Home Methylene blue and its potential in the treatment of traumatic brain injury, brain ischemia, and Alzheimer’s disease
Article
Licensed
Unlicensed Requires Authentication

Methylene blue and its potential in the treatment of traumatic brain injury, brain ischemia, and Alzheimer’s disease

  • Nickolay K. Isaev ORCID logo EMAIL logo , Elizaveta E. Genrikhs ORCID logo and Elena V. Stelmashook ORCID logo
Published/Copyright: March 27, 2024
Become an author with De Gruyter Brill

Abstract

Traumatic brain injury (TBI) and brain ischemia/reperfusion cause neurodegenerative processes that can continue after the acute stage with the development of severe brain atrophy with dementia. In this case, the long-term neurodegeneration of the brain is similar to the neurodegeneration characteristic of Alzheimer’s disease (AD) and is associated with the accumulation of beta amyloid and tau protein. In the pathogenesis of AD as well as in the pathogenesis of cerebral ischemia and TBI oxidative stress, progressive inflammation, glial activation, blood–brain barrier dysfunction, and excessive activation of autophagy are involved, which implies the presence of many targets that can be affected by neuroprotectors. That is, multivariate cascades of nerve tissue damage represent many potential targets for therapeutic interventions. One of such substances that can be used in multi-purpose therapeutic strategies is methylene blue (MB). This drug can have an antiapoptotic and anti-inflammatory effect, activate autophagy, inhibit the aggregation of proteins with an irregular shape, inhibit NO synthase, and bypass impaired electron transfer in the respiratory chain of mitochondria. MB is a well-described treatment for methemoglobinemia, malaria, and encephalopathy caused by ifosfamide. In recent years, this drug has attracted great interest as a potential treatment for a number of neurodegenerative disorders, including the effects of TBI, ischemia, and AD.


Corresponding author: Nickolay K. Isaev, Department of Cell Biology and Histology Biological Faculty, M.V. Lomonosov Moscow State University, Leninskiye gory, 1, 12 Moscow, 119234, Russia; and Research Center of Neurology, 125367, Moscow, Russia, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable..

  3. Author contributions: Nickolay K. Isaev: conceptualization, search and analysis of articles, preparation of figures, supervision for article, writing original draft, review & editing; Elena V. Stelmashook, Elizaveta E. Genrikhs: search and analysis of articles, writing original draft, review & editing, writing help, and review & editing. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Competing interests: The authors declare that they have no conflict of interest.

  5. Research funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

  6. Data availability: The data of the paper are available upon request from the corresponding author.

References

Ahmed, S.M., Luo, L., Namani, A., Wang, X.J., and Tang, X. (2017). Nrf2 signaling pathway: pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 1863: 585–597, https://doi.org/10.1016/j.bbadis.2016.11.005.Search in Google Scholar PubMed

Alici-Evcimen, Y. and Breitbart, W.S. (2007). Ifosfamide neuropsychiatric toxicity in patients with cancer. Psychooncology 16: 956–960, https://doi.org/10.1002/pon.1161.Search in Google Scholar PubMed

Andreyev, A.Y., Kushnareva, Y.E., and Starkov, A.A. (2005). Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc.) 70: 200–214, https://doi.org/10.1007/s10541-005-0102-7.Search in Google Scholar PubMed

Atamna, H. and Kumar, R. (2010). Protective role of methylene blue in Alzheimer’s disease via mitochondria and cytochrome c oxidase. J. Alzheim. Dis. 20: S439–S452, https://doi.org/10.3233/jad-2010-100414.Search in Google Scholar

Auchter, A.M., Barrett, D.W., Monfils, M.H., and Gonzalez-Lima, F. (2020). Methylene blue preserves cytochrome oxidase activity and prevents neurodegeneration and memory impairment in rats with chronic cerebral hypoperfusion. Front. Cell. Neurosci. 14: 130, https://doi.org/10.3389/fncel.2020.00130.Search in Google Scholar PubMed PubMed Central

Bateman, R.J., Munsell, L.Y., Morris, J.C., Swarm, R., Yarasheski, K.E., and Holtzman, D.M. (2006). Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat. Med. 12: 856–861, https://doi.org/10.1038/nm1438.Search in Google Scholar PubMed PubMed Central

Beretvas, R.I. and Ponsky, J. (2001). Endoscopic marking: an adjunct to laparoscopic gastrointestinal surgery. Surg. Endosc. 15: 1202–1203, https://doi.org/10.1007/s004640000304.Search in Google Scholar PubMed

