Abstract
Traumatic brain injury (TBI) and brain ischemia/reperfusion cause neurodegenerative processes that can continue after the acute stage with the development of severe brain atrophy with dementia. In this case, the long-term neurodegeneration of the brain is similar to the neurodegeneration characteristic of Alzheimer’s disease (AD) and is associated with the accumulation of beta amyloid and tau protein. In the pathogenesis of AD as well as in the pathogenesis of cerebral ischemia and TBI oxidative stress, progressive inflammation, glial activation, blood–brain barrier dysfunction, and excessive activation of autophagy are involved, which implies the presence of many targets that can be affected by neuroprotectors. That is, multivariate cascades of nerve tissue damage represent many potential targets for therapeutic interventions. One of such substances that can be used in multi-purpose therapeutic strategies is methylene blue (MB). This drug can have an antiapoptotic and anti-inflammatory effect, activate autophagy, inhibit the aggregation of proteins with an irregular shape, inhibit NO synthase, and bypass impaired electron transfer in the respiratory chain of mitochondria. MB is a well-described treatment for methemoglobinemia, malaria, and encephalopathy caused by ifosfamide. In recent years, this drug has attracted great interest as a potential treatment for a number of neurodegenerative disorders, including the effects of TBI, ischemia, and AD.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable..
-
Author contributions: Nickolay K. Isaev: conceptualization, search and analysis of articles, preparation of figures, supervision for article, writing original draft, review & editing; Elena V. Stelmashook, Elizaveta E. Genrikhs: search and analysis of articles, writing original draft, review & editing, writing help, and review & editing. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors declare that they have no conflict of interest.
-
Research funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
-
Data availability: The data of the paper are available upon request from the corresponding author.
References
Ahmed, S.M., Luo, L., Namani, A., Wang, X.J., and Tang, X. (2017). Nrf2 signaling pathway: pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 1863: 585–597, https://doi.org/10.1016/j.bbadis.2016.11.005.Search in Google Scholar PubMed
Alici-Evcimen, Y. and Breitbart, W.S. (2007). Ifosfamide neuropsychiatric toxicity in patients with cancer. Psychooncology 16: 956–960, https://doi.org/10.1002/pon.1161.Search in Google Scholar PubMed
Andreyev, A.Y., Kushnareva, Y.E., and Starkov, A.A. (2005). Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc.) 70: 200–214, https://doi.org/10.1007/s10541-005-0102-7.Search in Google Scholar PubMed
Atamna, H. and Kumar, R. (2010). Protective role of methylene blue in Alzheimer’s disease via mitochondria and cytochrome c oxidase. J. Alzheim. Dis. 20: S439–S452, https://doi.org/10.3233/jad-2010-100414.Search in Google Scholar
Auchter, A.M., Barrett, D.W., Monfils, M.H., and Gonzalez-Lima, F. (2020). Methylene blue preserves cytochrome oxidase activity and prevents neurodegeneration and memory impairment in rats with chronic cerebral hypoperfusion. Front. Cell. Neurosci. 14: 130, https://doi.org/10.3389/fncel.2020.00130.Search in Google Scholar PubMed PubMed Central
Bateman, R.J., Munsell, L.Y., Morris, J.C., Swarm, R., Yarasheski, K.E., and Holtzman, D.M. (2006). Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat. Med. 12: 856–861, https://doi.org/10.1038/nm1438.Search in Google Scholar PubMed PubMed Central
Beretvas, R.I. and Ponsky, J. (2001). Endoscopic marking: an adjunct to laparoscopic gastrointestinal surgery. Surg. Endosc. 15: 1202–1203, https://doi.org/10.1007/s004640000304.Search in Google Scholar PubMed
