Abstract
An extensive review is presented on mitochondrial structure and function, mitochondrial proteins, the outer and inner membranes, cristae, the role of F1FO-ATP synthase, the mitochondrial contact site and cristae organizing system (MICOS), the sorting and assembly machinery morphology and function, and phospholipids, in particular cardiolipin. Aspects of mitochondrial regulation under physiological and pathological conditions are outlined, in particular the role of dysregulated MICOS protein subunit Mic60 in Parkinson’s disease, the relations between mitochondrial quality control and proteins, and mitochondria as signaling organelles. A mathematical modeling approach of cristae and MICOS using mechanical beam theory is introduced and outlined. The proposed modeling is based on the premise that an optimization framework can be used for a better understanding of critical mitochondrial function and also to better map certain experiments and clinical interventions.
Acknowledgments
The author extends his sincere gratitude to Dr. Maria E. Solesio, a faculty colleague in the Biology Department at Rutgers University, for reading the manuscript and providing valuable insights and recommendations. Of course, the author is solely responsible for the contents of the final manuscript.
While the papers referred to in this manuscript are key representatives of current knowledge and thinking, many other papers could not be included. This fact does not reflect on the importance of those papers. The author is grateful to his department and university for the scholarly environment and library support that provided the foundation for this study.
-
Research ethics: Not Applicable.
-
Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The author states no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
Glossary
Cofactors are organic molecules that primarily originate from vitamins and bind to enzymes functionalizing them to catalyze defined reactions (Singh and Mozzarelli 2009).
Dimers are polymers created by the bonding of two monomer molecules. Dimeric structures are those with two identical or similar units. Many proteins and enzymes are dimeric, with the advantage of correct and rapid assembly in the cell. Dimerization is the bonding of two molecules or ions (Mei et al. 2005; Paumard et al. 2002).
Dynamin and dynamin-like proteins are GTPases that have a role in membrane remodeling (Ferguson and De Camilli 2012).
GTPases are enzymes that hydrolyze guanosine triphosphate (GTP) to guanosine diphosphate (GDP) and inorganic phosphate Pi, which function as molecular switches essential to extracellular signal transduction in cells (Belenguer and Pellegrini 2013).
Free Energy, also Gibbs or Helmholtz free energies, refer to the energy available to perform work at constant temperature, as constrained by the first law of thermodynamics. They are functions of internal energy, temperature above absolute zero, pressure, enthalpy, and entropy, which are mathematically related to each other. The free energy is used to determine whether a system, biological or otherwise, can change its state. Free energy theories have been developed as brain theories (Friston 2010).
Myosin, with actin, forms the contractile filaments of muscle cells and is involved in motion in other types of cells. It is a molecular motor transducing mgATP (chemical energy) into mechanical energy, generating force and movement (Cooper 2000).
Oligomers are morphologically periodic molecules of few repeating units that can be constituted by monomers. Oligomerization (OG) is the chemical conversion of a few monomers into macromolecules (Betaneli et al. 2012). It is critical to at least several processes affecting crista: (i) OG of the F1FO-ATP synthase (with cardiolipin) is needed for the stability of the respiratory chain supercomplexes (at the cristae tips), (ii) OG of OPA1 is required for normal cristae structure, and (iii) OG of Mic10 is essential for membrane bending generally and CJ formation specifically.
Phosphorylation is a type of regulation of protein functions by inducing conformational changes in protein–protein functional contact surfaces. Phosphorylation is the addition of a phosphoryl (PO3) group to a molecule. For biological systems, phosphorylation is critical for cellular storage or release of energy using carrier molecules. In mitochondria, OxPhos of adenosine diphosphate (ADP) converts it into adenosine triphosphate (ATP), storing free energy as chemical energy for later use. Protein phosphorylation and dephosphorylation dominantly control most cellular processes and signaling pathways, including extracellular stimuli (Ohlmeier et al. 2010). This procedure is carried out for essentially all neuronal proteins, and it is a key mechanism of neuronal plasticity. Phosphorylation is one of the most common events in the post-translational regulation of protein function.
Proteases are enzymes involved in many biological functions, in particular proteolysis. This breaking down of proteins into smaller chains or individual amino acids is critical for the formation of new proteins. In this way, proteases regulate the fate, localization, and activity of many proteins; modulate protein–protein interactions; and create new bioactive molecules. Proteases process molecular signals that are necessary to cellular information management (Dou and Tan 2023).
Proteasomes are multi-subunit assemblies of proteases, large enzymatic protein complexes, which selectively degrade intracellular proteins, including transcription factors that regulate the cell cycle. Polymerization of ubiquitin, known to work in concert with the proteasome, serves as the main degradation signal in mammalian cells for numerous target proteins (Tanaka 2009). In summary, proteasomes are responsible for breaking down proteins in cells, while proteases are enzymes that specifically break down peptide bonds between amino acids in proteins.
Synthases are enzymes that catalyze the synthesis of a compound. The evolutionarily conserved proton-driven ATP synthase, a key enzyme of cell respiration embedded in the cristae membrane, is composed of two rotary motors/generators, the proton-driven FO and the ATP-synthesizing F1. FO and F1 are coupled via elastic torque transmission and function without relative slip (Junge and Nelson 2015).
Translocases are proteins that generally reside in membranes and assist in moving molecules across that membrane (Geissler et al. 2002).
References
Acin-Perez, R. and Enriquez, J.A. (2014). The function of the respiratory supercomplexes: the plasticity model. Biochim. Biophys. Acta 1837: 444–450, https://doi.org/10.1016/j.bbabio.2013.12.009.Suche in Google Scholar PubMed
Acin-Perez, R., Benincá, C., Fernandez del Rio, L., Shu, C., Baghdasarian, S., Zanette, V., Gerle, C., Jiko, C., Khairallah, R., Khan, S., et al.. (2023). Inhibition of ATP synthase reverse activity restores energy homeostasis in mitochondrial pathologies. EMBO J. 42: e111699, https://doi.org/10.15252/embj.2022111699.Suche in Google Scholar PubMed PubMed Central
Afzal, N., Lederer, W.J., Jafri, M.S., and Carmen, A.M. (2021). Effect of crista morphology on mitochondrial ATP output: a computational study. Curr. Res. Physiol. 4: 163–176, https://doi.org/10.1016/j.crphys.2021.03.005.Suche in Google Scholar PubMed PubMed Central