Berrocal, M. and Mata, A.M. (2023). The plasma membrane Ca2+-ATPase, a molecular target for tau-induced cytosolic calcium dysregulation. Neuroscience 518: 112–118, https://doi.org/10.1016/j.neuroscience.2022.04.016.Search in Google Scholar PubMed

Berrocal, M., Corbacho, I., Gutierrez-Merino, C., and Mata, A.M. (2018). Methylene blue activates the PMCA activity and cross-interacts with amyloid β-peptide, blocking Aβ-mediated PMCA inhibition. Neuropharmacology 139: 163–172, https://doi.org/10.1016/j.neuropharm.2018.07.012.Search in Google Scholar PubMed

Brett, B.L., Gardner, R.C., Godbout, J., Dams-O’Connor, K., and Keene, C.D. (2022). Traumatic brain injury and risk of neurodegenerative disorder. Biol. Psychiatr. 91: 498–507, https://doi.org/10.1016/j.biopsych.2021.05.025.Search in Google Scholar PubMed PubMed Central

Cheng, Q., Chen, X., Ma, J., Jiang, X., Chen, J., Zhang, M., Wu, Y., Zhang, W., and Chen, C. (2021). Effect of methylene blue on white matter injury after ischemic stroke. Oxid. Med. Cell. Longev. 2021: 6632411, https://doi.org/10.1155/2021/6632411.Search in Google Scholar PubMed PubMed Central

Crowe, A., James, M.J., Lee, V.M., Smith, A.B.3rd, Trojanowski, J.Q., Ballatore, C., and Brunden, K.R. (2013). Aminothienopyridazines and methylene blue affect Tau fibrillization via cysteine oxidation. J. Biol. Chem. 288: 11024–11037, https://doi.org/10.1074/jbc.m112.436006.Search in Google Scholar PubMed PubMed Central

Daudt, D.R.3rd, Mueller, B., Park, Y.H., Wen, Y., and Yorio, T. (2012). Methylene blue protects primary rat retinal ganglion cells from cellular senescence. Invest. Ophthalmol. Vis. Sci. 53: 4657–4667, https://doi.org/10.1167/iovs.12-9734.Search in Google Scholar PubMed

Davis, A.E. (2000). Mechanisms of traumatic brain injury: biomechanical, structural and cellular considerations. Crit. Care Nurs. Q. 23: 1–13, https://doi.org/10.1097/00002727-200011000-00002.Search in Google Scholar PubMed

Di, Y., He, Y.L., Zhao, T., Huang, X., Wu, K.W., Liu, S.H., Zhao, Y.Q., Fan, M., Wu, L.Y., and Zhu, L.L. (2015). Methylene blue reduces acute cerebral ischemic injury via the induction of mitophagy. Mol. Med. 21: 420–429, https://doi.org/10.2119/molmed.2015.00038.Search in Google Scholar PubMed PubMed Central

Donnan, G.A., Fisher, M., Macleod, M., and Davis, S.M. (2008). Stroke. Lancet 371: 1612–1623, https://doi.org/10.1016/s0140-6736(08)60694-7.Search in Google Scholar PubMed

Elman-Shina, K. and Efrati, S. (2022). Ischemia as a common trigger for Alzheimer’s disease. Front. Aging Neurosci. 14: 1012779, https://doi.org/10.3389/fnagi.2022.1012779.Search in Google Scholar PubMed PubMed Central

Fang, Q., Yan, X., Li, S., Sun, Y., Xu, L., Shi, Z., Wu, M., Lu, Y., Dong, L., Liu, R., et al.. (2016). Methylene blue ameliorates ischemia/reperfusion-induced cerebral edema: an MRI and transmission electron microscope study. Acta Neurochir. Suppl. 121: 227–236, https://doi.org/10.1007/978-3-319-18497-5_41.Search in Google Scholar PubMed

Fatouros, C., Pir, G.J., Biernat, J., Koushika, S.P., Mandelkow, E., Mandelkow, E.M., Schmidt, E., and Baumeister, R. (2012). Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity. Hum. Mol. Genet. 21: 3587–3603, https://doi.org/10.1093/hmg/dds190.Search in Google Scholar PubMed