Berrocal, M. and Mata, A.M. (2023). The plasma membrane Ca2+-ATPase, a molecular target for tau-induced cytosolic calcium dysregulation. Neuroscience 518: 112–118, https://doi.org/10.1016/j.neuroscience.2022.04.016.Search in Google Scholar PubMed
Berrocal, M., Corbacho, I., Gutierrez-Merino, C., and Mata, A.M. (2018). Methylene blue activates the PMCA activity and cross-interacts with amyloid β-peptide, blocking Aβ-mediated PMCA inhibition. Neuropharmacology 139: 163–172, https://doi.org/10.1016/j.neuropharm.2018.07.012.Search in Google Scholar PubMed
Brett, B.L., Gardner, R.C., Godbout, J., Dams-O’Connor, K., and Keene, C.D. (2022). Traumatic brain injury and risk of neurodegenerative disorder. Biol. Psychiatr. 91: 498–507, https://doi.org/10.1016/j.biopsych.2021.05.025.Search in Google Scholar PubMed PubMed Central
Cheng, Q., Chen, X., Ma, J., Jiang, X., Chen, J., Zhang, M., Wu, Y., Zhang, W., and Chen, C. (2021). Effect of methylene blue on white matter injury after ischemic stroke. Oxid. Med. Cell. Longev. 2021: 6632411, https://doi.org/10.1155/2021/6632411.Search in Google Scholar PubMed PubMed Central
Crowe, A., James, M.J., Lee, V.M., Smith, A.B.3rd, Trojanowski, J.Q., Ballatore, C., and Brunden, K.R. (2013). Aminothienopyridazines and methylene blue affect Tau fibrillization via cysteine oxidation. J. Biol. Chem. 288: 11024–11037, https://doi.org/10.1074/jbc.m112.436006.Search in Google Scholar PubMed PubMed Central
Daudt, D.R.3rd, Mueller, B., Park, Y.H., Wen, Y., and Yorio, T. (2012). Methylene blue protects primary rat retinal ganglion cells from cellular senescence. Invest. Ophthalmol. Vis. Sci. 53: 4657–4667, https://doi.org/10.1167/iovs.12-9734.Search in Google Scholar PubMed
Davis, A.E. (2000). Mechanisms of traumatic brain injury: biomechanical, structural and cellular considerations. Crit. Care Nurs. Q. 23: 1–13, https://doi.org/10.1097/00002727-200011000-00002.Search in Google Scholar PubMed
Di, Y., He, Y.L., Zhao, T., Huang, X., Wu, K.W., Liu, S.H., Zhao, Y.Q., Fan, M., Wu, L.Y., and Zhu, L.L. (2015). Methylene blue reduces acute cerebral ischemic injury via the induction of mitophagy. Mol. Med. 21: 420–429, https://doi.org/10.2119/molmed.2015.00038.Search in Google Scholar PubMed PubMed Central
Donnan, G.A., Fisher, M., Macleod, M., and Davis, S.M. (2008). Stroke. Lancet 371: 1612–1623, https://doi.org/10.1016/s0140-6736(08)60694-7.Search in Google Scholar PubMed
Elman-Shina, K. and Efrati, S. (2022). Ischemia as a common trigger for Alzheimer’s disease. Front. Aging Neurosci. 14: 1012779, https://doi.org/10.3389/fnagi.2022.1012779.Search in Google Scholar PubMed PubMed Central
Fang, Q., Yan, X., Li, S., Sun, Y., Xu, L., Shi, Z., Wu, M., Lu, Y., Dong, L., Liu, R., et al.. (2016). Methylene blue ameliorates ischemia/reperfusion-induced cerebral edema: an MRI and transmission electron microscope study. Acta Neurochir. Suppl. 121: 227–236, https://doi.org/10.1007/978-3-319-18497-5_41.Search in Google Scholar PubMed
Fatouros, C., Pir, G.J., Biernat, J., Koushika, S.P., Mandelkow, E., Mandelkow, E.M., Schmidt, E., and Baumeister, R. (2012). Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity. Hum. Mol. Genet. 21: 3587–3603, https://doi.org/10.1093/hmg/dds190.Search in Google Scholar PubMed
Fenn, A.M., Skendelas, J.P., Moussa, D.N., Muccigrosso, M.M., Popovich, P.G., Lifshitz, J., Eiferman, D.S., and Godbout, J.P. (2015). Methylene blue attenuates traumatic brain injury-associated neuroinflammation and acute depressive-like behavior in mice. J. Neurotrauma 32: 127–138, https://doi.org/10.1089/neu.2014.3514.Search in Google Scholar PubMed PubMed Central
