuroinflammation and cognitive decline in Alzheimer’s disease patients. Int. J. Mol. Sci. 23, https://doi.org/10.3390/ijms23063245.Suche in Google Scholar PubMed PubMed Central

Roane, H.S., Fisher, W.W., and Carr, J.E. (2016). Applied behavior analysis as treatment for autism spectrum disorder. J. Pediatr. 175: 27–32, https://doi.org/10.1016/j.jpeds.2016.04.023.Suche in Google Scholar PubMed

Roman-Urrestarazu, A., van Kessel, R., Allison, C., Matthews, F.E., Brayne, C., and Baron-Cohen, S. (2021). Association of race/ethnicity and social disadvantage with autism prevalence in 7 million school children in England. JAMA Pediatr. 175: e210054, https://doi.org/10.1001/jamapediatrics.2021.0054.Suche in Google Scholar PubMed PubMed Central

Ruegsegger, G.N. and Booth, F.W. (2018). Health benefits of exercise. Cold Spring Harb. Perspect. Med. 8: a029694, https://doi.org/10.1101/cshperspect.a029694.Suche in Google Scholar PubMed PubMed Central

Runge, K., Cardoso, C., and de Chevigny, A. (2020). Dendritic spine plasticity: function and mechanisms. Front. Synaptic. Neurosci. 12: 36, https://doi.org/10.3389/fnsyn.2020.00036.Suche in Google Scholar PubMed PubMed Central

Ruotsalainen, I., Glerean, E., Karvanen, J., Gorbach, T., Renvall, V., Syvaoja, H.J., Tammelin, T.H., and Parviainen, T. (2021). Physical activity and aerobic fitness in relation to local and interhemispheric functional connectivity in adolescents’ brains. Brain Behav. 11: e01941, https://doi.org/10.1002/brb3.1941.Suche in Google Scholar PubMed PubMed Central

Saint‐Martin, M. and Goda, Y. (2022). Astrocyte–synapse interactions and cell adhesion molecules. FEBS J. 290: 3512–3526, https://doi.org/10.1111/febs.16540.Suche in Google Scholar PubMed

Saito, V.M., Rezende, R.M., and Teixeira, A.L. (2012). Cannabinoid modulation of neuroinflammatory disorders. Curr. Neuropharmacol. 10: 159–166, https://doi.org/10.2174/157015912800604515.Suche in Google Scholar PubMed PubMed Central

Sanchez, V., Bakhti‐Suroosh, A., Chen, A., Brunzell, D.H., Erisir, A., and Lynch, W.J. (2019). Exercise during abstinence normalizes ultrastructural synaptic plasticity associated with nicotine‐seeking following extended access self‐administration. Eur. J. Neurosci. 50: 2707–2721, https://doi.org/10.1111/ejn.14408.Suche in Google Scholar PubMed PubMed Central

Sarabzadeh, M., Azari, B.B., and Helalizadeh, M. (2019). The effect of six weeks of Tai Chi Chuan training on the motor skills of children with autism spectrum disorder. J. Bodyw. Mov. Ther. 23: 284–290, https://doi.org/10.1016/j.jbmt.2019.01.007.Suche in Google Scholar PubMed

Sato, M., Nakai, N., Fujima, S., Choe, K.Y., and Takumi, T. (2023). Social circuits and their dysfunction in autism spectrum disorder. Mol. Psychiatry 28: 3194–3206, https://doi.org/10.1038/s41380-023-02201-0.Suche in Google Scholar PubMed PubMed Central

Sato, W. and Uono, S. (2019). The atypical social brain network in autism: advances in structural and functional MRI studies. Curr. Opin. Neurol. 32: 617–621, https://doi.org/10.1097/wco.0000000000000713.Suche in Google Scholar

Sato, Y. and Okabe, S. (2019). Nano-scale analysis of synapse morphology in an autism mouse model with 15q11-13 copy number variation using focused ion beam milling and scanning electron microscopy. Microscopy 68: 122–132, https://doi.org/10.1093/jmicro/dfy128.Suche in Google Scholar PubMed

