Startseite Cell assembly formation and structure in a piriform cortex model
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cell assembly formation and structure in a piriform cortex model

  • Roger D. Traub EMAIL logo , Yuhai Tu und Miles A. Whittington
Veröffentlicht/Copyright: 15. Juli 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The piriform cortex is rich in recurrent excitatory synaptic connections between pyramidal neurons. We asked how such connections could shape cortical responses to olfactory lateral olfactory tract (LOT) inputs. For this, we constructed a computational network model of anterior piriform cortex with 2000 multicompartment, multiconductance neurons (500 semilunar, 1000 layer 2 and 500 layer 3 pyramids; 200 superficial interneurons of two types; 500 deep interneurons of three types; 500 LOT afferents), incorporating published and unpublished data. With a given distribution of LOT firing patterns, and increasing the strength of recurrent excitation, a small number of firing patterns were observed in pyramidal cell networks: first, sparse firings; then temporally and spatially concentrated epochs of action potentials, wherein each neuron fires one or two spikes; then more synchronized events, associated with bursts of action potentials in some pyramidal neurons. We suggest that one function of anterior piriform cortex is to transform ongoing streams of input spikes into temporally focused spike patterns, called here “cell assemblies”, that are salient for downstream projection areas.


Corresponding author: Roger D. Traub, AI Foundations, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA, E-mail:

Funding source: IBM Exploratory Research Councils

Acknowledgements

We thank Ben Strowbridge, Carl Edward Schoonover and Andrew Fink for helpful discussions and sharing unpublished data; Sam Mckenzie for helpful discussions; Robert Walkup for critical assistance with programming issues.

  1. Author contributions: All authors conceived the study and wrote the paper. RDT performed simulations. YT performed theoretical analysis. MAW acquired and analyzed experimental data.

  2. Research funding: IBM Exploratory Research Councils.

  3. Conflict of interest statement: The authors declare that no conflict of interest exists.

References

Acharya, V., Acharya, J., and Lüders, H. (1998). Olfactory epileptic auras. Neurology 51: 56–61, https://doi.org/10.1212/wnl.51.1.56.Suche in Google Scholar PubMed

Ainsworth, M., Lee, S., Cunningham, M.O., Traub, R.D., Kopell, N.J., and Whittington, M.A. (2012). Rates and rhythms: a synergistic view of frequency and temporal coding in neuronal networks. Neuron 75: 572–583, https://doi.org/10.1016/j.neuron.2012.08.004.Suche in Google Scholar PubMed

Apicella, A., Yuan, Q., Scanziani, M., and Isaacson, J.S. (2010). Pyramidal cells in piriform cortex receive convergent input from distinct olfactory bulb glomeruli. J. Neurosci. 30: 14255–14260, https://doi.org/10.1523/jneurosci.2747-10.2010.Suche in Google Scholar

Avorio, F., Morano, A., Fanella, M., Fattouch, J., Albini, M., Basili, L.M., Carulli Irelli, E., Fisco, G., Manfredi, M., and Giallonardo, A.T., et al. (2019). Olfactory stimulus-induced temporal lobe seizures in limbic encephalitis. Seizure 69: 204–206.10.1016/j.seizure.2019.05.005Suche in Google Scholar PubMed

Balu, R., Larimer, P., and Strowbridge, B.W. (2004). Phasic stimuli evoke precisely timed spikes in intermittently discharging mitral cells. J. Neurophysiol. 92: 743–753, https://doi.org/10.1152/jn.00016.2004.Suche in Google Scholar PubMed

Barkai, E. and Hasselmo, M.E. (1994). Modulation of the input/output function of rat piriform cortex pyramidal cells. J. Neurophysiol. 72: 644–658, https://doi.org/10.1152/jn.1994.72.2.644.Suche in Google Scholar PubMed

Barkai, E., Bergman, R.E., Horwitz, G., and Hasselmo, M.E. (1994). Modulation of associative memory function in a biophysical simulation of rat piriform cortex. J. Neurophysiol. 72: 659–677, https://doi.org/10.1152/jn.1994.72.2.659.Suche in Google Scholar PubMed

Barkai, E. and Hasselmo, M.H. (1997). Acetylcholine and associative memory in the piriform cortex. Mol. Neurobiol. 15: 17–29.10.1007/BF02740613Suche in Google Scholar PubMed

Barnes, D.C. and Wilson, D.A. (2014). Sleep and olfactory cortical plasticity. Front. Behav. Neurosci. 8: 134, https://doi.org/10.3389/fnbeh.2014.00134.Suche in Google Scholar PubMed PubMed Central

Bartos, M., Vida, I., Frotscher, F., Geiger, J.R.P., and Jonas, P. (2001). Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J. Neurosci. 21: 2687–2698, https://doi.org/10.1523/jneurosci.21-08-02687.2001.Suche in Google Scholar

Bekkers, J.M. and Suzuki, N. (2013). Neurons and circuits for odor processing in the piriform cortex. Trends Neurosci. 367: 429–438, https://doi.org/10.1016/j.tins.2013.04.005.Suche in Google Scholar

Bolding, K.A. and Franks, K.M. (2018). Recurrent cortical circuits implement concentration-invariant odor coding. Science 361: eaat6904, https://doi.org/10.1126/science.aat6904.Suche in Google Scholar

Bolding, K.A., Nagappan, S., Han, B.X., Wang, F., and Franks, K.M. (2020). Recurrent circuitry is required to stabilize piriform cortex odor representations across brain states. Elife 9: e53125, https://doi.org/10.7554/eLife.53125.Suche in Google Scholar

Buonviso, N., Chaput, M.A., and Berthommier, F. (1992). Temporal pattern analyses in pairs of neighboring mitral cells. J. Neurophysiol. 68: 417–424, https://doi.org/10.1152/jn.1992.68.2.417.Suche in Google Scholar