Fenn, A.M., Skendelas, J.P., Moussa, D.N., Muccigrosso, M.M., Popovich, P.G., Lifshitz, J., Eiferman, D.S., and Godbout, J.P. (2015). Methylene blue attenuates traumatic brain injury-associated neuroinflammation and acute depressive-like behavior in mice. J. Neurotrauma 32: 127–138, https://doi.org/10.1089/neu.2014.3514.Search in Google Scholar PubMed PubMed Central

Fesharaki-Zadeh, A. (2022). Oxidative stress in traumatic brain injury. Int. J. Mol. Sci. 23: 13000, https://doi.org/10.3390/ijms232113000.Search in Google Scholar PubMed PubMed Central

Gauthier, S., Feldman, H.H., Schneider, L.S., Wilcock, G.K., Frisoni, G.B., Hardlund, J.H., Moebius, H.J., Bentham, P., Kook, K.A., Wischik, D.J., et al.. (2016). Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet 388: 2873–2884, https://doi.org/10.1016/s0140-6736(16)31275-2.Search in Google Scholar PubMed PubMed Central

Genrikhs, E.E., Stelmashook, E.V., Voronkov, D.N., Novikova, S.V., Alexandrova, O.P., Fedorov, A.V., and Isaev, N.K. (2020a). The single intravenous administration of methylene blue after traumatic brain injury diminishes neurological deficit, blood-brain barrier disruption and decrease in the expression of S100 protein in rats. Brain Res. 1740: 146854, https://doi.org/10.1016/j.brainres.2020.146854.Search in Google Scholar PubMed

Genrikhs, E.E., Stelmashook, E.V., Voronkov, D.N., Novikova, S.V., Alexandrova, O.P., Gulyaev, M.B., and Isaev, N.K. (2020b). The delayed neuroprotective effect of methylene blue in experimental rat brain trauma. Antioxidants 9: 377, https://doi.org/10.3390/antiox9050377.Search in Google Scholar PubMed PubMed Central

Ghosh, S., Choudhury, S., Chowdhury, O., Mukherjee, S., Das, A., Sain, A., Gupta, P., Adhikary, A., and Chattopadhyay, S. (2020). Inflammation-induced behavioral changes is driven by alterations in Nrf2-dependent apoptosis and autophagy in mouse hippocampus: role of fluoxetine. Cell. Signal. 68: 109521, https://doi.org/10.1016/j.cellsig.2019.109521.Search in Google Scholar PubMed

Ginimuge, P.R. and Jyothi, S.D. (2010). Methylene blue: revisited. J. Anaesthesiol. Clin. Pharmacol. 26: 517–520, https://doi.org/10.4103/0970-9185.74599.Search in Google Scholar

Gupta, R. and Sen, N. (2016). Traumatic brain injury: a risk factor for neurodegenerative diseases. Rev. Neurosci. 27: 93–100, https://doi.org/10.1515/revneuro-2015-0017.Search in Google Scholar PubMed

Gureev, A.P., Syromyatnikov, M.Y., Gorbacheva, T.M., Starkov, A.A., and Popov, V.N. (2016). Methylene blue improves sensorimotor phenotype and decreases anxiety in parallel with activating brain mitochondria biogenesis in mid-age mice. Neurosci. Res. 113: 19–27, https://doi.org/10.1016/j.neures.2016.07.006.Search in Google Scholar PubMed

Gureev, A.P., Shaforostova, E.A., and Popov, V.N. (2019a). Regulation of Mitochondrial biogenesis as a way for active longevity: interaction between the Nrf2 and PGC-1α signaling pathways. Front. Genet. 10: 435, https://doi.org/10.3389/fgene.2019.00435.Search in Google Scholar PubMed PubMed Central

Gureev, A.P., Shaforostova, E.A., Popov, V.N., and Starkov, A.A. (2019b). Methylene blue does not bypass Complex III antimycin block in mouse brain mitochondria. FEBS Lett. 593: 499–503, https://doi.org/10.1002/1873-3468.13332.Search in Google Scholar PubMed PubMed Central

Gureev, A.P., Sadovnikova, I.S., and Popov, V.N. (2022). Molecular mechanisms of the neuroprotective effect of methylene blue. Biochemistry (Mosc.) 87: 940–956, https://doi.org/10.1134/s0006297922090073.Search in Google Scholar PubMed

Harvey, B.H., Duvenhage, I., Viljoen, F., Scheepers, N., Malan, S.F., Wegener, G., Brink, C.B., and Petzer, J.P. (2010). Role of monoamine oxidase, nitric oxide synthase and regional brain monoamines in the antidepressant-like effects of methylene blue and selected structural analogues. Biochem. Pharmacol. 80: 1580–1591, https://doi.org/10.1016/j.bcp.2010.07.037.Search in Google Scholar PubMed