Fesharaki-Zadeh, A. (2022). Oxidative stress in traumatic brain injury. Int. J. Mol. Sci. 23: 13000, https://doi.org/10.3390/ijms232113000.Search in Google Scholar PubMed PubMed Central
Gauthier, S., Feldman, H.H., Schneider, L.S., Wilcock, G.K., Frisoni, G.B., Hardlund, J.H., Moebius, H.J., Bentham, P., Kook, K.A., Wischik, D.J., et al.. (2016). Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet 388: 2873–2884, https://doi.org/10.1016/s0140-6736(16)31275-2.Search in Google Scholar PubMed PubMed Central
Genrikhs, E.E., Stelmashook, E.V., Voronkov, D.N., Novikova, S.V., Alexandrova, O.P., Fedorov, A.V., and Isaev, N.K. (2020a). The single intravenous administration of methylene blue after traumatic brain injury diminishes neurological deficit, blood-brain barrier disruption and decrease in the expression of S100 protein in rats. Brain Res. 1740: 146854, https://doi.org/10.1016/j.brainres.2020.146854.Search in Google Scholar PubMed
Genrikhs, E.E., Stelmashook, E.V., Voronkov, D.N., Novikova, S.V., Alexandrova, O.P., Gulyaev, M.B., and Isaev, N.K. (2020b). The delayed neuroprotective effect of methylene blue in experimental rat brain trauma. Antioxidants 9: 377, https://doi.org/10.3390/antiox9050377.Search in Google Scholar PubMed PubMed Central
Ghosh, S., Choudhury, S., Chowdhury, O., Mukherjee, S., Das, A., Sain, A., Gupta, P., Adhikary, A., and Chattopadhyay, S. (2020). Inflammation-induced behavioral changes is driven by alterations in Nrf2-dependent apoptosis and autophagy in mouse hippocampus: role of fluoxetine. Cell. Signal. 68: 109521, https://doi.org/10.1016/j.cellsig.2019.109521.Search in Google Scholar PubMed
Ginimuge, P.R. and Jyothi, S.D. (2010). Methylene blue: revisited. J. Anaesthesiol. Clin. Pharmacol. 26: 517–520, https://doi.org/10.4103/0970-9185.74599.Search in Google Scholar
Gupta, R. and Sen, N. (2016). Traumatic brain injury: a risk factor for neurodegenerative diseases. Rev. Neurosci. 27: 93–100, https://doi.org/10.1515/revneuro-2015-0017.Search in Google Scholar PubMed
Gureev, A.P., Syromyatnikov, M.Y., Gorbacheva, T.M., Starkov, A.A., and Popov, V.N. (2016). Methylene blue improves sensorimotor phenotype and decreases anxiety in parallel with activating brain mitochondria biogenesis in mid-age mice. Neurosci. Res. 113: 19–27, https://doi.org/10.1016/j.neures.2016.07.006.Search in Google Scholar PubMed
Gureev, A.P., Shaforostova, E.A., and Popov, V.N. (2019a). Regulation of Mitochondrial biogenesis as a way for active longevity: interaction between the Nrf2 and PGC-1α signaling pathways. Front. Genet. 10: 435, https://doi.org/10.3389/fgene.2019.00435.Search in Google Scholar PubMed PubMed Central
Gureev, A.P., Shaforostova, E.A., Popov, V.N., and Starkov, A.A. (2019b). Methylene blue does not bypass Complex III antimycin block in mouse brain mitochondria. FEBS Lett. 593: 499–503, https://doi.org/10.1002/1873-3468.13332.Search in Google Scholar PubMed PubMed Central
Gureev, A.P., Sadovnikova, I.S., and Popov, V.N. (2022). Molecular mechanisms of the neuroprotective effect of methylene blue. Biochemistry (Mosc.) 87: 940–956, https://doi.org/10.1134/s0006297922090073.Search in Google Scholar PubMed
Harvey, B.H., Duvenhage, I., Viljoen, F., Scheepers, N., Malan, S.F., Wegener, G., Brink, C.B., and Petzer, J.P. (2010). Role of monoamine oxidase, nitric oxide synthase and regional brain monoamines in the antidepressant-like effects of methylene blue and selected structural analogues. Biochem. Pharmacol. 80: 1580–1591, https://doi.org/10.1016/j.bcp.2010.07.037.Search in Google Scholar PubMed
Hattori, M., Sugino, E., Minoura, K., In, Y., Sumida, M., Taniguchi, T., Tomoo, K., and Ishida, T. (2008). Different inhibitory response of cyanidin and methylene blue for filament formation of tau microtubule-binding domain. Biochem. Biophys. Res. Commun. 374: 158–163, https://doi.org/10.1016/j.bbrc.2008.07.001.Search in Google Scholar PubMed