Agrawal, A. and Koslover, E.F. (2021). Optimizing mitochondrial maintenance in extended neuronal projections. PLoS Comput. Biol. 17: e1009073, https://doi.org/10.1371/journal.pcbi.1009073.Suche in Google Scholar PubMed PubMed Central
Ahmad, F. (2022). Protein stability [determination] problems. Front. Mol. Biosci. 9: 880358, https://doi.org/10.3389/fmolb.2022.880358.Suche in Google Scholar PubMed PubMed Central
Akabane, S., Uno, M., Tani, N., Shimazaki, S., Ebara, N., Kato, H., Kosako, H., and Oka, T. (2016). PKA regulates PINK1 stability and Parkin recruitment to damaged mitochondria through phosphorylation of MIC60. Mol. Cell 62: 371–384, https://doi.org/10.1016/j.molcel.2016.03.037.Suche in Google Scholar PubMed
Alimohamadi, H. and Rangamani, P. (2018). Modeling membrane curvature generation due to membrane–protein interactions. Biomolecules 8: 120, https://doi.org/10.3390/biom8040120.Suche in Google Scholar PubMed PubMed Central
Almendro-Vedia, V., Natale, P., Valdivieso González, D., Lillo, M.P., Aragones, J.L., and López-Montero, I. (2021). How rotating ATP synthases can modulate membrane structure. Arch. Biochem. Biophys. 708: 108939, https://doi.org/10.1016/j.abb.2021.108939.Suche in Google Scholar PubMed
Anand, R., Reichert, A.S., and Kondadi, A.K. (2021). Emerging roles of the MICOS complex in cristae dynamics and biogenesis. Biology 10: 600, https://doi.org/10.3390/biology10070600.Suche in Google Scholar PubMed PubMed Central
Anderson, N.S. and Haynes, C.M. (2020). Folding the mitochondrial UPR into the integrated stress response. Trends Cell Biol. 30: 428–439, https://doi.org/10.1016/j.tcb.2020.03.001.Suche in Google Scholar PubMed PubMed Central
Anselmi, C., Davies, K.M., and Faraldo-Gómez, J.D. (2018). Mitochondrial ATP synthase dimers spontaneously associate due to a long-range membrane-induced force. J. Gen. Physiol. 150: 763–770, https://doi.org/10.1085/jgp.201812033.Suche in Google Scholar PubMed PubMed Central
Area-Gomez, E. (2014). Assessing the function of mitochondria-associated ER membranes. Methods Enzymol. 547: 181–197, https://doi.org/10.1016/b978-0-12-801415-8.00011-4.Suche in Google Scholar
Arroyo, J.J., Garay, Ó.J., and Pámpano, Á. (2020). Boundary value problems for Euler-Bernoulli planar elastica. A solution construction procedure. J. Elasticity 139: 359–388, https://doi.org/10.1007/s10659-019-09755-7.Suche in Google Scholar
Baker, N., Patel, J., and Khacho, M. (2019). Linking mitochondrial dynamics, cristae remodeling and supercomplex formation: how mitochondrial structure can regulate bioenergetics. Mitochondrion 49: 259–268, https://doi.org/10.1016/j.mito.2019.06.003.Suche in Google Scholar PubMed
Baldwin, R.L. (2007). Energetics of protein folding. J. Mol. Biol. 371: 283–301, https://doi.org/10.1016/j.jmb.2007.05.078.Suche in Google Scholar PubMed
Barbot, M. and Meinecke, M. (2016). Reconstitutions of mitochondrial inner membrane remodeling. J. Struct. Biol. 196: 20–28, https://doi.org/10.1016/j.jsb.2016.07.014.Suche in Google Scholar PubMed
Batterman, R.W. and Rice, C.C. (2014). Minimal model explanations. Philos. Sci. 81: 349–376, https://doi.org/10.1086/676677.Suche in Google Scholar
Battersby, B.J., Richter, U., and Safronov, O. (2019). Mitochondrial nascent chain quality control determines organelle form and function. ACS Chem. Biol. 14: 2396–2405, https://doi.org/10.1021/acschembio.9b00518.Suche in Google Scholar PubMed
Beavan, A., Domingo-Sananes, M.R., and McInerney, J.O. (2024). Contingency, repeatability, and predictability in the evolution of a prokaryotic pangenome. Proc. Natl. Acad. Sci. U. S. A. 121: e2304934120, https://doi.org/10.1073/pnas.2304934120.Suche in Google Scholar PubMed PubMed Central
Belenguer, P. and Pellegrini, L. (2013). The dynamin GTPase OPA1: more than mitochondria? Biochim. Biophys. Acta, Mol. Cell Res. 1833: 176–183, https://doi.org/10.1016/j.bbamcr.2012.08.004.Suche in Google Scholar PubMed
Beltrán-Heredia, E., Tsai, F.-C., Salinas-Almaguer, S., Cao, F.J., Bassereau, P., and Monroy, F. (2019). Membrane curvature induces cardiolipin sorting. Commun. Biol. 2: 225, https://doi.org/10.1038/s42003-019-0471-x.Suche in Google Scholar PubMed PubMed Central
Benaroya, H. (2022). Understanding mitochondria and the utility of optimization as a canonical framework for identifying and modeling mitochondrial pathways. Rev. Neurosci. 33: 657–690, https://doi.org/10.1515/revneuro-2021-0138.Suche in Google Scholar PubMed
Benaroya, H., Nagurka, M.L., and Han, S.M. (2022). Mechanical vibration: theory and application, 5th ed. Rutgers University Press, New Brunswick.10.36019/9781978831087Suche in Google Scholar
Betaneli, V., Petrov, E.P., and Schwille, P. (2012). The role of lipids in VDAC oligomerization. Biophys. J. 102: 523–531, https://doi.org/10.1016/j.bpj.2011.12.049.Suche in Google Scholar PubMed PubMed Central
Bock-Bierbaum, T., Funck, K., Wollweber, F., Lisicki, E., von der Malsburg, K., von der Malsburg, A., Laborenz, J., Noel, J.K., Hessenberger, M., Jungbluth, S., et al.. (2022). Structural insights into crista junction formation by the Mic60-Mic19 complex. Sci. Adv. 8: eabo4946, https://doi.org/10.1126/sciadv.abo4946.Suche in Google Scholar PubMed PubMed Central
Bohnert, M., Zerbes, R.M., Davies, K.M., Mühleip, A.W., Rampelt, H., Horvath, S.E., Boenke, T., Kram, A., Perschil, I., Veenhuis, M., et al.. (2015). Central role of Mic10 in the mitochondrial contact site and cristae organizing system. Cell Metab. 21: 747–755, https://doi.org/10.1016/j.cmet.2015.04.007.Suche in Google Scholar PubMed
Bohovych, I., Donaldson, G., Christianson, S., Zahayko, N., and Khalimonchuk, O. (2014). Stress-triggered activation of the metalloprotease Oma1 involves its C-terminal region and is important for mitochondrial stress protection in yeast. J. Biol. Chem. 289: 13259–13272, https://doi.org/10.1074/jbc.m113.542910.Suche in Google Scholar PubMed PubMed Central
Bomba-Warczak, E., Edassery, S.L., Hark, T.J., and Savas, J.N. (2021). Long-lived mitochondrial cristae proteins in mouse heart and brain. J. Cell Biol. 220: 1, https://doi.org/10.1083/jcb.202005193.Suche in Google Scholar PubMed PubMed Central
Bostwick, J.B., Miksis, M.J., and Davis, S.H. (2016). Elastic membranes in confinement. J. R. Soc., Interface 13: 20160408, https://doi.org/10.1098/rsif.2016.0408.Suche in Google Scholar PubMed PubMed Central
Brown, M.F. (2012). Curvature forces in membrane lipid–protein interactions. Biochemistry 51: 9782–9795, https://doi.org/10.1021/bi301332v.Suche in Google Scholar PubMed PubMed Central
Cai, Q. and Jeong, Y.Y. (2020). Mitophagy in Alzheimer’s disease and other age-related neurodegenerative diseases. Cells 9: 150, https://doi.org/10.3390/cells9010150.Suche in Google Scholar PubMed PubMed Central
Cai, Q. and Tammineni, P. (2016). Alterations in mitochondrial quality control in Alzheimer’s disease. Front. Cell. Neurosci. 10: 24, https://doi.org/10.3389/fncel.2016.00024.Suche in Google Scholar PubMed PubMed Central
Cell Guidance Systems Ltd (2023). How can protein instability be fixed? Available at: <https://www.cellgs.com/blog/how-can-protein-instability-be-fixed.html#>.Suche in Google Scholar
Cogliati, S., Enriquez, J.A., and Scorrano, L. (2016). Mitochondrial cristae: where beauty meets functionality. Trends Biochem. Sci. 41: 261–273, https://doi.org/10.1016/j.tibs.2016.01.001.Suche in Google Scholar PubMed
Colina-Tenorio, L., Horten, P., Pfanner, N., and Rampelt, H. (2020). Shaping the mitochondrial inner membrane in health and disease. J. Intern. Med. 287: 645–664, https://doi.org/10.1111/joim.13031.Suche in Google Scholar PubMed