Hattori, M., Sugino, E., Minoura, K., In, Y., Sumida, M., Taniguchi, T., Tomoo, K., and Ishida, T. (2008). Different inhibitory response of cyanidin and methylene blue for filament formation of tau microtubule-binding domain. Biochem. Biophys. Res. Commun. 374: 158–163, https://doi.org/10.1016/j.bbrc.2008.07.001.Search in Google Scholar PubMed

Helmer, C., Joly, P., Letenneur, L., Commenges, D., and Dartigues, J.F. (2001). Mortality with dementia: results from a French prospective community-based cohort. Am. J. Epidemiol. 154: 642–648, https://doi.org/10.1093/aje/154.7.642.Search in Google Scholar PubMed

Ikonomovic, M.D., Uryu, K., Abrahamson, E.E., Ciallella, J.R., Trojanowski, J.Q., Lee, V.M., Clark, R.S., Marion, D.W., Wisniewski, S.R., and DeKosky, S.T. (2004). Alzheimer’s pathology in human temporal cortex surgically excised after severe brain injury. Exp. Neurol. 190: 192–203, https://doi.org/10.1016/j.expneurol.2004.06.011.Search in Google Scholar PubMed

Impellizzeri, D., Campolo, M., Bruschetta, G., Crupi, R., Cordaro, M., Paterniti, I., Cuzzocrea, S., and Esposito, E. (2016). Traumatic brain injury leads to development of Parkinson’s disease related pathology in mice. Front. Neurosci. 10: 458, https://doi.org/10.3389/fnins.2016.00458.Search in Google Scholar PubMed PubMed Central

Irwin, M.H., Parameshwaran, K., and Pinkert, C.A. (2013). Mouse models of mitochondrial complex I dysfunction. Int. J. Biochem. Cell Biol. 45: 34–40, https://doi.org/10.1016/j.biocel.2012.08.009.Search in Google Scholar PubMed PubMed Central

Jiang, Z., Watts, L.T., Huang, S., Shen, Q., Rodriguez, P., Chen, C., Zhou, C., and Duong, T.Q. (2015). The effects of methylene blue on autophagy and apoptosis in MRI-defined normal tissue, ischemic penumbra and ischemic core. PLoS One 10: e0131929, https://doi.org/10.1371/journal.pone.0131929.Search in Google Scholar PubMed PubMed Central

Johnson, V.E., Stewart, W., and Smith, D.H. (2010). Traumatic brain injury and amyloid-β pathology: a link to Alzheimer’s disease? Nat. Rev. Neurosci. 11: 361–370, https://doi.org/10.1038/nrn2808.Search in Google Scholar PubMed PubMed Central

Johnson, V.E., Stewart, W., and Smith, D.H. (2012). Widespread τ and amyloid-β pathology many years after a single traumatic brain injury in humans. Brain Pathol. 22: 142–149, https://doi.org/10.1111/j.1750-3639.2011.00513.x.Search in Google Scholar PubMed PubMed Central

Juurlink, B.H. and Paterson, P.G. (1998). Review of oxidative stress in brain and spinal cord injury: suggestions for pharmacological and nutritional management strategies. J. Spinal Cord Med. 21: 309–334, https://doi.org/10.1080/10790268.1998.11719540.Search in Google Scholar PubMed

Kalaria, R.N. (2000). The role of cerebral ischemia in Alzheimer’s disease. Neurobiol. Aging 21: 321–330, https://doi.org/10.1016/s0197-4580(00)00125-1.Search in Google Scholar PubMed

Kalaria, R. (2002). Similarities between Alzheimer’s disease and vascular dementia. J. Neurol. Sci. 203–204: 29–34, https://doi.org/10.1016/s0022-510x(02)00256-3.Search in Google Scholar PubMed

Katz, A., Brosnahan, S.B., Papadopoulos, J., Parnia, S., and Lam, J.Q. (2022). Pharmacologic neuroprotection in ischemic brain injury after cardiac arrest. Ann. N. Y. Acad. Sci. 1507: 49–59, https://doi.org/10.1111/nyas.14613.Search in Google Scholar PubMed