Helmer, C., Joly, P., Letenneur, L., Commenges, D., and Dartigues, J.F. (2001). Mortality with dementia: results from a French prospective community-based cohort. Am. J. Epidemiol. 154: 642–648, https://doi.org/10.1093/aje/154.7.642.Search in Google Scholar PubMed
Ikonomovic, M.D., Uryu, K., Abrahamson, E.E., Ciallella, J.R., Trojanowski, J.Q., Lee, V.M., Clark, R.S., Marion, D.W., Wisniewski, S.R., and DeKosky, S.T. (2004). Alzheimer’s pathology in human temporal cortex surgically excised after severe brain injury. Exp. Neurol. 190: 192–203, https://doi.org/10.1016/j.expneurol.2004.06.011.Search in Google Scholar PubMed
Impellizzeri, D., Campolo, M., Bruschetta, G., Crupi, R., Cordaro, M., Paterniti, I., Cuzzocrea, S., and Esposito, E. (2016). Traumatic brain injury leads to development of Parkinson’s disease related pathology in mice. Front. Neurosci. 10: 458, https://doi.org/10.3389/fnins.2016.00458.Search in Google Scholar PubMed PubMed Central
Irwin, M.H., Parameshwaran, K., and Pinkert, C.A. (2013). Mouse models of mitochondrial complex I dysfunction. Int. J. Biochem. Cell Biol. 45: 34–40, https://doi.org/10.1016/j.biocel.2012.08.009.Search in Google Scholar PubMed PubMed Central
Jiang, Z., Watts, L.T., Huang, S., Shen, Q., Rodriguez, P., Chen, C., Zhou, C., and Duong, T.Q. (2015). The effects of methylene blue on autophagy and apoptosis in MRI-defined normal tissue, ischemic penumbra and ischemic core. PLoS One 10: e0131929, https://doi.org/10.1371/journal.pone.0131929.Search in Google Scholar PubMed PubMed Central
Johnson, V.E., Stewart, W., and Smith, D.H. (2010). Traumatic brain injury and amyloid-β pathology: a link to Alzheimer’s disease? Nat. Rev. Neurosci. 11: 361–370, https://doi.org/10.1038/nrn2808.Search in Google Scholar PubMed PubMed Central
Johnson, V.E., Stewart, W., and Smith, D.H. (2012). Widespread τ and amyloid-β pathology many years after a single traumatic brain injury in humans. Brain Pathol. 22: 142–149, https://doi.org/10.1111/j.1750-3639.2011.00513.x.Search in Google Scholar PubMed PubMed Central
Juurlink, B.H. and Paterson, P.G. (1998). Review of oxidative stress in brain and spinal cord injury: suggestions for pharmacological and nutritional management strategies. J. Spinal Cord Med. 21: 309–334, https://doi.org/10.1080/10790268.1998.11719540.Search in Google Scholar PubMed
Kalaria, R.N. (2000). The role of cerebral ischemia in Alzheimer’s disease. Neurobiol. Aging 21: 321–330, https://doi.org/10.1016/s0197-4580(00)00125-1.Search in Google Scholar PubMed
Kalaria, R. (2002). Similarities between Alzheimer’s disease and vascular dementia. J. Neurol. Sci. 203–204: 29–34, https://doi.org/10.1016/s0022-510x(02)00256-3.Search in Google Scholar PubMed
Katz, A., Brosnahan, S.B., Papadopoulos, J., Parnia, S., and Lam, J.Q. (2022). Pharmacologic neuroprotection in ischemic brain injury after cardiac arrest. Ann. N. Y. Acad. Sci. 1507: 49–59, https://doi.org/10.1111/nyas.14613.Search in Google Scholar PubMed
Korchagin, V.I., Mironov, K.O., Dribnokhodova, O.P., Maksimova, M.Y., Illarioshkin, S.N., Tanashyan, M.M., Platonov, A.E., Shipulin, G.A., Raskurazhev, A.A., and Piradov, M.A. (2016). A role of genetic factors in the development of individual predisposition to ischemic stroke. Ann. Clin. Exp. Neurol. 10: 65–75.Search in Google Scholar
Li, L., Qin, L., Lu, H.L., Li, P.J., Song, Y.J., and Yang, R.L. (2017). Methylene blue improves streptozotocin-induced memory deficit by restoring mitochondrial function in rats. Brain Res. 1657: 208–214, https://doi.org/10.1016/j.brainres.2016.12.024.Search in Google Scholar PubMed