Collier, J.J., Oláhová, M., McWilliams, T.G., and Taylor, R.W. (2023). Mitochondrial signalling and homeostasis: from cell biology to neurological disease. Trends Neurosci. 46: 137–152, https://doi.org/10.1016/j.tins.2022.12.001.Suche in Google Scholar PubMed
Cooper, G.M. (2000). Actin, myosin, and cell movement, 2nd ed Sinauer Associates, Sunderland, Massachusetts.Suche in Google Scholar
Craig, E.A. (2018). Hsp70 at the membrane: driving protein translocation. BMC Biol. 16: 11, https://doi.org/10.1186/s12915-017-0474-3.Suche in Google Scholar PubMed PubMed Central
da Cunha, F.M., Torelli, N.Q., and Kowaltowski, A.J. (2015). Mitochondrial retrograde signaling: triggers, pathways, and outcomes. Oxid. Med. Cell. Longevity 2015: 482582–482510, https://doi.org/10.1155/2015/482582.Suche in Google Scholar PubMed PubMed Central
Davies, K.M., Anselmi, C., Wittig, I., Faraldo-Gómez, J.D., and Kühlbrandt, W. (2012). Structure of the yeast F1Fₒ-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proc. Natl. Acad. Sci. U. S. A. 109: 13602–13607, https://doi.org/10.1073/pnas.1204593109.Suche in Google Scholar PubMed PubMed Central
Demongeot, J., Glade, N., Hansen, O., and Moreira, A. (2007). An open issue: the inner mitochondrial membrane (IMM) as a free boundary problem. Biochimie 89: 1049–1057, https://doi.org/10.1016/j.biochi.2007.04.009.Suche in Google Scholar PubMed
Desai, R., East, D.A., Hardy, L., Faccenda, D., Rigon, M., Crosby, J., Alvarez, M.S., Singh, A., Mainenti, M., Hussey, L.K., et al.. (2020). Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Sci. Adv. 6, https://doi.org/10.1126/sciadv.abc9955.Suche in Google Scholar PubMed PubMed Central
Dill, K.A. (1990). Dominant forces in protein folding. Biochemistry 29: 7133–7155, https://doi.org/10.1021/bi00483a001.Suche in Google Scholar PubMed
Dörrbaum, A.R., Kochen, L., Langer, J.D., and Schuman, E.M. (2018). Local and global influences on protein turnover in neurons and glia. eLife 7, https://doi.org/10.7554/elife.34202.Suche in Google Scholar PubMed PubMed Central
Dou, Y. and Tan, Y. (2023). Presequence protease reverses mitochondria-specific amyloid-β-induced mitophagy to protect mitochondria. FASEB J. 37: e22890, https://doi.org/10.1096/fj.202200216rrrr.Suche in Google Scholar
Eisenberg-Bord, M. and Schuldiner, M. (2017). Ground control to major TOM: mitochondria–nucleus communication. FEBS J. 284: 196–210, https://doi.org/10.1111/febs.13778.Suche in Google Scholar PubMed
Endlicher, R., Drahota, Z., Štefková, K., Červinková, Z., and Kučera, O. (2023). The mitochondrial permeability transition Pore-current knowledge of its structure, function, and regulation, and optimized methods for Evaluating its functional state. Cells 12: 1273, https://doi.org/10.3390/cells12091273.Suche in Google Scholar PubMed PubMed Central
Eramo, M.J., Lisnyak, V., Formosa, L.E., and Ryan, M.T. (2020). The ‘mitochondrial contact site and cristae organising system’ (MICOS) in health and human disease. J. Biochem. 167: 243–255, https://doi.org/10.1093/jb/mvz111.Suche in Google Scholar PubMed
Eydt, K., Davis, K.M., Behrendt, C., Wittig, I., and Reichert, A.S. (2017). Cristae architecture is determined by an interplay of the MICOS complex and the F1Fo ATP synthase via Mic27 and Mic10. Microb. Cell 4: 259–272, https://doi.org/10.15698/mic2017.08.585.Suche in Google Scholar PubMed PubMed Central
Falabella, M., Vernon, H.J., Hanna, M.G., Claypool, S.M., and Pitceathly, R.D.S. (2021). Cardiolipin, mitochondria, and neurological disease. Trends Endocrinol. Metab. 32: 224–237, https://doi.org/10.1016/j.tem.2021.01.006.Suche in Google Scholar PubMed PubMed Central
Feng, Y., Madungwe, N.B., and Bopassa, J.C. (2019). Mitochondrial inner membrane protein, Mic60/mitofilin in mammalian organ protection. J. Cell. Physiol. 234: 3383–3393, https://doi.org/10.1002/jcp.27314.Suche in Google Scholar PubMed PubMed Central
Ferguson, S.M. and De Camilli, P. (2012). Dynamin, a membrane-remodelling GTPase. Nat. Rev. Mol. Cell Biol. 13: 75–88, https://doi.org/10.1038/nrm3266.Suche in Google Scholar PubMed PubMed Central
Filograna, R., Mennuni, M., Alsina, D., and Larsson, N.G. (2021). Mitochondrial DNA copy number in human disease: the more the better? FEBS Lett. 595: 976–1002, https://doi.org/10.1002/1873-3468.14021.Suche in Google Scholar PubMed PubMed Central
Fleming, K.G. (2014). Energetics of membrane protein folding. Annu. Rev. Biophys. 43: 233–255, https://doi.org/10.1146/annurev-biophys-051013-022926.Suche in Google Scholar PubMed
Frey, T.G. and Mannella, C.A. (2000). The internal structure of mitochondria. Trends Biochem. Sci. 25: 319–324, https://doi.org/10.1016/s0968-0004(00)01609-1.Suche in Google Scholar PubMed
Frey, T.G., Renken, C.W., and Perkins, G.A. (2002). Insight into mitochondrial structure and function from electron tomography. Biochim. Biophys. Acta, Bioenerg. 1555: 196–203, https://doi.org/10.1016/s0005-2728(02)00278-5.Suche in Google Scholar PubMed
Friedman, J.R. (2022). Mitochondria from the outside in: the relationship between inter-organelle crosstalk and mitochondrial internal organization. Contact 5, https://doi.org/10.1177/25152564221133267.Suche in Google Scholar PubMed PubMed Central
Friedman, J.R., Mourier, A., Yamada, J., McCaffery, J.M., and Nunnari, J. (2015). MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture. eLife 4, https://doi.org/10.7554/elife.07739.Suche in Google Scholar
Friston, K. (2010). The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11: 127–138, https://doi.org/10.1038/nrn2787.Suche in Google Scholar PubMed
Fry, M.Y., Navarro, P.P., Qin, X., Inde, Z., Ananda, V.Y., Lugo, C.M., Hakim, P., Luce, B.E., Ge, Y., McDonald, J.L., et al.. (2023). In situ architecture of Opa1-dependent mitochondrial cristae remodeling. bioRxiv, 2023.2001.2016.524176, https://doi.org/10.1101/2023.01.16.524176.Suche in Google Scholar PubMed PubMed Central
Ge, P., Dawson, V.L., and Dawson, T.M. (2020). PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson’s disease. Mol. Neurodegener. 15: 20, https://doi.org/10.1186/s13024-020-00367-7.Suche in Google Scholar PubMed PubMed Central
Geissler, A., Chacinska, A., Truscott, K.N., Wiedemann, N., Brandner, K., Sickmann, A., Meyer, H.E., Meisinger, C., Pfanner, N., and Rehling, P. (2002). The mitochondrial Presequence translocase: an essential role of Tim50 in directing Preproteins to the import channel. Cell 111: 507–518, https://doi.org/10.1016/s0092-8674(02)01073-5.Suche in Google Scholar PubMed
Ghochani, M., Nulton, J.D., Salamon, P., Frey, T.G., Rabinovitch, A., and Baljon, A.R. (2010). Tensile forces and shape entropy explain observed crista structure in mitochondria. Biophys. J. 99: 3244–3254, https://doi.org/10.1016/j.bpj.2010.09.038.Suche in Google Scholar PubMed PubMed Central
Giacomello, M., Pyakurel, A., Glytsou, C., and Scorrano, L. (2020). The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 21: 204–224, https://doi.org/10.1038/s41580-020-0210-7.Suche in Google Scholar PubMed
Gigliotti, M. and Grandidier, J.-C. (2010). Chemo-mechanics couplings in polymer matrix materials exposed to thermo-oxidative environments. C. R. Mec. 338: 164–175, https://doi.org/10.1016/j.crme.2010.02.008.Suche in Google Scholar
Gilman, J.J. (1996). Mechanochemistry. Science 274: 65, https://doi.org/10.1126/science.274.5284.65.Suche in Google Scholar