Korchagin, V.I., Mironov, K.O., Dribnokhodova, O.P., Maksimova, M.Y., Illarioshkin, S.N., Tanashyan, M.M., Platonov, A.E., Shipulin, G.A., Raskurazhev, A.A., and Piradov, M.A. (2016). A role of genetic factors in the development of individual predisposition to ischemic stroke. Ann. Clin. Exp. Neurol. 10: 65–75.Search in Google Scholar

Li, L., Qin, L., Lu, H.L., Li, P.J., Song, Y.J., and Yang, R.L. (2017). Methylene blue improves streptozotocin-induced memory deficit by restoring mitochondrial function in rats. Brain Res. 1657: 208–214, https://doi.org/10.1016/j.brainres.2016.12.024.Search in Google Scholar PubMed

Li, L., Yang, R., Li, P., Lu, H., Hao, J., Li, L., Tucker, D., and Zhang, Q. (2018). Combination treatment with methylene blue and hypothermia in global cerebral ischemia. Mol. Neurobiol. 55: 2042–2055, https://doi.org/10.1007/s12035-017-0470-1.Search in Google Scholar PubMed

Mai, H., Liu, C., Fu, B., Ji, X., Chen, M., Zhang, Y., Lin, Y., Chen, J., Song, Y., and Gu, S. (2023). Methylene blue reduces retinal cell inflammation, apoptosis, and oxidative stress in a rat model of diabetic retinopathy via sirtuin 1 activation. Altern. Ther. Health Med. 29: 156–165.Search in Google Scholar

Mangus, D.B., Huang, L., Applegate, P.M., Gatling, J.W., Zhang, J., and Applegate, R.L. (2014). 2nd. A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (part I – protection via specific pathways). Med. Gas Res. 4: 9, https://doi.org/10.1186/2045-9912-4-9.Search in Google Scholar PubMed PubMed Central

Medina, D.X., Caccamo, A., and Oddo, S. (2011). Methylene blue reduces aβ levels and rescues early cognitive deficit by increasing proteasome activity. Brain Pathol. 21: 140–149, https://doi.org/10.1111/j.1750-3639.2010.00430.x.Search in Google Scholar PubMed PubMed Central

Miclescu, A., Sharma, H.S., Martijn, C., and Wiklund, L. (2010). Methylene blue protects the cortical blood-brain barrier against ischemia/reperfusion-induced disruptions. Crit. Care Med. 38: 2199–2206, https://doi.org/10.1097/ccm.0b013e3181f26b0c.Search in Google Scholar PubMed

Mikulás, K., Komlódi, T., Földes, A., Sváb, G., Horváth, G., Nagy, Á.M., Ambrus, A., Gyulai-Gaál, S., Gera, I., Hermann, P., et al.. (2020). Bioenergetic impairment of triethylene glycol dimethacrylate- (TEGDMA-) treated dental pulp stem cells (DPSCs) and isolated brain mitochondria are amended by redox compound methylene blue†. Materials 13: 3472, https://doi.org/10.3390/ma13163472.Search in Google Scholar PubMed PubMed Central

Orellana-Urzúa, S., Rojas, I., Líbano, L., and Rodrigo, R. (2020). Pathophysiology of ischemic stroke: role of oxidative stress. Curr. Pharm. Des. 26: 4246–4260, https://doi.org/10.2174/1381612826666200708133912.Search in Google Scholar PubMed

Owolabi, M.O., Thrift, A.G., Martins, S., Johnson, W., Pandian, J., Abd-Allah, F., Varghese, C., Mahal, A., Yaria, J., Phan, H.T., et al.. (2021). The state of stroke services across the globe: report of World Stroke Organization-World Health Organization surveys. Int. J. Stroke 16: 889–901, https://doi.org/10.1177/17474930211019568.Search in Google Scholar PubMed PubMed Central

Oz, M., Lorke, D.E., Hasan, M., and Petroianu, G.A. (2011). Cellular and molecular actions of methylene blue in the nervous system. Med. Res. Rev. 31: 93–117, https://doi.org/10.1002/med.20177.Search in Google Scholar PubMed PubMed Central

Paban, V., Manrique, C., Filali, M., Maunoir-Regimbal, S., Fauvelle, F., and Alescio-Lautier, B. (2014). Therapeutic and preventive effects of methylene blue on Alzheimer’s disease pathology in a transgenic mouse model. Neuropharmacology 76 Pt A: 68–79, https://doi.org/10.1016/j.neuropharm.2013.06.033.Search in Google Scholar PubMed