Li, L., Yang, R., Li, P., Lu, H., Hao, J., Li, L., Tucker, D., and Zhang, Q. (2018). Combination treatment with methylene blue and hypothermia in global cerebral ischemia. Mol. Neurobiol. 55: 2042–2055, https://doi.org/10.1007/s12035-017-0470-1.Search in Google Scholar PubMed
Mai, H., Liu, C., Fu, B., Ji, X., Chen, M., Zhang, Y., Lin, Y., Chen, J., Song, Y., and Gu, S. (2023). Methylene blue reduces retinal cell inflammation, apoptosis, and oxidative stress in a rat model of diabetic retinopathy via sirtuin 1 activation. Altern. Ther. Health Med. 29: 156–165.Search in Google Scholar
Mangus, D.B., Huang, L., Applegate, P.M., Gatling, J.W., Zhang, J., and Applegate, R.L. (2014). 2nd. A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (part I – protection via specific pathways). Med. Gas Res. 4: 9, https://doi.org/10.1186/2045-9912-4-9.Search in Google Scholar PubMed PubMed Central
Medina, D.X., Caccamo, A., and Oddo, S. (2011). Methylene blue reduces aβ levels and rescues early cognitive deficit by increasing proteasome activity. Brain Pathol. 21: 140–149, https://doi.org/10.1111/j.1750-3639.2010.00430.x.Search in Google Scholar PubMed PubMed Central
Miclescu, A., Sharma, H.S., Martijn, C., and Wiklund, L. (2010). Methylene blue protects the cortical blood-brain barrier against ischemia/reperfusion-induced disruptions. Crit. Care Med. 38: 2199–2206, https://doi.org/10.1097/ccm.0b013e3181f26b0c.Search in Google Scholar PubMed
Mikulás, K., Komlódi, T., Földes, A., Sváb, G., Horváth, G., Nagy, Á.M., Ambrus, A., Gyulai-Gaál, S., Gera, I., Hermann, P., et al.. (2020). Bioenergetic impairment of triethylene glycol dimethacrylate- (TEGDMA-) treated dental pulp stem cells (DPSCs) and isolated brain mitochondria are amended by redox compound methylene blue†. Materials 13: 3472, https://doi.org/10.3390/ma13163472.Search in Google Scholar PubMed PubMed Central
Orellana-Urzúa, S., Rojas, I., Líbano, L., and Rodrigo, R. (2020). Pathophysiology of ischemic stroke: role of oxidative stress. Curr. Pharm. Des. 26: 4246–4260, https://doi.org/10.2174/1381612826666200708133912.Search in Google Scholar PubMed
Owolabi, M.O., Thrift, A.G., Martins, S., Johnson, W., Pandian, J., Abd-Allah, F., Varghese, C., Mahal, A., Yaria, J., Phan, H.T., et al.. (2021). The state of stroke services across the globe: report of World Stroke Organization-World Health Organization surveys. Int. J. Stroke 16: 889–901, https://doi.org/10.1177/17474930211019568.Search in Google Scholar PubMed PubMed Central
Oz, M., Lorke, D.E., Hasan, M., and Petroianu, G.A. (2011). Cellular and molecular actions of methylene blue in the nervous system. Med. Res. Rev. 31: 93–117, https://doi.org/10.1002/med.20177.Search in Google Scholar PubMed PubMed Central
Paban, V., Manrique, C., Filali, M., Maunoir-Regimbal, S., Fauvelle, F., and Alescio-Lautier, B. (2014). Therapeutic and preventive effects of methylene blue on Alzheimer’s disease pathology in a transgenic mouse model. Neuropharmacology 76 Pt A: 68–79, https://doi.org/10.1016/j.neuropharm.2013.06.033.Search in Google Scholar PubMed
Pakavathkumar, P., Sharma, G., Kaushal, V., Foveau, B., and LeBlanc, A.C. (2015). Methylene blue inhibits caspases by oxidation of the catalytic cysteine. Sci. Rep. 5: 13730, https://doi.org/10.1038/srep13730.Search in Google Scholar PubMed PubMed Central
Peter, C., Hongwan, D., Küpfer, A., and Lauterburg, B.H. (2000). Pharmacokinetics and organ distribution of intravenous and oral methylene blue. Eur. J. Clin. Pharmacol. 56: 247–250, https://doi.org/10.1007/s002280000124.Search in Google Scholar PubMed
Pluta, R., Januszewski, S., and Czuczwar, S.J. (2021). Brain ischemia as a prelude to Alzheimer’s disease. Front. Aging Neurosci. 13: 636653, https://doi.org/10.3389/fnagi.2021.636653.Search in Google Scholar PubMed PubMed Central