Glancy, B., Willingham, T.B., Kim, Y., and Katti, P. (2020). The functional impact of mitochondrial structure across subcellular scales. Front. Physiol. 11: 541040, https://doi.org/10.3389/fphys.2020.541040.Suche in Google Scholar PubMed PubMed Central
Gralka, M. and Kroy, K. (2015). Inelastic mechanics: a unifying principle in biomechanics. Biochim. Biophys. Acta, Mol. Cell Res. 1853: 3025–3037, https://doi.org/10.1016/j.bbamcr.2015.06.017.Suche in Google Scholar PubMed
Granat, L., Hunt, R.J., and Bateman, J.M. (2020). Mitochondrial retrograde signalling in neurological disease. Philos. Trans. R. Soc. London, Ser. B 375: 20190415, https://doi.org/10.1098/rstb.2019.0415.Suche in Google Scholar PubMed PubMed Central
Grinfeld, M.A. and Segletes, S.B. (2010). Towards mechanochemistry of fracture and cohesion: mechanics of a catenary process zone. Army Research Laboratory, Aberdeen Proving Ground, MD, pp. 1–27.10.21236/ADA529981Suche in Google Scholar
Groh, C., Haberkant, P., Stein, F., Filbeck, S., Pfeffer, S., Savitski, M.M., Boos, F., and Herrmann, J.M. (2023). Mitochondrial dysfunction rapidly modulates the abundance and thermal stability of cellular proteins. Life Sci. Alliance 6: e202201805, https://doi.org/10.26508/lsa.202201805.Suche in Google Scholar PubMed PubMed Central
Guan, S., Zhao, L., and Peng, R. (2022). Mitochondrial respiratory chain supercomplexes: from structure to function. Int. J. Mol. Sci. 23: 13880, https://doi.org/10.3390/ijms232213880.Suche in Google Scholar PubMed PubMed Central
Guarani, V., McNeill, E.M., Paulo, J.A., Huttlin, E.L., Fröhlich, F., Gygi, S.P., Vactor, D.V., and Wade Harper, J. (2015). QIL1 is a novel mitochondrial protein required for MICOS complex stability and cristae morphology. eLife 4: 1–23, https://doi.org/10.7554/elife.06265.Suche in Google Scholar PubMed PubMed Central
Guckenberger, A. and Gekle, S. (2017). Theory and algorithms to compute Helfrich bending forces: a review. J. Phys.: Condens.Matter 29: 203001, https://doi.org/10.1088/1361-648x/aa6313.Suche in Google Scholar
He, L., Lou, J., Dong, Y., Kitipornchai, S., and Yang, J. (2018). A shearable and thickness stretchable finite strain beam model for soft structures. Meccanica53: 3759–3777, https://doi.org/10.1007/s11012-018-0905-4.Suche in Google Scholar
Heine, K.B., Parry, H.A., and Hood, W.R. (2023). How does density of the inner mitochondrial membrane influence mitochondrial performance? Am. J. Physiol.: Regul., Integr. Comp. Physiol. 324: R242–R248, https://doi.org/10.1152/ajpregu.00254.2022.Suche in Google Scholar PubMed PubMed Central
Helfrich, W. (1973). Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28: 693–703, https://doi.org/10.1515/znc-1973-11-1209.Suche in Google Scholar PubMed
Hessenberger, M., Zerbes, R.M., Rampelt, H., Kunz, S., Xavier, A.H., Purfürst, B., Lilie, H., Pfanner, N., van der Laan, M., and Daumke, O. (2017). Regulated membrane remodeling by Mic60 controls formation of mitochondrial crista junctions. Nat. Commun. 8: 15258, https://doi.org/10.1038/ncomms15258.Suche in Google Scholar PubMed PubMed Central
Horvath, S.E., Rampelt, H., Oeljeklaus, S., Warscheid, B., van der Laan, M., and Pfanner, N. (2015). Role of membrane contact sites in protein import into mitochondria. Protein Sci. 24: 277–297, https://doi.org/10.1002/pro.2625.Suche in Google Scholar PubMed PubMed Central
Hu, C., Shu, L., Huang, X., Yu, J., Li, L., Gong, L., Yang, M., Wu, Z., Gao, Z., Zhao, Y., et al.. (2020). OPA1 and MICOS Regulate mitochondrial crista dynamics and formation. Cell Death Dis. 11: 940, https://doi.org/10.1038/s41419-020-03152-y.Suche in Google Scholar PubMed PubMed Central
Hunt, R.J. and Bateman, J.M. (2018). Mitochondrial retrograde signaling in the nervous system. FEBS Lett. 592: 663–678, https://doi.org/10.1002/1873-3468.12890.Suche in Google Scholar PubMed
Hunter, P. (2006). A quantum leap in biology. One inscrutable field helps another, as quantum physics unravels consciousness. EMBO Rep. 7: 971–974, https://doi.org/10.1038/sj.embor.7400802.Suche in Google Scholar PubMed PubMed Central
Ikon, N. and Ryan, R.O. (2017). Cardiolipin and mitochondrial cristae organization. Biochim. Biophys. Acta, Biomembr. 1859: 1156–1163, https://doi.org/10.1016/j.bbamem.2017.03.013.Suche in Google Scholar PubMed PubMed Central
Isomura, T., Kotani, K., Jimbo, Y., and Friston, K.J. (2023). Experimental validation of the free-energy principle with in vitro neural networks. Nat. Commun. 14: 4547, https://doi.org/10.1038/s41467-023-40141-z.Suche in Google Scholar PubMed PubMed Central
Jagtap, Y.A., Kumar, P., Kinger, S., Dubey, A.R., Choudhary, A., Gutti, R.K., Singh, S., Jha, H.C., Poluri, K.M., and Mishra, A. (2023). Disturb mitochondrial associated proteostasis: neurodegeneration and imperfect ageing. Front. Cell Dev. Biol. 11: 1146564, https://doi.org/10.3389/fcell.2023.1146564.Suche in Google Scholar PubMed PubMed Central
Jakubke, C., Roussou, R., Maiser, A., Schug, C., Thoma, F., Bunk, D., Hörl, D., Leonhardt, H., Walter, P., Klecker, T., et al.. (2021). Cristae-dependent quality control of the mitochondrial genome. Sci. Adv. 7: eabi8886, https://doi.org/10.1126/sciadv.abi8886.Suche in Google Scholar PubMed PubMed Central
Jiang, Y.-F., Lin, H.-L., Wang, L.-J., Hsu, T., and Fu, C.-Y. (2020). Coordinated organization of mitochondrial lamellar cristae and gain of COX function during mitochondrial maturation in Drosophila. Mol. Biol. Cell 31: 18–26, https://doi.org/10.1091/mbc.e19-08-0450.Suche in Google Scholar PubMed PubMed Central
Johnson, C.M. and Sharpe, T.D. (2018). Protein folding, energy landscapes and downhill protein folding scenarios. In: Roberts, G.C.K. and Watts, A. (Eds.). Encyclopedia of biophysics. Springer Reference Biomedicine & Life Sciences, Sunderland, Massachusetts, pp. 1–19.10.1007/978-3-642-35943-9_10068-1Suche in Google Scholar
Joubert, F. and Puff, N. (2021). Mitochondrial cristae architecture and functions: lessons from minimal model systems. Membranes11, https://doi.org/10.3390/membranes11070465.Suche in Google Scholar PubMed PubMed Central
Jovaisaite, V., Mouchiroud, L., and Auwerx, J. (2014). The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J. Exp. Biol. 217: 137–143, https://doi.org/10.1242/jeb.090738.Suche in Google Scholar PubMed PubMed Central
Ju, W.-K., Liu, Q., Kim, K.-Y., Crowston, J.G., Lindsey, J.D., Agarwal, N., Ellisman, M.H., Perkins, G.A., and Weinreb, R.N. (2007). Elevated hydrostatic pressure triggers mitochondrial fission and decreases cellular ATP in differentiated RGC-5 cells. Invest. Ophthalmol. Visual Sci. 48: 2145–2151, https://doi.org/10.1167/iovs.06-0573.Suche in Google Scholar PubMed
Junge, W. and Nelson, N. (2015). ATP synthase. Annu. Rev. Clin. Biochem. 84: 631–657, https://doi.org/10.1146/annurev-biochem-060614-034124.Suche in Google Scholar PubMed
Kazlauskas, R. (2018). Engineering more stable proteins. Chem. Soc. Rev. 47: 9026–9045, https://doi.org/10.1039/c8cs00014j.Suche in Google Scholar PubMed
Khondrion Pharmaceuticals BV, Nijmegen, The Netherlands. Suche in Google Scholar
Kimmel, E. (1992). Elastic and dissipative moduli of pressure-supported cellular substances. Int. J. Mech. Sci. 34: 809–815, https://doi.org/10.1016/0020-7403(92)90044-h.Suche in Google Scholar
Klecker, T. and Westermann, B. (2021). Pathways shaping the mitochondrial inner membrane. Open Biol. 11: 210238, https://doi.org/10.1098/rsob.210238.Suche in Google Scholar PubMed PubMed Central