Pakavathkumar, P., Sharma, G., Kaushal, V., Foveau, B., and LeBlanc, A.C. (2015). Methylene blue inhibits caspases by oxidation of the catalytic cysteine. Sci. Rep. 5: 13730, https://doi.org/10.1038/srep13730.Search in Google Scholar PubMed PubMed Central

Peter, C., Hongwan, D., Küpfer, A., and Lauterburg, B.H. (2000). Pharmacokinetics and organ distribution of intravenous and oral methylene blue. Eur. J. Clin. Pharmacol. 56: 247–250, https://doi.org/10.1007/s002280000124.Search in Google Scholar PubMed

Pluta, R., Januszewski, S., and Czuczwar, S.J. (2021). Brain ischemia as a prelude to Alzheimer’s disease. Front. Aging Neurosci. 13: 636653, https://doi.org/10.3389/fnagi.2021.636653.Search in Google Scholar PubMed PubMed Central

Poteet, E., Winters, A., Yan, L.J., Shufelt, K., Green, K.N., Simpkins, J.W., Wen, Y., and Yang, S.H. (2012). Neuroprotective actions of methylene blue and its derivatives. PLoS One 7: e48279, https://doi.org/10.1371/journal.pone.0048279.Search in Google Scholar PubMed PubMed Central

Roy Choudhury, G., Winters, A., Rich, R.M., Ryou, M.G., Gryczynski, Z., Yuan, F., Yang, S.H., and Liu, R. (2015). Methylene blue protects astrocytes against glucose oxygen deprivation by improving cellular respiration. PLoS One 10: e0123096, https://doi.org/10.1371/journal.pone.0123096.Search in Google Scholar PubMed PubMed Central

Ryou, M.G., Choudhury, G.R., Li, W., Winters, A., Yuan, F., Liu, R., and Yang, S.H. (2015). Methylene blue-induced neuronal protective mechanism against hypoxia-reoxygenation stress. Neuroscience 301: 193–203, https://doi.org/10.1016/j.neuroscience.2015.05.064.Search in Google Scholar PubMed PubMed Central

Sadovnikova, I.S., Gureev, A.P., Ignatyeva, D.A., Gryaznova, M.V., Chernyshova, E.V., Krutskikh, E.P., Novikova, A.G., and Popov, V.N. (2021). Nrf2/ARE Activators improve memory in aged mice via maintaining of mitochondrial quality control of brain and the modulation of gut microbiome. Pharmaceuticals 14: 607, https://doi.org/10.3390/ph14070607.Search in Google Scholar PubMed PubMed Central

Salehipour, A., Bagheri, M., Sabahi, M., Dolatshahi, M., and Boche, D. (2022). Combination therapy in Alzheimer’s disease: is it time? J. Alzheim. Dis. 87: 1433–1449, https://doi.org/10.3233/jad-215680.Search in Google Scholar

Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C.E., Cummings, J., and van der Flier, W.M. (2021). Alzheimer’s disease. Lancet 397: 1577–1590, https://doi.org/10.1016/s0140-6736(20)32205-4.Search in Google Scholar PubMed PubMed Central

Shanmugam, G. (2005). Vasoplegic syndrome – the role of methylene blue. Eur. J. Cardio. Thorac. Surg. 28: 705–710, https://doi.org/10.1016/j.ejcts.2005.07.011.Search in Google Scholar PubMed

Sharma, H.S., Miclescu, A., and Wiklund, L. (2011). Cardiac arrest-induced regional blood-brain barrier breakdown, edema formation and brain pathology: a light and electron microscopic study on a new model for neurodegeneration and neuroprotection in porcine brain. J. Neural. Transm. 118: 87–114, https://doi.org/10.1007/s00702-010-0486-4.Search in Google Scholar PubMed

Sharpley, M.S. and Hirst, J. (2006). The inhibition of mitochondrial complex I (NADH:ubiquinone oxidoreductase) by Zn2+. J. Biol. Chem. 281: 34803–34809, https://doi.org/10.1074/jbc.m607389200.Search in Google Scholar PubMed

Shen, J., Xin, W., Li, Q., Gao, Y., Yuan, L., and Zhang, J. (2019). Methylene blue reduces neuronal apoptosis and improves blood-brain barrier integrity after traumatic brain injury. Front. Neurol. 10: 1133, https://doi.org/10.3389/fneur.2019.01133.Search in Google Scholar PubMed PubMed Central