Poteet, E., Winters, A., Yan, L.J., Shufelt, K., Green, K.N., Simpkins, J.W., Wen, Y., and Yang, S.H. (2012). Neuroprotective actions of methylene blue and its derivatives. PLoS One 7: e48279, https://doi.org/10.1371/journal.pone.0048279.Search in Google Scholar PubMed PubMed Central
Roy Choudhury, G., Winters, A., Rich, R.M., Ryou, M.G., Gryczynski, Z., Yuan, F., Yang, S.H., and Liu, R. (2015). Methylene blue protects astrocytes against glucose oxygen deprivation by improving cellular respiration. PLoS One 10: e0123096, https://doi.org/10.1371/journal.pone.0123096.Search in Google Scholar PubMed PubMed Central
Ryou, M.G., Choudhury, G.R., Li, W., Winters, A., Yuan, F., Liu, R., and Yang, S.H. (2015). Methylene blue-induced neuronal protective mechanism against hypoxia-reoxygenation stress. Neuroscience 301: 193–203, https://doi.org/10.1016/j.neuroscience.2015.05.064.Search in Google Scholar PubMed PubMed Central
Sadovnikova, I.S., Gureev, A.P., Ignatyeva, D.A., Gryaznova, M.V., Chernyshova, E.V., Krutskikh, E.P., Novikova, A.G., and Popov, V.N. (2021). Nrf2/ARE Activators improve memory in aged mice via maintaining of mitochondrial quality control of brain and the modulation of gut microbiome. Pharmaceuticals 14: 607, https://doi.org/10.3390/ph14070607.Search in Google Scholar PubMed PubMed Central
Salehipour, A., Bagheri, M., Sabahi, M., Dolatshahi, M., and Boche, D. (2022). Combination therapy in Alzheimer’s disease: is it time? J. Alzheim. Dis. 87: 1433–1449, https://doi.org/10.3233/jad-215680.Search in Google Scholar
Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C.E., Cummings, J., and van der Flier, W.M. (2021). Alzheimer’s disease. Lancet 397: 1577–1590, https://doi.org/10.1016/s0140-6736(20)32205-4.Search in Google Scholar PubMed PubMed Central
Shanmugam, G. (2005). Vasoplegic syndrome – the role of methylene blue. Eur. J. Cardio. Thorac. Surg. 28: 705–710, https://doi.org/10.1016/j.ejcts.2005.07.011.Search in Google Scholar PubMed
Sharma, H.S., Miclescu, A., and Wiklund, L. (2011). Cardiac arrest-induced regional blood-brain barrier breakdown, edema formation and brain pathology: a light and electron microscopic study on a new model for neurodegeneration and neuroprotection in porcine brain. J. Neural. Transm. 118: 87–114, https://doi.org/10.1007/s00702-010-0486-4.Search in Google Scholar PubMed
Sharpley, M.S. and Hirst, J. (2006). The inhibition of mitochondrial complex I (NADH:ubiquinone oxidoreductase) by Zn2+. J. Biol. Chem. 281: 34803–34809, https://doi.org/10.1074/jbc.m607389200.Search in Google Scholar PubMed
Shen, J., Xin, W., Li, Q., Gao, Y., Yuan, L., and Zhang, J. (2019). Methylene blue reduces neuronal apoptosis and improves blood-brain barrier integrity after traumatic brain injury. Front. Neurol. 10: 1133, https://doi.org/10.3389/fneur.2019.01133.Search in Google Scholar PubMed PubMed Central
Shi, Z.F., Fang, Q., Chen, Y., Xu, L.X., Wu, M., Jia, M., Lu, Y., Wang, X.X., Wang, Y.J., Yan, X., et al.. (2021). Methylene blue ameliorates brain edema in rats with experimental ischemic stroke via inhibiting aquaporin 4 expression. Acta Pharmacol. Sin. 42: 382–392, https://doi.org/10.1038/s41401-020-0468-5.Search in Google Scholar PubMed PubMed Central
Shively, S., Scher, A.I., Perl, D.P., and Diaz-Arrastia, R. (2012). Dementia resulting from traumatic brain injury: what is the pathology? Arch. Neurol. 69: 1245–1251, https://doi.org/10.1001/archneurol.2011.3747.Search in Google Scholar PubMed PubMed Central
Stack, C., Jainuddin, S., Elipenahli, C., Gerges, M., Starkova, N., Starkov, A.A., Jové, M., Portero-Otin, M., Launay, N., Pujol, A., et al.. (2014). Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity. Hum. Mol. Genet. 23: 3716–3732, https://doi.org/10.1093/hmg/ddu080.Search in Google Scholar PubMed PubMed Central