Knoblauch, J., Mullendore, D.L., Jensen, K.H., and Knoblauch, M. (2014). Pico gauges for minimally invasive intracellular hydrostatic pressure measurements. Plant Physiol. 166: 1271–1279, https://doi.org/10.1104/pp.114.245746.Suche in Google Scholar PubMed PubMed Central
Kondadi, A.K., Anand, R., and Reichert, A.S. (2020). Cristae membrane dynamics – a Paradigm change. Trends Cell Biol. 30: 923–936, https://doi.org/10.1016/j.tcb.2020.08.008.Suche in Google Scholar PubMed
Kornmann, B. and Walter, P. (2010). ERMES-mediated ER-mitochondria contacts: molecular hubs for the regulation of mitochondrial biology. J. Cell Sci. 123: 1389–1393, https://doi.org/10.1242/jcs.058636.Suche in Google Scholar PubMed PubMed Central
Kozjak-Pavlovic, V. (2017). The MICOS complex of human mitochondria. Cell Tissue Res. 367: 83–93, https://doi.org/10.1007/s00441-016-2433-7.Suche in Google Scholar PubMed
Krishna, S., Arrojo e Drigo, R., Capitanio, J.S., Ramachandra, R., Ellisman, M., and Hetzer, M.W. (2021). Identification of long-lived proteins in the mitochondria reveals increased stability of the electron transport chain. Dev. Cell 56: 2952–2965.e2959, https://doi.org/10.1016/j.devcel.2021.10.008.Suche in Google Scholar PubMed PubMed Central
Kuhlbrandt, W. (2015). Structure and function of mitochondrial membrane protein complexes. BMC Biol. 13: 89, https://doi.org/10.1186/s12915-015-0201-x.Suche in Google Scholar PubMed PubMed Central
Kundu, D. and Pasrija, R. (2020). The ERMES (endoplasmic reticulum and mitochondria encounter structures) mediated functions in fungi. Mitochondrion 52: 89–99, https://doi.org/10.1016/j.mito.2020.02.010.Suche in Google Scholar PubMed
Lavalle, P., Boulmedais, F., Schaaf, P., and Jierry, L.C. (2016). Soft-mechanochemistry: mechanochemistry inspired by nature. Langmuir 32: 7265–7276, https://doi.org/10.1021/acs.langmuir.6b01768.Suche in Google Scholar PubMed
Li, H., Ruan, Y., Zhang, K., Jian, F., Hu, C., Miao, L., Gong, L., Sun, L., Zhang, X., Chen, S., et al.. (2016). Mic60/Mitofilin determines MICOS assembly essential for mitochondrial dynamics and mtDNA nucleoid organization. Cell Death Differ. 23: 380–392, https://doi.org/10.1038/cdd.2015.102.Suche in Google Scholar PubMed PubMed Central
Liesa, M. (2020). Why does a mitochondrion need its individual cristae to be functionally autonomous? Mol. Cell. Oncol. 7: 1705119, https://doi.org/10.1080/23723556.2019.1705119.Suche in Google Scholar PubMed PubMed Central
Lu, L., Mao, H., Zhou, M., Lin, Y., Dai, W., Qiu, J., Xiao, Y., Mo, M., Zhu, X., Wu, Z., et al.. (2022). CHCHD2 maintains mitochondrial contact site and cristae organizing system stability and protects against mitochondrial dysfunction in an experimental model of Parkinson’s disease. Chin. Med. J. 135: 1588–1596, https://doi.org/10.1097/cm9.0000000000002053.Suche in Google Scholar
Mallamace, F., Corsaro, C., Mallamace, D., Vasi, S., Vasi, C., Baglioni, P., Buldyrev, S.V., Chen, S.-H., and Stanley, H.E. (2016). Energy landscape in protein folding and unfolding. Proc. Natl. Acad. Sci. U. S. A. 113: 3159–3163, https://doi.org/10.1073/pnas.1524864113.Suche in Google Scholar PubMed PubMed Central
Mannella, C.A. (2020). Consequences of folding the mitochondrial inner membrane. Front. Physiol. 11: 536, https://doi.org/10.3389/fphys.2020.00536.Suche in Google Scholar PubMed PubMed Central
Mannella, C.A., Lederer, W.J., and Jafri, M.S. (2013). The connection between inner membrane topology and mitochondrial function. J. Mol. Cell. Cardiol. 62: 51–57, https://doi.org/10.1016/j.yjmcc.2013.05.001.Suche in Google Scholar PubMed PubMed Central
Mayer, M.P. and Bukau, B. (2005). Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62: 670–684, https://doi.org/10.1007/s00018-004-4464-6.Suche in Google Scholar PubMed PubMed Central
McIntyre, B. and Solesio, M. (2021). Mitochondrial inorganic polyphosphate (polyP): the missing link of mammalian bioenergetics. Neural Regener. Res. 16: 2227–2228, https://doi.org/10.4103/1673-5374.310687.Suche in Google Scholar PubMed PubMed Central
McShane, E., Sin, C., Zauber, H., Wells, J.N., Donnelly, N., Wang, X., Hou, J., Chen, W., Storchova, Z., Marsh, J.A., et al.. (2016). Kinetic Analysis of protein stability reveals age-dependent degradation. Cell 167: 803–815.e821, https://doi.org/10.1016/j.cell.2016.09.015.Suche in Google Scholar PubMed
Medlock, A.E., Hixon, J.C., Bhuiyan, T., and Cobine, P.A. (2022). Prime real estate: metals, cofactors and MICOS. Front. Cell Dev. Biol. 10: 892325, https://doi.org/10.3389/fcell.2022.892325.Suche in Google Scholar PubMed PubMed Central
Mei, G., Di Venere, A., Rosato, N., and Finazzi-Agrò, A. (2005). The importance of being dimeric. FEBS J. 272: 16–27, https://doi.org/10.1111/j.1432-1033.2004.04407.x.Suche in Google Scholar PubMed
Melber, A. and Haynes, C.M. (2018). UPRmt regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Research 28: 281–295, https://doi.org/10.1038/cr.2018.16.Suche in Google Scholar PubMed PubMed Central
Mendelsohn, R., Garcia, G.C., Bartol, T.M., Lee, C.T., Khandelwal, P., Liu, E., Spencer, D.J., Husar, A., Bushong, E.A., Phan, S., et al.. (2022). Morphological principles of neuronal mitochondria. J. Comp. Neurol. 530: 886–902, https://doi.org/10.1002/cne.25254.Suche in Google Scholar PubMed PubMed Central
Miner, M.A. (1945). Cumulative damage in fatigue. J. Appl. Mech. 12: A159–A164, https://doi.org/10.1115/1.4009458.Suche in Google Scholar
Miranda-Astudillo, H., Ostolga-Chavarría, M., Cardol, P., and González-Halphen, D. (2022). Beyond being an energy supplier, ATP synthase is a sculptor of mitochondrial cristae. Biochim. Biophys. Acta, Bioenerg. 1863: 148569, https://doi.org/10.1016/j.bbabio.2022.148610.Suche in Google Scholar
Miyazono, Y., Hirashima, S., Ishihara, N., Kusukawa, J., Nakamura, K.-I., and Ohta, K. (2018). Uncoupled mitochondria quickly shorten along their long axis to form indented spheroids, instead of rings, in a fission-independent manner. Sci. Rep. 8: 350, https://doi.org/10.1038/s41598-017-18582-6.Suche in Google Scholar PubMed PubMed Central
Morelli, A.M., Ravera, S., Calzia, D., and Panfoli, I. (2019). An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. Open Biol. 9: 180221, https://doi.org/10.1098/rsob.180221.Suche in Google Scholar PubMed PubMed Central
Morgenstern, M., Stiller, S.B., Lübbert, P., Peikert, C.D., Dannenmaier, S., Drepper, F., Weill, U., Höß, P., Feuerstein, R., Gebert, M., et al.. (2017). Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep. 19: 2836–2852, https://doi.org/10.1016/j.celrep.2017.06.014.Suche in Google Scholar PubMed PubMed Central
Mukherjee, I., Ghosh, M., and Meinecke, M. (2021). MICOS and the mitochondrial inner membrane morphology – when things get out of shape. FEBS Lett. 595: 1159–1183, https://doi.org/10.1002/1873-3468.14089.Suche in Google Scholar PubMed
Murphy, M.P. (2009). How mitochondria produce reactive oxygen species. Biochem. J. 417: 1–13, https://doi.org/10.1042/bj20081386.Suche in Google Scholar
Nappi, F., Carotenuto, A.R., Singh, S.S.A., Mihos, C., and Fraldi, M. (2019). Euler’s elastica-based biomechanics of the papillary muscle approximation in ischemic mitral valve regurgitation: a simple 2D analytical model. Materials 12: 1518, https://doi.org/10.3390/ma12091518.Suche in Google Scholar PubMed PubMed Central