Satterstrom, F.K., Walters, R.K., Singh, T., Wigdor, E.M., Lescai, F., Demontis, D., Kosmicki, J.A., Grove, J., Stevens, C., Bybjerg-Grauholm, J., et al.. (2019). Autism spectrum disorder and attention deficit hyperactivity disorder have a similar burden of rare protein-truncating variants. Nat. Neurosci. 22: 1961–1965, https://doi.org/10.1038/s41593-019-0527-8.Suche in Google Scholar PubMed PubMed Central

Schmitz Olin, S., McFadden, B.A., Golem, D.L., Pellegrino, J.K., Walker, A.J., Sanders, D.J., and Arent, S.M. (2017). The effects of exercise dose on stereotypical behavior in children with autism. Med. Sci. Sports Exerc. 49: 983–990.10.1249/MSS.0000000000001197Suche in Google Scholar PubMed

Schoenfeld, T.J. and Swanson, C. (2021). A runner’s high for new neurons? Potential role for endorphins in exercise effects on adult neurogenesis. Biomolecules 11, https://doi.org/10.3390/biom11081077.Suche in Google Scholar PubMed PubMed Central

Schreibman, L., Dawson, G., Stahmer, A.C., Landa, R., Rogers, S.J., McGee, G.G., Kasari, C., Ingersoll, B., Kaiser, A.P., Bruinsma, Y., et al.. (2015). Naturalistic developmental behavioral interventions: empirically validated treatments for autism spectrum disorder. J. Autism Dev. Disord. 45: 2411–2428, https://doi.org/10.1007/s10803-015-2407-8.Suche in Google Scholar PubMed PubMed Central

Seo, T.B., Cho, H.S., Shin, M.S., Kim, C.J., Ji, E.S., and Baek, S.S. (2013). Treadmill exercise improves behavioral outcomes and spatial learning memory through up-regulation of reelin signaling pathway in autistic rats. J. Exerc. Rehabil. 9: 220–229, https://doi.org/10.12965/jer.130003.Suche in Google Scholar PubMed PubMed Central

Sharon, G., Cruz, N.J., Kang, D.-W., Gandal, M.J., Wang, B., Kim, Y.-M., Zink, E.M., Casey, C.P., Taylor, B.C., Lane, C.J., et al.. (2019). Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177: 1600–1618.e1617, https://doi.org/10.1016/j.cell.2019.05.004.Suche in Google Scholar PubMed PubMed Central

Sharon, G., Sampson, T.R., Geschwind, D.H., and Mazmanian, S.K. (2016). The central nervous system and the gut nicrobiome. Cell 167: 915–932, https://doi.org/10.1016/j.cell.2016.10.027.Suche in Google Scholar PubMed PubMed Central

Smith, P.J. and Merwin, R.M. (2021). The role of exercise in management of mental health disorders: an integrative review. Annu. Rev. Med. 72: 45–62, https://doi.org/10.1146/annurev-med-060619-022943.Suche in Google Scholar PubMed PubMed Central

Socała, K., Doboszewska, U., Szopa, A., Serefko, A., Włodarczyk, M., Zielińska, A., Poleszak, E., Fichna, J., and Wlaź, P. (2021). The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol. Res. 172: 105840, https://doi.org/10.1016/j.phrs.2021.105840.Suche in Google Scholar PubMed

Soldan, A., Alfini, A., Pettigrew, C., Faria, A., Hou, X., Lim, C., Lu, H., Spira, A.P., Zipunnikov, V., Albert, M., et al.. (2022). Actigraphy-estimated physical activity is associated with functional and structural brain connectivity among older adults. Neurobiol. Aging 116: 32–40, https://doi.org/10.1016/j.neurobiolaging.2022.04.006.Suche in Google Scholar PubMed PubMed Central

Spielman, L.J., Little, J.P., and Klegeris, A. (2016). Physical activity and exercise attenuate neuroinflammation in neurological diseases. Brain Res. Bull. 125: 19–29, https://doi.org/10.1016/j.brainresbull.2016.03.012.Suche in Google Scholar PubMed