Shi, Z.F., Fang, Q., Chen, Y., Xu, L.X., Wu, M., Jia, M., Lu, Y., Wang, X.X., Wang, Y.J., Yan, X., et al.. (2021). Methylene blue ameliorates brain edema in rats with experimental ischemic stroke via inhibiting aquaporin 4 expression. Acta Pharmacol. Sin. 42: 382–392, https://doi.org/10.1038/s41401-020-0468-5.Search in Google Scholar PubMed PubMed Central

Shively, S., Scher, A.I., Perl, D.P., and Diaz-Arrastia, R. (2012). Dementia resulting from traumatic brain injury: what is the pathology? Arch. Neurol. 69: 1245–1251, https://doi.org/10.1001/archneurol.2011.3747.Search in Google Scholar PubMed PubMed Central

Stack, C., Jainuddin, S., Elipenahli, C., Gerges, M., Starkova, N., Starkov, A.A., Jové, M., Portero-Otin, M., Launay, N., Pujol, A., et al.. (2014). Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity. Hum. Mol. Genet. 23: 3716–3732, https://doi.org/10.1093/hmg/ddu080.Search in Google Scholar PubMed PubMed Central

Stelmashook, E.V., Genrikhs, E.E., Mukhaleva, E.V., Kapkaeva, M.R., Kondratenko, R.V., Skrebitsky, V.G., and Isaev, N.K. (2019). Neuroprotective effects of methylene blue in vivo and in vitro. Bull. Exp. Biol. Med. 167: 455–459, https://doi.org/10.1007/s10517-019-04548-3.Search in Google Scholar PubMed

Stelmashook, E.V., Voronkov, D.N., Stavrovskaya, A.V., Novikova, S.V., Yamshikova, N.G., Olshanskij, A.S., Guschina, A.S., Shedenkova, M.O., Genrikhs, E.E., and Isaev, N.K. (2023). Neuroprotective effects of methylene blue in streptozotocin-induced model of Alzheimer’s disease. Brain Res. 1805: 148290, https://doi.org/10.1016/j.brainres.2023.148290.Search in Google Scholar PubMed

Talley Watts, L., Long, J.A., Chemello, J., Van Koughnet, S., Fernandez, A., Huang, S., Shen, Q., and Duong, T.Q. (2014). Methylene blue is neuroprotective against mild traumatic brain injury. J. Neurotrauma 31: 1063–1071, https://doi.org/10.1089/neu.2013.3193.Search in Google Scholar PubMed PubMed Central

Talley Watts, L., Long, J.A., Boggs, R.C., Manga, H., Huang, S., Shen, Q., and Duong, T.Q. (2016). Delayed methylene blue improves lesion volume, multi-parametric quantitative magnetic resonance imaging measurements, and behavioral outcome after traumatic brain injury. J. Neurotrauma 33: 194–202, https://doi.org/10.1089/neu.2015.3904.Search in Google Scholar PubMed PubMed Central

Taniguchi, S., Suzuki, N., Masuda, M., Hisanaga, S., Iwatsubo, T., Goedert, M., and Hasegawa, M. (2005). Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J. Biol. Chem. 280: 7614–7623, https://doi.org/10.1074/jbc.m408714200.Search in Google Scholar

Tu, W., Wang, H., Li, S., Liu, Q., and Sha, H. (2019). The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging Dis. 10: 637–651, https://doi.org/10.14336/ad.2018.0513.Search in Google Scholar PubMed PubMed Central

Tucker, D., Lu, Y., and Zhang, Q. (2018). From mitochondrial function to neuroprotection-an emerging role for methylene blue. Mol. Neurobiol. 55: 5137–5153, https://doi.org/10.1007/s12035-017-0712-2.Search in Google Scholar PubMed PubMed Central

Uryu, K., Chen, X.H., Martinez, D., Browne, K.D., Johnson, V.E., Graham, D.I., Lee, V.M., Trojanowski, J.Q., and Smith, D.H. (2007). Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Exp. Neurol. 208: 185–192, https://doi.org/10.1016/j.expneurol.2007.06.018.Search in Google Scholar PubMed PubMed Central

Van Bebber, F., Paquet, D., Hruscha, A., Schmid, B., and Haass, C. (2010). Methylene blue fails to inhibit Tau and polyglutamine protein dependent toxicity in zebrafish. Neurobiol. Dis. 39: 265–271, https://doi.org/10.1016/j.nbd.2010.03.023.Search in Google Scholar PubMed