Needs, H.I., Protasoni, M., Henley, J.M., Prudent, J., Collinson, I., and Pereira, G.C. (2021). Interplay between mitochondrial protein import and respiratory complexes assembly in neuronal health and degeneration. Life 11: 432, https://doi.org/10.3390/life11050432.Suche in Google Scholar PubMed PubMed Central
Neurohr, J.M., Paulson, E.T., and Kinsey, S.T. (2021). A higher mitochondrial content is associated with greater oxidative damage, oxidative defenses, protein synthesis and ATP turnover in resting skeletal muscle. J. Exp. Biol. 224, https://doi.org/10.1242/jeb.242462.Suche in Google Scholar PubMed PubMed Central
Nguyen, T.N., Padman, B.S., and Lazarou, M. (2016). Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol. 26: 733–744, https://doi.org/10.1016/j.tcb.2016.05.008.Suche in Google Scholar PubMed
Nisthal, A., Wang, C.Y., Ary, M.L., and Mayo, S.L. (2019). Protein stability engineering insights revealed by domain-wide comprehensive mutagenesis. Proc. Natl. Acad. Sci. U. S. A. 116: 16367–16377, https://doi.org/10.1073/pnas.1903888116.Suche in Google Scholar PubMed PubMed Central
Oanh, N.T.K., Lee, H.-S., Kim, Y.-H., Min, S., Park, Y.-J., Heo, J., Park, Y.-Y., Lim, W.-C., and Cho, H. (2022). Regulation of nuclear DNA damage response by mitochondrial morphofunctional pathway. Nucleic Acids Res. 50: 9247–9259, https://doi.org/10.1093/nar/gkac690.Suche in Google Scholar PubMed PubMed Central
Ohlmeier, S., Hiltunen, J.K., and Bergmann, U. (2010). Protein phosphorylation in mitochondria – a study on fermentative and respiratory growth of Saccharomyces cerevisiae. Electrophoresis 31: 2869–2881, https://doi.org/10.1002/elps.200900759.Suche in Google Scholar PubMed
Pánek, T., Eliáš, M., Vancová, M., Lukeš, J., and Hashimi, H. (2020). Returning to the fold for lessons in mitochondrial crista diversity and evolution. Curr. Biol. 30: R575–R588, https://doi.org/10.1016/j.cub.2020.02.053.Suche in Google Scholar PubMed
Pänke, O., Cherepanov, D.A., Gumbiowski, K., Engelbrecht, S., and Junge, W. (2001). Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: angular torque Profile of the enzyme. Biophys. J. 81: 1220–1233, https://doi.org/10.1016/s0006-3495(01)75780-3.Suche in Google Scholar PubMed PubMed Central
Pape, J.K., Stephan, T., Balzarotti, F., Büchner, R., Lange, F., Riedel, D., Jakobs, S., and Hell, S.W. (2020). Multicolor 3D MINFLUX nanoscopy of mitochondrial MICOS proteins. Proc. Natl. Acad. Sci. U. S. A. 117: 20607–20614, https://doi.org/10.1073/pnas.2009364117.Suche in Google Scholar PubMed PubMed Central
Paradies, G., Paradies, V., Ruggiero, F.M., and Petrosillo, G. (2019). Role of cardiolipin in mitochondrial function and dynamics in health and disease: molecular and Pharmacological aspects. Cells 8: 728, https://doi.org/10.3390/cells8070728.Suche in Google Scholar PubMed PubMed Central
Pastore, A. and Temussi, P.A. (2022). The protein unfolded state: one, No one and one hundred thousand. J. Am. Chem. Soc. 144: 22352–22357, https://doi.org/10.1021/jacs.2c07696.Suche in Google Scholar PubMed PubMed Central
Paumard, P., Vaillier, J., Coulary, B., Schaeffer, J., Soubannier, V., Mueller, D.M., Brèthes, D., di Rago, J.-P., and Velours, J. (2002). The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J. 21: 221–230, https://doi.org/10.1093/emboj/21.3.221.Suche in Google Scholar PubMed PubMed Central
Perkins, G., Renken, C., Martone, M.E., Young, S.J., Ellisman, M., and Frey, T. (1997). Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J. Struct. Biol. 119: 260–272, https://doi.org/10.1006/jsbi.1997.3885.Suche in Google Scholar PubMed
Perkins, G.A. and Frey, T.G. (2000). Recent structural insight into mitochondria gained by microscopy. Micron 31: 97–111, https://doi.org/10.1016/s0968-4328(99)00065-7.Suche in Google Scholar PubMed
Pfanner, N., van der Laan, M., Amati, P., Capaldi, R.A., Caudy, A.A., Chacinska, A., Darshi, M., Deckers, M., Hoppins, S., Icho, T., et al.. (2014). Uniform nomenclature for the mitochondrial contact site and cristae organizing system. J. Cell Biol. 204: 1083–1086, https://doi.org/10.1083/jcb.201401006.Suche in Google Scholar PubMed PubMed Central
Pfanner, N., Warscheid, B., and Wiedemann, N. (2019). Mitochondrial proteins: from biogenesis to functional networks. Nat. Rev. Mol. Cell Biol. 20: 267–284, https://doi.org/10.1038/s41580-018-0092-0.Suche in Google Scholar PubMed PubMed Central
Phillips, B.P. and Miller, E.A. (2021). Membrane protein folding and quality control. Curr. Opin. Struct. Biol. 69: 50–54, https://doi.org/10.1016/j.sbi.2021.03.003.Suche in Google Scholar PubMed PubMed Central
Picard, M., McManus, M.J., Csordás, G., Várnai, P., Dorn, G.W., Williams, D., Hajnóczky, G., and Wallace, D.C. (2015). Trans-mitochondrial coordination of cristae at regulated membrane junctions. Nat. Commun. 6: 6259, https://doi.org/10.1038/ncomms7259.Suche in Google Scholar PubMed PubMed Central
Polo, C.C., Fonseca-Alaniz, M.H., Chen, J.H., Ekman, A., McDermott, G., Meneau, F., Krieger, J.E., and Miyakawa, A.A. (2020). Three-dimensional imaging of mitochondrial cristae complexity using cryo-soft X-ray tomography. Sci. Rep. 10: 21045, https://doi.org/10.1038/s41598-020-78150-3.Suche in Google Scholar PubMed PubMed Central
Priesnitz, C. and Becker, T. (2018). Pathways to balance mitochondrial translation and protein import. Genes Dev. 32: 1285–1296, https://doi.org/10.1101/gad.316547.118.Suche in Google Scholar PubMed PubMed Central
Protasoni, M. and Zeviani, M. (2021). Mitochondrial structure and bioenergetics in normal and disease conditions. Int. J. Mol. Sci. 22: 586, https://doi.org/10.3390/ijms22020586.Suche in Google Scholar PubMed PubMed Central
Quintana-Cabrera, R., Mehrotra, A., Rigoni, G., and Soriano, M.E. (2018). Who and how in the regulation of mitochondrial cristae shape and function. Biochem. Biophys. Res. Commun. 500: 94–101, https://doi.org/10.1016/j.bbrc.2017.04.088.Suche in Google Scholar PubMed
Rader, A.J., Hespenheide, B.M., Kuhn, L.A., and Thorpe, M.F. (2002). Protein unfolding: rigidity lost. Proc. Natl. Acad. Sci. U. S. A. 99: 3540–3545, https://doi.org/10.1073/pnas.062492699.Suche in Google Scholar PubMed PubMed Central
Radford, S.E. (2000). Protein folding: progress made and promises ahead. Trends Biochem. Sci. 25: 611–618, https://doi.org/10.1016/s0968-0004(00)01707-2.Suche in Google Scholar PubMed
Raimundo, N., Fernandez-Mosquera, L., and Yambire, K.F. (2016) Mitochondrial signaling. In: Hockenbery, D.M. (Ed.). Mitochondria and cell death. Springer New York, United States, pp. 169–186.10.1007/978-1-4939-3612-0_9Suche in Google Scholar
Rampelt, H. and van der Laan, M. (2017). The Yin & Yang of mitochondrial architecture – interplay of MICOS and F1Fo-ATP synthase in cristae formation. Microb. Cell 4: 236–239, https://doi.org/10.15698/mic2017.08.583.Suche in Google Scholar PubMed PubMed Central
Rampelt, H., Zerbes, R.M., van der Laan, M., and Pfanner, N. (2017). Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics. Biochim. Biophys. Acta, Mol. Cell Res. 1864: 737–746, https://doi.org/10.1016/j.bbamcr.2016.05.020.Suche in Google Scholar PubMed
Rampelt, H., Wollweber, F., Gerke, C., de Boer, R., van der Klei, I.J., Bohnert, M., Pfanner, N., and van der Laan, M. (2018). Assembly of the mitochondrial cristae organizer Mic10 is regulated by Mic26–Mic27 antagonism and cardiolipin. J. Mol. Biol. 430: 1883–1890, https://doi.org/10.1016/j.jmb.2018.04.037.Suche in Google Scholar PubMed