Sprat, E., Mercer, M.A., Grimes, A., Papa, C., Norto, J., Serpe, A., Mueller, M., Eckert, M., Harris, K., Blackmon, L., et al.. (2018). Translating benefits of exercise on depression for youth with autism spectrum disorder and neurodevelopmental disorders. J. Psychol. Psychiatr. 2: 109.Suche in Google Scholar

Srikantha, P. and Mohajeri, M.H. (2019). The possible role of the microbiota-gut-brain-axis in autism spectrum disorder. Int. J. Mol. Sci. 20: 2115, https://doi.org/10.3390/ijms20092115.Suche in Google Scholar PubMed PubMed Central

Stein, I.S. and Zito, K. (2018). Dendritic spine elimination: molecular mechanisms and implications. Neuroscientist 25: 27–47, https://doi.org/10.1177/1073858418769644.Suche in Google Scholar PubMed PubMed Central

Sun, L.N., Qi, J.S., and Gao, R. (2018). Physical exercise reserved amyloid-beta induced brain dysfunctions by regulating hippocampal neurogenesis and inflammatory response via MAPK signaling. Brain Res. 1697: 1–9, https://doi.org/10.1016/j.brainres.2018.04.040.Suche in Google Scholar PubMed

Tammimies, K. (2019). Genetic mechanisms of regression in autism spectrum disorder. Neurosci. Biobehav. Rev. 102: 208–220, https://doi.org/10.1016/j.neubiorev.2019.04.022.Suche in Google Scholar PubMed

Tartaglione, A.M., Villani, A., Ajmone-Cat, M.A., Minghetti, L., Ricceri, L., Pazienza, V., De Simone, R., and Calamandrei, G. (2022). Maternal immune activation induces autism-like changes in behavior, neuroinflammatory profile and gut microbiota in mouse offspring of both sexes. Transl. Psychiatry 12, https://doi.org/10.1038/s41398-022-02149-9.Suche in Google Scholar PubMed PubMed Central

Tiede, G. and Walton, K.M. (2019). Meta-analysis of naturalistic developmental behavioral interventions for young children with autism spectrum disorder. Autism 23: 2080–2095, https://doi.org/10.1177/1362361319836371.Suche in Google Scholar PubMed

Todd, T., Reid, G., and Butler-Kisber, L. (2010). Cycling for students with ASD: self-regulation promotes sustained physical activity. Adapt. Phys. Activ. Q. 27: 226–241, https://doi.org/10.1123/apaq.27.3.226.Suche in Google Scholar PubMed

Toscano, C.V.A., Barros, L., Lima, A.B., Nunes, T., Carvalho, H.M., and Gaspar, J.M. (2021). Neuroinflammation in autism spectrum disorders: exercise as a “pharmacological” tool. Neurosci. Biobehav. Rev. 129: 63–74, https://doi.org/10.1016/j.neubiorev.2021.07.023.Suche in Google Scholar PubMed

Toscano, C.V.A., Carvalho, H.M., and Ferreira, J.P. (2018). Exercise effects for children with autism spectrum disorder: metabolic health, autistic traits, and quality of life. Percept. Mot. Skills 125: 126–146, https://doi.org/10.1177/0031512517743823.Suche in Google Scholar PubMed

Toscano, C.V.A., Ferreira, J.P., Quinaud, R.T., Silva, K.M.N., Carvalho, H.M., and Gaspar, J.M. (2022). Exercise improves the social and behavioral skills of children and adolescent with autism spectrum disorders. Front. Psychiatry 13: 1027799, https://doi.org/10.3389/fpsyt.2022.1027799.Suche in Google Scholar PubMed PubMed Central

Tse, C.Y.A., Lee, H.P., Chan, K.S.K., Edgar, V.B., Wilkinson-Smith, A., and Lai, W.H.E. (2019). Examining the impact of physical activity on sleep quality and executive functions in children with autism spectrum disorder: a randomized controlled trial. Autism 23: 1699–1710, https://doi.org/10.1177/1362361318823910.Suche in Google Scholar PubMed

Tu, G., Guo, Y., Xiao, R., Tang, L., Hu, M., and Liao, B. (2023). Effects of exercise training on the phosphoproteomics of the medial prefrontal cortex in rats with autism spectrum disorder induced by valproic acid. Neurorehabil. Neural Repair 37: 94–108, https://doi.org/10.1177/15459683231152814.Suche in Google Scholar PubMed