Vekaria, H.J., Talley Watts, L., Lin, A.L., and Sullivan, P.G. (2017). Targeting mitochondrial dysfunction in CNS injury using methylene blue; still a magic bullet? Neurochem. Int. 109: 117–125, https://doi.org/10.1016/j.neuint.2017.04.004.Search in Google Scholar PubMed PubMed Central

Wen, Y., Li, W., Poteet, E.C., Xie, L., Tan, C., Yan, L.J., Ju, X., Liu, R., Qian, H., Marvin, M.A., et al.. (2011). Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. J. Biol. Chem. 286: 16504–16515, https://doi.org/10.1074/jbc.m110.208447.Search in Google Scholar PubMed PubMed Central

Wiklund, L., Basu, S., Miclescu, A., Wiklund, P., Ronquist, G., and Sharma, H.S. (2007). Neuro- and cardioprotective effects of blockade of nitric oxide action by administration of methylene blue. Ann. N. Y. Acad. Sci. 1122: 231–244, https://doi.org/10.1196/annals.1403.016.Search in Google Scholar PubMed

Wiklund, L., Zoerner, F., Semenas, E., Miclescu, A., Basu, S., and Sharma, H.S. (2013). Improved neuroprotective effect of methylene blue with hypothermia after porcine cardiac arrest. Acta Anaesthesiol. Scand. 57: 1073–1082, https://doi.org/10.1111/aas.12106.Search in Google Scholar PubMed

Wischik, C.M., Edwards, P.C., Lai, R.Y., Roth, M., and Harrington, C.R. (1996). Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc. Natl. Acad. Sci. U. S. A. 93: 11213–11218, https://doi.org/10.1073/pnas.93.20.11213.Search in Google Scholar PubMed PubMed Central

Wischik, C.M., Staff, R.T., Wischik, D.J., Bentham, P., Murray, A.D., Storey, J.M., Kook, K.A., and Harrington, C.R. (2015). Tau aggregation inhibitor therapy: an exploratory phase 2 study in mild or moderate Alzheimer’s disease. J. Alzheim. Dis. 44: 705–720, https://doi.org/10.3233/jad-142874.Search in Google Scholar PubMed

Wrubel, K.M., Riha, P.D., Maldonado, M.A., McCollum, D., and Gonzalez-Lima, F. (2007). The brain metabolic enhancer methylene blue improves discrimination learning in rats. Pharmacol. Biochem. Behav. 86: 712–717, https://doi.org/10.1016/j.pbb.2007.02.018.Search in Google Scholar PubMed PubMed Central

Wu, Z., Chen, C., Kang, S.S., Liu, X., Gu, X., Yu, S.P., Keene, C.D., Cheng, L., and Ye, K. (2021). Neurotrophic signaling deficiency exacerbates environmental risks for Alzheimer’s disease pathogenesis. Proc. Natl. Acad. Sci. U. S. A. 118: e2100986118, https://doi.org/10.1073/pnas.2100986118.Search in Google Scholar PubMed PubMed Central

Xue, H., Thaivalappil, A., and Cao, K. (2021). The potentials of methylene blue as an anti-aging drug. Cells 10: 3379, https://doi.org/10.3390/cells10123379.Search in Google Scholar PubMed PubMed Central

Xue, R., Gao, S., Zhang, Y., Cui, X., Mo, W., Xu, J., and Yao, M. (2022). A meta-analysis of resveratrol protects against cerebral ischemia/reperfusion injury: evidence from rats studies and insight into molecular mechanisms. Front. Pharmacol. 13: 988836, https://doi.org/10.3389/fphar.2022.988836.Search in Google Scholar PubMed PubMed Central

Zhang, X., Rojas, J.C., and Gonzalez-Lima, F. (2006). Methylene blue prevents neurodegeneration caused by rotenone in the retina. Neurotox. Res. 9: 47–57, https://doi.org/10.1007/bf03033307.Search in Google Scholar PubMed

Zhao, M., Liang, F., Xu, H., Yan, W., and Zhang, J. (2016). Methylene blue exerts a neuroprotective effect against traumatic brain injury by promoting autophagy and inhibiting microglial activation. Mol. Med. Rep. 13: 13–20, https://doi.org/10.3892/mmr.2015.4551.Search in Google Scholar PubMed PubMed Central

Received: 2024-01-15
Accepted: 2024-03-07
Published Online: 2024-03-27
Published in Print: 2024-07-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2024-0007/html
Scroll to top button