Rampelt, H., Wollweber, F., Licheva, M., de Boer, R., Perschil, I., Steidle, L., Becker, T., Bohnert, M., van der Klei, I., Kraft, C., et al.. (2022). Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth. Cell Rep. 38: 110290, https://doi.org/10.1016/j.celrep.2021.110290.Suche in Google Scholar PubMed PubMed Central
Reddy, P.H. and Beal, M.F. (2008). Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol. Med. 14: 45–53, https://doi.org/10.1016/j.molmed.2007.12.002.Suche in Google Scholar PubMed PubMed Central
Renken, C., Siragusa, G., Perkins, G., Washington, L., Nulton, J., Salamon, P., and Frey, T.G. (2002). A thermodynamic model describing the nature of the crista junction: a structural motif in the mitochondrion. J. Struct. Biol. 138: 137–144, https://doi.org/10.1016/s1047-8477(02)00012-6.Suche in Google Scholar PubMed
Reznik, E., Miller, M.L., Şenbabaoğlu, Y., Riaz, N., Sarungbam, J., Tickoo, S.K., Al-Ahmadie, H.A., Lee, W., Seshan, V.E., Hakimi, A.A., et al.. (2016). Mitochondrial DNA copy number variation across human cancers. eLife 5, https://doi.org/10.7554/elife.10769.Suche in Google Scholar
Richter, U., Lahtinen, T., Marttinen, P., Suomi, F., and Battersby, B.J. (2015). Quality control of mitochondrial protein synthesis is required for membrane integrity and cell fitness. J. Cell Biol.Biol. 211: 373–389, https://doi.org/10.1083/jcb.201504062.Suche in Google Scholar PubMed PubMed Central
Richter, U., Ng, K.Y., Suomi, F., Marttinen, P., Turunen, T., Jackson, C., Suomalainen, A., Vihinen, H., Jokitalo, E., Nyman, T.A., et al.. (2019). Mitochondrial stress response triggered by defects in protein synthesis quality control. Life Sci. Alliance 2: e201800219, https://doi.org/10.26508/lsa.201800219.Suche in Google Scholar PubMed PubMed Central
Roca-Portoles, A. and Tait, S.W.G. (2021). Mitochondrial quality control: from molecule to organelle. Cell. Mol. Life Sci. 78: 3853–3866, https://doi.org/10.1007/s00018-021-03775-0.Suche in Google Scholar PubMed PubMed Central
Ruan, L., Zhou, C., Jin, E., Kucharavy, A., Zhang, Y., Wen, Z., Florens, L., and Li, R. (2017). Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature 543: 443–446, https://doi.org/10.1038/nature21695.Suche in Google Scholar PubMed PubMed Central
Ruan, Y., Hu, J., Che, Y., Liu, Y., Luo, Z., Cheng, J., Han, Q., He, H., and Zhou, Q. (2022). CHCHD2 and CHCHD10 regulate mitochondrial dynamics and integrated stress response. Cell Death Dis. 13: 156, https://doi.org/10.1038/s41419-022-04602-5.Suche in Google Scholar PubMed PubMed Central
Schorr, S. and van der Laan, M. (2018). Integrative functions of the mitochondrial contact site and cristae organizing system. Semin. Cell Dev. Biol. 76: 191–200, https://doi.org/10.1016/j.semcdb.2017.09.021.Suche in Google Scholar PubMed
Schulte, U., den Brave, F., Haupt, A., Gupta, A., Song, J., Müller, C.S., Engelke, J., Mishra, S., Mårtensson, C., Ellenrieder, L., et al.. (2023). Mitochondrial complexome reveals quality-control pathways of protein import. Nature 614: 153–154, https://doi.org/10.1038/s41586-022-05641-w.Suche in Google Scholar PubMed PubMed Central
Schultz, C.P. (2000). Illuminating folding intermediates. Nat. Struct. Mol. Biol. 7: 7–10, https://doi.org/10.1038/71197.Suche in Google Scholar PubMed
Segawa, M., Wolf, D.M., Hultgren, N.W., Williams, D.S., van der Bliek, A.M., Shackelford, D.B., Liesa, M., and Shirihai, O.S. (2020). Quantification of cristae architecture reveals time-dependent characteristics of individual mitochondria. Life Sci. Alliance 3, https://doi.org/10.26508/lsa.201900620.Suche in Google Scholar PubMed PubMed Central
Senior, A.E. (2012). Two ATPases. J. Biol. Chem. 287: 30049–30062, https://doi.org/10.1074/jbc.x112.402313.Suche in Google Scholar PubMed PubMed Central
Shammas, M.K., Huang, T.-H., and Narendra, D.P. (2023). CHCHD2 and CHCHD10-related neurodegeneration: molecular pathogenesis and the path to precision therapy. Biochem. Soc. Trans. 51: 797–809, https://doi.org/10.1042/bst20221365.Suche in Google Scholar PubMed
Shen, Z., Li, Y., Gasparski, A.N., Abeliovich, H., and Greenberg, M.L. (2017). Cardiolipin regulates mitophagy through the protein kinase C pathway. J. Biol. Chem. 292: 2916–2923, https://doi.org/10.1074/jbc.m116.753574.Suche in Google Scholar
Shi, P., Ren, X., Meng, J., Kang, C., Wu, Y., Rong, Y., Zhao, S., Jiang, Z., Liang, L., He, W., et al.. (2022). Mechanical instability generated by Myosin 19 contributes to mitochondria cristae architecture and OXPHOS. Nat. Commun. 13: 2673, https://doi.org/10.1038/s41467-022-30431-3.Suche in Google Scholar PubMed PubMed Central
Shimura, T. (2023). Mitochondrial signaling pathways associated with DNA damage responses. Int. J. Mol. Sci. 24: 6128, https://doi.org/10.3390/ijms24076128.Suche in Google Scholar PubMed PubMed Central
Siegmund, S.E., Grassucci, R., Carter, S.D., Emanuele, B., Farino, Z.J., Juanola-Falgarona, M., Zhang, P., Tanji, K., Hirano, M., Schon, E.A., et al.. (2018). Three-dimensional Analysis of mitochondrial crista ultrastructure in a patient with Leigh syndrome by in situ cryoelectron tomography. iScience 6: 83–91, https://doi.org/10.1016/j.isci.2018.07.014.Suche in Google Scholar PubMed PubMed Central
Singh, R. and Mozzarelli, A. (2009) Cofactor chemogenomics. In: Jacoby, E. (Ed.). Chemogenomics –methods in biology. Humana Press, Totowa, NJ.10.1007/978-1-60761-274-2_4Suche in Google Scholar PubMed
Song, J., Herrmann, J.M., and Becker, T. (2021). Quality control of the mitochondrial proteome. Nat. Rev. Mol. Cell Biol. 22: 54–70, https://doi.org/10.1038/s41580-020-00300-2.Suche in Google Scholar PubMed
Sorokina, I., Mushegian, A.R., and Koonin, E.V. (2022). Is protein folding a thermodynamically unfavorable, active, energy-dependent process? Int. J. Mol. Sci. 23: 521, https://doi.org/10.3390/ijms23010521.Suche in Google Scholar PubMed PubMed Central
Spang, A. (2021). Means of intracellular communication: touching, kissing, fusing. Microb. Cell 8: 87–90, https://doi.org/10.15698/mic2021.05.747.Suche in Google Scholar PubMed PubMed Central
Stastna, M. (2023). Proteomics as a tool for the study of mitochondrial proteome, its dysfunctionality and pathological consequences in cardiovascular diseases. Int. J. Mol. Sci. 24: 4692, https://doi.org/10.3390/ijms24054692.Suche in Google Scholar PubMed PubMed Central
Stephan, T., Bruser, C., Deckers, M., Steyer, A.M., Balzarotti, F., Barbot, M., Behr, T.S., Heim, G., Hubner, W., Ilgen, P., et al.. (2020). MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation. EMBO J. 39: e104105, https://doi.org/10.15252/embj.2019104105.Suche in Google Scholar PubMed PubMed Central
Sutandy, F.X.R., Gößner, I., Tascher, G., and Münch, C. (2023). A cytosolic surveillance mechanism activates the mitochondrial UPR. Nature 618: 849–854, https://doi.org/10.1038/s41586-023-06142-0.Suche in Google Scholar PubMed PubMed Central
Tanaka, K. (2009). The proteasome: overview of structure and functions. Proc. Jpn. Acad., Ser. B 85: 12–36, https://doi.org/10.2183/pjab.85.12.Suche in Google Scholar PubMed PubMed Central
Tang, J., Zhang, K., Dong, J., Yan, C., Hu, C., Ji, H., Chen, L., Chen, S., Zhao, H., and Song, Z. (2020). Sam50-Mic19-Mic60 axis determines mitochondrial cristae architecture by mediating mitochondrial outer and inner membrane contact. Cell Death Differ. 27: 146–160, https://doi.org/10.1038/s41418-019-0345-2.Suche in Google Scholar PubMed PubMed Central