Upadhyay, J., Patra, J., Tiwari, N., Salankar, N., Ansari, M.N., and Ahmad, W. (2021). Dysregulation of multiple signaling neurodevelopmental pathways during embryogenesis: a possible cause of autism spectrum disorder. Cells 10, https://doi.org/10.3390/cells10040958.Suche in Google Scholar PubMed PubMed Central

Vasistha, N.A., Pardo-Navarro, M., Gasthaus, J., Weijers, D., Muller, M.K., Garcia-Gonzalez, D., Malwade, S., Korshunova, I., Pfisterer, U., von Engelhardt, J., et al.. (2020). Maternal inflammation has a profound effect on cortical interneuron development in a stage and subtype-specific manner. Mol. Psychiatry 25: 2313–2329, https://doi.org/10.1038/s41380-019-0539-5.Suche in Google Scholar PubMed PubMed Central

Veenstra-VanderWeele, J., Cook, E.H., King, B.H., Zarevics, P., Cherubini, M., Walton-Bowen, K., Bear, M.F., Wang, P.P., and Carpenter, R.L. (2016). Arbaclofen in children and adolescents with autism spectrum disorder: a randomized, controlled, phase 2 trial. Neuropsychopharmacology 42: 1390–1398, https://doi.org/10.1038/npp.2016.237.Suche in Google Scholar PubMed PubMed Central

Vijay, A., Kouraki, A., Gohir, S., Turnbull, J., Kelly, A., Chapman, V., Barrett, D.A., Bulsiewicz, W.J., and Valdes, A.M. (2021). The anti-inflammatory effect of bacterial short chain fatty acids is partially mediated by endocannabinoids. Gut Microbes 13, https://doi.org/10.1080/19490976.2021.1997559.Suche in Google Scholar PubMed PubMed Central

Vints, W.A.J., Levin, O., Fujiyama, H., Verbunt, J., and Masiulis, N. (2022). Exerkines and long-term synaptic potentiation: mechanisms of exercise-induced neuroplasticity. Front. Neuroendocrinol. 66: 100993, https://doi.org/10.1016/j.yfrne.2022.100993.Suche in Google Scholar PubMed

Vohra, R., Madhavan, S., and Sambamoorthi, U. (2016). Comorbidity prevalence, healthcare utilization, and expenditures of Medicaid enrolled adults with autism spectrum disorders. Autism 21: 995–1009, https://doi.org/10.1177/1362361316665222.Suche in Google Scholar PubMed PubMed Central

Wang, J.-G., Cai, K.-L., Liu, Z.-M., Herold, F., Zou, L., Zhu, L.-N., Xiong, X., and Chen, A.-G. (2020). Effects of mini-basketball training program on executive functions and core symptoms among preschool children with autism spectrum disorders. Brain sci. 10: 263, https://doi.org/10.3390/brainsci10050263.Suche in Google Scholar PubMed PubMed Central

Wang, J., Cao, Y., Hou, W., Bi, D., Yin, F., Gao, Y., Huang, D., Li, Y., Cao, Z., Yan, Y., et al.. (2023a). Fecal microbiota transplantation improves VPA-induced ASD mice by modulating the serotonergic and glutamatergic synapse signaling pathways. Transl. Psychiatry 13, https://doi.org/10.1038/s41398-023-02307-7.Suche in Google Scholar PubMed PubMed Central

Wang, M., Zhang, H., Liang, J., Huang, J., and Chen, N. (2023b). Exercise suppresses neuroinflammation for alleviating Alzheimer’s disease. J. Neuroinflam. 20: 76, https://doi.org/10.1186/s12974-023-02753-6.Suche in Google Scholar PubMed PubMed Central

Wang, R., Cai, Y., Lu, W., Zhang, R., Shao, R., Yau, S.-Y., Stubbs, B., McIntyre, R.S., Su, K.-P., Xu, G., et al.. (2023c). Exercise effect on the gut microbiota in young adolescents with subthreshold depression: a randomized psychoeducation-controlled Trial. Psychiatry Res. 319: 115005, https://doi.org/10.1016/j.psychres.2022.115005.Suche in Google Scholar PubMed