Stelmashook, E.V., Genrikhs, E.E., Mukhaleva, E.V., Kapkaeva, M.R., Kondratenko, R.V., Skrebitsky, V.G., and Isaev, N.K. (2019). Neuroprotective effects of methylene blue in vivo and in vitro. Bull. Exp. Biol. Med. 167: 455–459, https://doi.org/10.1007/s10517-019-04548-3.Search in Google Scholar PubMed
Stelmashook, E.V., Voronkov, D.N., Stavrovskaya, A.V., Novikova, S.V., Yamshikova, N.G., Olshanskij, A.S., Guschina, A.S., Shedenkova, M.O., Genrikhs, E.E., and Isaev, N.K. (2023). Neuroprotective effects of methylene blue in streptozotocin-induced model of Alzheimer’s disease. Brain Res. 1805: 148290, https://doi.org/10.1016/j.brainres.2023.148290.Search in Google Scholar PubMed
Talley Watts, L., Long, J.A., Chemello, J., Van Koughnet, S., Fernandez, A., Huang, S., Shen, Q., and Duong, T.Q. (2014). Methylene blue is neuroprotective against mild traumatic brain injury. J. Neurotrauma 31: 1063–1071, https://doi.org/10.1089/neu.2013.3193.Search in Google Scholar PubMed PubMed Central
Talley Watts, L., Long, J.A., Boggs, R.C., Manga, H., Huang, S., Shen, Q., and Duong, T.Q. (2016). Delayed methylene blue improves lesion volume, multi-parametric quantitative magnetic resonance imaging measurements, and behavioral outcome after traumatic brain injury. J. Neurotrauma 33: 194–202, https://doi.org/10.1089/neu.2015.3904.Search in Google Scholar PubMed PubMed Central
Taniguchi, S., Suzuki, N., Masuda, M., Hisanaga, S., Iwatsubo, T., Goedert, M., and Hasegawa, M. (2005). Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J. Biol. Chem. 280: 7614–7623, https://doi.org/10.1074/jbc.m408714200.Search in Google Scholar
Tu, W., Wang, H., Li, S., Liu, Q., and Sha, H. (2019). The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging Dis. 10: 637–651, https://doi.org/10.14336/ad.2018.0513.Search in Google Scholar PubMed PubMed Central
Tucker, D., Lu, Y., and Zhang, Q. (2018). From mitochondrial function to neuroprotection-an emerging role for methylene blue. Mol. Neurobiol. 55: 5137–5153, https://doi.org/10.1007/s12035-017-0712-2.Search in Google Scholar PubMed PubMed Central
Uryu, K., Chen, X.H., Martinez, D., Browne, K.D., Johnson, V.E., Graham, D.I., Lee, V.M., Trojanowski, J.Q., and Smith, D.H. (2007). Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Exp. Neurol. 208: 185–192, https://doi.org/10.1016/j.expneurol.2007.06.018.Search in Google Scholar PubMed PubMed Central
Van Bebber, F., Paquet, D., Hruscha, A., Schmid, B., and Haass, C. (2010). Methylene blue fails to inhibit Tau and polyglutamine protein dependent toxicity in zebrafish. Neurobiol. Dis. 39: 265–271, https://doi.org/10.1016/j.nbd.2010.03.023.Search in Google Scholar PubMed
Vekaria, H.J., Talley Watts, L., Lin, A.L., and Sullivan, P.G. (2017). Targeting mitochondrial dysfunction in CNS injury using methylene blue; still a magic bullet? Neurochem. Int. 109: 117–125, https://doi.org/10.1016/j.neuint.2017.04.004.Search in Google Scholar PubMed PubMed Central
Wen, Y., Li, W., Poteet, E.C., Xie, L., Tan, C., Yan, L.J., Ju, X., Liu, R., Qian, H., Marvin, M.A., et al.. (2011). Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. J. Biol. Chem. 286: 16504–16515, https://doi.org/10.1074/jbc.m110.208447.Search in Google Scholar PubMed PubMed Central
Wiklund, L., Basu, S., Miclescu, A., Wiklund, P., Ronquist, G., and Sharma, H.S. (2007). Neuro- and cardioprotective effects of blockade of nitric oxide action by administration of methylene blue. Ann. N. Y. Acad. Sci. 1122: 231–244, https://doi.org/10.1196/annals.1403.016.Search in Google Scholar PubMed
Wiklund, L., Zoerner, F., Semenas, E., Miclescu, A., Basu, S., and Sharma, H.S. (2013). Improved neuroprotective effect of methylene blue with hypothermia after porcine cardiac arrest. Acta Anaesthesiol. Scand. 57: 1073–1082, https://doi.org/10.1111/aas.12106.Search in Google Scholar PubMed