Tarasenko, D., Barbot, M., Jans, D.C., Kroppen, B., Sadowski, B., Heim, G., Möbius, W., Jakobs, S., and Meinecke, M. (2017). The MICOS component Mic60 displays a conserved membrane-bending activity that is necessary for normal cristae morphology. J. Cell Biol. 216: 889–899, https://doi.org/10.1083/jcb.201609046.Suche in Google Scholar PubMed PubMed Central
Tatsuta, T. and Langer, T. (2009). AAA proteases in mitochondria: diverse functions of membrane-bound proteolytic machines. Res. Microbiol. 160: 711–717, https://doi.org/10.1016/j.resmic.2009.09.005.Suche in Google Scholar PubMed
Timr, S., Madern, D., and Sterpone, F. (2020). Protein thermal stability. Prog. Mol. Biol. Transl. Sci. 170: 239–272, https://doi.org/10.1016/bs.pmbts.2019.12.007.Suche in Google Scholar PubMed
Tirrell, P.S., Nguyen, K.N., Luby-Phelps, K., and Friedman, J.R. (2020). MICOS subcomplexes assemble independently on the mitochondrial inner membrane in proximity to ER contact sites. J. Cell Biol. 219, https://doi.org/10.1083/jcb.202003024.Suche in Google Scholar PubMed PubMed Central
Tsai, P.-I., Lin, C.-H., Hsieh, C.-H., Papakyrikos, A.M., Kim, M.J., Napolioni, V., Schoor, C., Couthouis, J., Wu, R.-M., Wszolek, Z.K., et al.. (2018). PINK1 phosphorylates MIC60/mitofilin to control structural plasticity of mitochondrial crista junctions. Mol. Cell 69: 744–756.e746, https://doi.org/10.1016/j.molcel.2018.01.026.Suche in Google Scholar PubMed
UniProt.org (2023). UniProtKB.Suche in Google Scholar
van der Laan, M., Bohnert, M., Wiedemann, N., and Pfanner, N. (2012). Role of MINOS in mitochondrial membrane architecture and biogenesis. Trends Cell Biol. 22: 185–192, https://doi.org/10.1016/j.tcb.2012.01.004.Suche in Google Scholar PubMed
Van Laar, V.S., Berman, S.B., and Hastings, T.G. (2016). Mic60/mitofilin overexpression alters mitochondrial dynamics and attenuates vulnerability of dopaminergic cells to dopamine and rotenone. Neurobiol. Dis. 91: 247–261, https://doi.org/10.1016/j.nbd.2016.03.015.Suche in Google Scholar PubMed PubMed Central
Van Laar, V.S., Otero, P.A., Hastings, T.G., and Berman, S.B. (2019). Potential role of mic60/mitofilin in Parkinson’s disease. Front. Neurosci. 12: 898, https://doi.org/10.3389/fnins.2018.00898.Suche in Google Scholar PubMed PubMed Central
Venkatraman, K., Lee, C.T., Garcia, G.C., Mahapatra, A., Perkins, G., Kim, K.-Y., Pasolli, H.A., Phan, S., Lippincott-Schwartz, J., Ellisman, M., et al.. (2023). Cristae formation is a mechanical buckling event controlled by the inner membrane lipidome. bioRxiv, 2023.2003.2013.532310, https://doi.org/10.1101/2023.03.13.532310.Suche in Google Scholar PubMed PubMed Central
Vercellino, I. and Sazanov, L.A. (2022). The assembly, regulation and function of the mitochondrial respiratory chain. Nat. Rev. Mol. Cell Biol. 23: 141–161, https://doi.org/10.1038/s41580-021-00415-0.Suche in Google Scholar PubMed
Vincent, A.E., White, K., Davey, T., Philips, J., Ogden, R.T., Lawless, C., Warren, C., Hall, M.G., Ng, Y.S., Falkous, G., et al.. (2019). Quantitative 3D mapping of the human skeletal muscle mitochondrial network. Cell Rep. 26: 996–1009.e1004, https://doi.org/10.1016/j.celrep.2019.01.010.Suche in Google Scholar PubMed PubMed Central
Wang, C., Østergaard, L., Hasselholt, S., and Sporring, J. (2022). Extracting mitochondrial cristae characteristics from 3D focused ion beam scanning electron microscopy data. bioRxiv, 2022.2011.2008.515664.10.1101/2022.11.08.515664Suche in Google Scholar
Westermann, B. (2012). Bioenergetic role of mitochondrial fusion and fission. Biochim. Biophys. Acta 1817: 1833–1838, https://doi.org/10.1016/j.bbabio.2012.02.033.Suche in Google Scholar PubMed
Wiedemann, N. and Pfanner, N. (2017). Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 86: 685–714, https://doi.org/10.1146/annurev-biochem-060815-014352.Suche in Google Scholar PubMed
Wolf, D.M., Segawa, M., Kondadi, A.K., Anand, R., Bailey, S.T., Reichert, A.S., van der Bliek, A.M., Shackelford, D.B., Liesa, M., and Shirihai, O.S. (2019). Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent. EMBO J. 38: e101056, https://doi.org/10.15252/embj.2018101056.Suche in Google Scholar PubMed PubMed Central
Wollweber, F., von der Malsburg, K., and van der Laan, M. (2017). Mitochondrial contact site and cristae organizing system: a central player in membrane shaping and crosstalk. Biochim. Biophys. Acta, Mol. Cell Res. 1864: 1481–1489, https://doi.org/10.1016/j.bbamcr.2017.05.004.Suche in Google Scholar PubMed
Yamanaka, R., Tabata, S., Shindo, Y., Hotta, K., Suzuki, K., Soga, T., and Oka, K. (2016). Mitochondrial Mg2+ homeostasis decides cellular energy metabolism and vulnerability to stress. Sci. Rep. 6, https://doi.org/10.1038/srep30027.Suche in Google Scholar PubMed PubMed Central
Yoneda, M., Aklima, J., Ohsawa, I., and Ohta, Y. (2022). Effects of proton pumping on the structural rigidity of cristae in mitochondria. Arch. Biochem. Biophys. 720: 109172, https://doi.org/10.1016/j.abb.2022.109172.Suche in Google Scholar PubMed
Zerbes, R.M., Höß, P., Pfanner, N., van der Laan, M., and Bohnert, M. (2016). Distinct roles of Mic12 and Mic27 in the mitochondrial contact site and cristae organizing system. J. Mol. Biol. 428: 1485–1492, https://doi.org/10.1016/j.jmb.2016.02.031.Suche in Google Scholar PubMed
Zhong-can, O.-Y. (2001). Elastic theory of biomembranes. Thin Solid Films 393: 19–23, https://doi.org/10.1016/s0040-6090(01)01084-7.Suche in Google Scholar
Zhong-can, O.Y. and Helfrich, W. (1989). Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A Gen. Phys. 39: 5280–5288, https://doi.org/10.1103/physreva.39.5280.Suche in Google Scholar PubMed
Zhou, W., Ma, D., and Tan, E.-K. (2020). Mitochondrial CHCHD2 and CHCHD10: roles in neurological diseases and therapeutic implications. Neuroscientist 26: 170–184, https://doi.org/10.1177/1073858419871214.Suche in Google Scholar PubMed
Zick, M., Rabl, R., and Reichert, A.S. (2009). Cristae formation—linking ultrastructure and function of mitochondria. Biochim. Biophys. Acta, Mol. Cell Res. 1793: 5–19, https://doi.org/10.1016/j.bbamcr.2008.06.013.Suche in Google Scholar PubMed
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Dendritic spines and their role in the pathogenesis of neurodevelopmental and neurological disorders
- Mitochondria and MICOS – function and modeling
- The role of long noncoding RNAs in amyotrophic lateral sclerosis
- Current potential pathogenic mechanisms of copper-zinc superoxide dismutase 1 (SOD1) in amyotrophic lateral sclerosis
- Analysis of radiological features in patients with post-stroke depression and cognitive impairment
- Impact of carotid stenosis on the outcome of stroke patients submitted to reperfusion treatments: a narrative review
- Methylene blue and its potential in the treatment of traumatic brain injury, brain ischemia, and Alzheimer’s disease
Artikel in diesem Heft
- Frontmatter
- Dendritic spines and their role in the pathogenesis of neurodevelopmental and neurological disorders
- Mitochondria and MICOS – function and modeling
- The role of long noncoding RNAs in amyotrophic lateral sclerosis
- Current potential pathogenic mechanisms of copper-zinc superoxide dismutase 1 (SOD1) in amyotrophic lateral sclerosis
- Analysis of radiological features in patients with post-stroke depression and cognitive impairment
- Impact of carotid stenosis on the outcome of stroke patients submitted to reperfusion treatments: a narrative review
- Methylene blue and its potential in the treatment of traumatic brain injury, brain ischemia, and Alzheimer’s disease