Wang, S., Chen, D., Yang, Y., Zhu, L., Xiong, X., and Chen, A. (2023d). Effectiveness of physical activity interventions for core symptoms of autism spectrum disorder: a systematic review and meta‐analysis. Autism Res. 16: 1811–1824, https://doi.org/10.1002/aur.3004.Suche in Google Scholar PubMed

Warreman, E.B., Nooteboom, L.A., Terry, M.B., Hoek, H.W., Leenen, P., Rossum, E.v., Ramlal, D., Vermeiren, R., and Ester, W.A. (2023). Psychological, behavioural and biological factors associated with gastrointestinal symptoms in autistic adults and adults with autistic traits. Autism 27: 2173–2186, https://doi.org/10.1177/13623613231155324.Suche in Google Scholar PubMed PubMed Central

Watters, R.G. and Watters, E. (1980). Decreasing self-stimulatory behavior with physical exercise in a group of autistic boys. J. Autism Dev. Disord. 10: 379–387, https://doi.org/10.1007/bf02414814.Suche in Google Scholar

Weerasinghe-Mudiyanselage, P.D.E., Ang, M.J., Kang, S., Kim, J.S., and Moon, C. (2022). Structural plasticity of the hippocampus in neurodegenerative diseases. Int. J. Mol. Sci. 23, https://doi.org/10.3390/ijms23063349.Suche in Google Scholar PubMed PubMed Central

Williams Buckley, A., Hirtz, D., Oskoui, M., Armstrong, M.J., Batra, A., Bridgemohan, C., Coury, D., Dawson, G., Donley, D., Findling, R.L., et al.. (2020). Practice guideline: treatment for insomnia and disrupted sleep behavior in children and adolescents with autism spectrum disorder. Neurology 94: 392–404, https://doi.org/10.1212/wnl.0000000000009033.Suche in Google Scholar PubMed PubMed Central

Won, J., Callow, D.D., Pena, G.S., Gogniat, M.A., Kommula, Y., Arnold-Nedimala, N.A., Jordan, L.S., and Smith, J.C. (2021). Evidence for exercise-related plasticity in functional and structural neural network connectivity. Neurosci. Biobehav. Rev. 131: 923–940, https://doi.org/10.1016/j.neubiorev.2021.10.013.Suche in Google Scholar PubMed PubMed Central

Xiong, Y., Chen, J., and Li, Y. (2023). Microglia and astrocytes underlie neuroinflammation and synaptic susceptibility in autism spectrum disorder. Front. Neurosci. 17: 1125428, https://doi.org/10.3389/fnins.2023.1125428.Suche in Google Scholar PubMed PubMed Central

Xu, D., Meng, Y., An, S., Meng, W., Li, H., Zhang, W., Xue, Y., Lan, X., Wang, X., Li, M., et al.. (2023). Swimming exercise is a promising early intervention for autism-like behavior in Shank3 deletion rats. CNS Neurosci. Ther. 29: 78–90, https://doi.org/10.1111/cns.13920.Suche in Google Scholar PubMed PubMed Central

Xue, Y., An, S., Qiu, W., Zhang, W., Fu, L., and Zhen, Z. (2023). Exercise changes gut microbiota: a new idea to explain that exercise improves autism. Int. J. Sports Med. 44: 473–483, https://doi.org/10.1055/a-2018-2477.Suche in Google Scholar PubMed

Yang, S., Liu, Z., Xiong, X., Cai, K., Zhu, L., Dong, X., Wang, J., Zhu, H., Shi, Y., and Chen, A. (2021). Effects of mini-basketball training program on social communication impairment and executive control network in preschool children with autism spectrum disorder. Int. J. Environ. Res. Public Health 18, https://doi.org/10.3390/ijerph18105132.Suche in Google Scholar PubMed PubMed Central

Yano, N. and Hosokawa, K. (2023). The importance of comprehensive support based on the three pillars of exercise, nutrition, and sleep for improving core symptoms of autism spectrum disorders. Front. Psychiatry 14, https://doi.org/10.3389/fpsyt.2023.1119142.Suche in Google Scholar PubMed PubMed Central