Wischik, C.M., Edwards, P.C., Lai, R.Y., Roth, M., and Harrington, C.R. (1996). Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc. Natl. Acad. Sci. U. S. A. 93: 11213–11218, https://doi.org/10.1073/pnas.93.20.11213.Search in Google Scholar PubMed PubMed Central
Wischik, C.M., Staff, R.T., Wischik, D.J., Bentham, P., Murray, A.D., Storey, J.M., Kook, K.A., and Harrington, C.R. (2015). Tau aggregation inhibitor therapy: an exploratory phase 2 study in mild or moderate Alzheimer’s disease. J. Alzheim. Dis. 44: 705–720, https://doi.org/10.3233/jad-142874.Search in Google Scholar PubMed
Wrubel, K.M., Riha, P.D., Maldonado, M.A., McCollum, D., and Gonzalez-Lima, F. (2007). The brain metabolic enhancer methylene blue improves discrimination learning in rats. Pharmacol. Biochem. Behav. 86: 712–717, https://doi.org/10.1016/j.pbb.2007.02.018.Search in Google Scholar PubMed PubMed Central
Wu, Z., Chen, C., Kang, S.S., Liu, X., Gu, X., Yu, S.P., Keene, C.D., Cheng, L., and Ye, K. (2021). Neurotrophic signaling deficiency exacerbates environmental risks for Alzheimer’s disease pathogenesis. Proc. Natl. Acad. Sci. U. S. A. 118: e2100986118, https://doi.org/10.1073/pnas.2100986118.Search in Google Scholar PubMed PubMed Central
Xue, H., Thaivalappil, A., and Cao, K. (2021). The potentials of methylene blue as an anti-aging drug. Cells 10: 3379, https://doi.org/10.3390/cells10123379.Search in Google Scholar PubMed PubMed Central
Xue, R., Gao, S., Zhang, Y., Cui, X., Mo, W., Xu, J., and Yao, M. (2022). A meta-analysis of resveratrol protects against cerebral ischemia/reperfusion injury: evidence from rats studies and insight into molecular mechanisms. Front. Pharmacol. 13: 988836, https://doi.org/10.3389/fphar.2022.988836.Search in Google Scholar PubMed PubMed Central
Zhang, X., Rojas, J.C., and Gonzalez-Lima, F. (2006). Methylene blue prevents neurodegeneration caused by rotenone in the retina. Neurotox. Res. 9: 47–57, https://doi.org/10.1007/bf03033307.Search in Google Scholar PubMed
Zhao, M., Liang, F., Xu, H., Yan, W., and Zhang, J. (2016). Methylene blue exerts a neuroprotective effect against traumatic brain injury by promoting autophagy and inhibiting microglial activation. Mol. Med. Rep. 13: 13–20, https://doi.org/10.3892/mmr.2015.4551.Search in Google Scholar PubMed PubMed Central
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Dendritic spines and their role in the pathogenesis of neurodevelopmental and neurological disorders
- Mitochondria and MICOS – function and modeling
- The role of long noncoding RNAs in amyotrophic lateral sclerosis
- Current potential pathogenic mechanisms of copper-zinc superoxide dismutase 1 (SOD1) in amyotrophic lateral sclerosis
- Analysis of radiological features in patients with post-stroke depression and cognitive impairment
- Impact of carotid stenosis on the outcome of stroke patients submitted to reperfusion treatments: a narrative review
- Methylene blue and its potential in the treatment of traumatic brain injury, brain ischemia, and Alzheimer’s disease
Articles in the same Issue
- Frontmatter
- Dendritic spines and their role in the pathogenesis of neurodevelopmental and neurological disorders
- Mitochondria and MICOS – function and modeling
- The role of long noncoding RNAs in amyotrophic lateral sclerosis
- Current potential pathogenic mechanisms of copper-zinc superoxide dismutase 1 (SOD1) in amyotrophic lateral sclerosis
- Analysis of radiological features in patients with post-stroke depression and cognitive impairment
- Impact of carotid stenosis on the outcome of stroke patients submitted to reperfusion treatments: a narrative review
- Methylene blue and its potential in the treatment of traumatic brain injury, brain ischemia, and Alzheimer’s disease