Yao, B., Christian, K.M., He, C., Jin, P., Ming, G.L., and Song, H. (2016). Epigenetic mechanisms in neurogenesis. Nat. Rev. Neurosci. 17: 537–549, https://doi.org/10.1038/nrn.2016.70.Suche in Google Scholar PubMed PubMed Central

Yilmaz, I., Yanardag, M., Birkan, B., and Bumin, G. (2004). Effects of swimming training on physical fitness and water orientation in autism. Pediatr. Int. 46: 624–626.10.1111/j.1442-200x.2004.01938.xSuche in Google Scholar PubMed

Yu, H., Qu, H., Chen, A., Du, Y., Liu, Z., and Wang, W. (2021). Alteration of effective connectivity in the default mode network of autism after an intervention. Front. Neurosci. 15: 796437, https://doi.org/10.3389/fnins.2021.796437.Suche in Google Scholar PubMed PubMed Central

Yu, Y. and Zhao, F. (2021). Microbiota-gut-brain axis in autism spectrum disorder. J. Genet. Genomics 48: 755–762, https://doi.org/10.1016/j.jgg.2021.07.001.Suche in Google Scholar PubMed

Zaslavsky, K., Zhang, W.B., McCready, F.P., Rodrigues, D.C., Deneault, E., Loo, C., Zhao, M., Ross, P.J., El Hajjar, J., Romm, A., et al.. (2019). SHANK2 mutations associated with autism spectrum disorder cause hyperconnectivity of human neurons. Nat. Neurosci. 22: 556–564, https://doi.org/10.1038/s41593-019-0365-8.Suche in Google Scholar PubMed PubMed Central

Zhang, J., Zhu, G., Wan, L., Liang, Y., Liu, X., Yan, H., Zhang, B., and Yang, G. (2023). Effect of fecal microbiota transplantation in children with autism spectrum disorder: a systematic review. Front. Psychiatry 14, https://doi.org/10.3389/fpsyt.2023.1123658.Suche in Google Scholar PubMed PubMed Central

Zhao, M. and Chen, S. (2018). The effects of structured physical activity program on social interaction and communication for children with autism. Biomed. Res. Int. 2018: 1825046.10.1155/2018/1825046Suche in Google Scholar PubMed PubMed Central

Zhao, H., Wang, Q., Yan, T., Zhang, Y., Xu, H.J., Yu, H.P., Tu, Z., Guo, X., Jiang, Y.H., Li, X.J., et al.. (2019). Maternal valproic acid exposure leads to neurogenesis defects and autism-like behaviors in non-human primates. Transl. Psychiatry 9: 267, https://doi.org/10.1038/s41398-019-0608-1.Suche in Google Scholar PubMed PubMed Central

Zhou, H., Xu, X., Yan, W., Zou, X., Wu, L., Luo, X., Li, T., Huang, Y., Guan, H., Chen, X., et al.. (2020). Prevalence of autism spectrum disorder in China: a nationwide multi-center population-based study among children aged 6 to 12 years. Neurosci. Bull. 36: 961–971, https://doi.org/10.1007/s12264-020-00530-6.Suche in Google Scholar PubMed PubMed Central

Zhou, Y., Shi, L., Cui, X., Wang, S., and Luo, X. (2016). Functional connectivity of the caudal anterior cingulate cortex is decreased in autism. PLoS One 11: e0151879, https://doi.org/10.1371/journal.pone.0151879.Suche in Google Scholar PubMed PubMed Central

Zikopoulos, B., Liu, X., Tepe, J., Trutzer, I., John, Y.J., and Barbas, H. (2018). Opposite development of short- and long-range anterior cingulate pathways in autism. Acta Neuropathol. 136: 759–778, https://doi.org/10.1007/s00401-018-1904-1.Suche in Google Scholar PubMed PubMed Central

Received: 2024-04-22
Accepted: 2024-07-15
Published Online: 2024-07-31
Published in Print: 2025-01-29

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2024-0058/html
Button zum nach oben scrollen