Buzsáki, G. (1986). Hippocampal sharp waves: their origin and significance. Brain Res. 398: 242–252, https://doi.org/10.1016/0006-8993(86)91483-6.Suche in Google Scholar

Buzsáki, G. (2010). Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68: 362–385, https://doi.org/10.1016/j.neuron.2010.09.023.Suche in Google Scholar PubMed PubMed Central

Carracedo, L.M., Kjeldsen, H., Cunnington, L., Jenkins, A., Schofield, I., Cunningham, M.O., Traub, R.D., and Whittington, M.A. (2013). A neocortical delta rhythm facilitates reciprocal interlaminar interactions via nested theta rhythms. J. Neurosci. 33: 10750–10761, https://doi.org/10.1523/jneurosci.0735-13.2013.Suche in Google Scholar

Chandra, N., Awasthi, R., Ozdogan, T., Johenning, F.W., Imbrosci, B., Morris, G., Schmitz, D., and Barkai, E. (2019). A cellular mechanism underlying enhanced capability for complex olfactory discrimination learning. eNeuro 6, https://doi.org/10.1523/ENEURO.0198-18.2019.Suche in Google Scholar PubMed PubMed Central

Chen, S., Murakami, K., Oda, S., and Kishi, K. (2003). Quantitative analysis of axon collaterals of single cells in layer III of the piriform cortex of the Guinea pig. J. Comp. Neurol. 465: 455–465, https://doi.org/10.1002/cne.10844.Suche in Google Scholar PubMed

Choi, G.B., Stettler, D.D., Kallman, B.R., Bhaskar, S.T., Fleischmann, A., and Axel, R. (2011). Driving opposing behaviors with ensembles of piriform neurons. Cell 146: 1004–1015, https://doi.org/10.1016/j.cell.2011.07.041.Suche in Google Scholar PubMed PubMed Central

Choy, J.M.C., Suzuki, N., Shima, Y., Budisantoso, T., Nelson, S.B., and Bekkers, J.M. (2017). Optogenetic mapping of intracortical circuits originating from semilunar cells in the piriform cortex. Cerebr. Cortex 27: 589–601.10.1093/cercor/bhv258Suche in Google Scholar

Cross, M.C. and Hohenberg, P.C. (1993). Pattern formation outside of equilibrium. Rev. Mod. Phys. 65: 851–1112, https://doi.org/10.1103/revmodphys.65.851.Suche in Google Scholar

Csicsvari, J., Hirase, H., Czurkó, A., Mamiya, A., and Buzsáki, G. (2000). Ensemble patterns of hippocampal CA3-CA1 neurons during sharp wave-associated population events. Neuron 28: 585–594, https://doi.org/10.1016/s0896-6273(00)00135-5.Suche in Google Scholar

Cunningham, M.O., Whittington, M.A., Bibbig, A., Roopun, A., LeBeau, F.E.N., Vogt, A., Monyer, H., Buhl, E.H., and Traub, R.,D. (2004). A role for fast rhythmic bursting neurons in cortical gamma oscillations in vitro. Proc. Natl. Acad. Sci. U.S.A. 101: 7152–7157, https://doi.org/10.1073/pnas.0402060101.Suche in Google Scholar

Davison, I.G. and Ehlers, M.D. (2011). Neural circuit mechanisms for pattern detection and feature combination in olfactory cortex. Neuron 70: 82–94, https://doi.org/10.1016/j.neuron.2011.02.047.Suche in Google Scholar

de Curtis, M., Biella, G., Forti, M., and Panzica, F. (1994). Multifocal spontaneous epileptic activity induced by restricted bicuculline ejection in the piriform cortex of the isolated Guinea pig brain. J. Neurophysiol. 71: 2463–2476, https://doi.org/10.1152/jn.1994.71.6.2463.Suche in Google Scholar

de Curtis, M., Uva, L., Lévesque, M., Biella, G., and Avoli, M. (2019). Piriform cortex ictogenicity in vitro. Exp. Neurol. 321:113014: 113014, https://doi.org/10.1016/j.expneurol.2019.113014.Suche in Google Scholar

Desai, M., Agadi, J.B., Karthik, N., Praveenkumar, S., and Netto, A.B. (2015). Olfactory abnormalities in temporal lobe epilepsy. J. Clin. Neurosci. 22: 1614–1618, https://doi.org/10.1016/j.jocn.2015.03.035.Suche in Google Scholar

Diba, K. and Buzsáki, G. (2007). Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci. 10: 1241–1242, https://doi.org/10.1038/nn1961.Suche in Google Scholar

Doherty, J., Gale, K., and Eagles, D.A. (2000). Evoked epileptiform discharges in the rat anterior piriform cortex: generation and local propagation. Brain Res. 861: 77–87, https://doi.org/10.1016/s0006-8993(00)02000-x.Suche in Google Scholar

Ekstrand, J.J., Domroese, M.E., Johnson, D.M., Feig, S.L., Knodel, S.M., Behan, M., and Haberly, L.B. (2001). A new subdivision of anterior piriform cortex and associated deep nucleus with novel features of interest for olfaction and epilepsy. J. Comp. Neurol. 434: 289–307.10.1002/cne.1178Suche in Google Scholar

Figueres-Oñate, M., Gutiérrez, Y., and López-Mascaraque, L. (2014). Unraveling Cajal’s view of the olfactory system. Front. Neuroanat. 8: 55, https://doi.org/10.3389/fnana.2014.00055.Suche in Google Scholar

Fisahn, A., Pike, F.G., Buhl, E.H., and Paulsen, O. (1998). Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394: 186–189, https://doi.org/10.1038/28179.Suche in Google Scholar

Fitzhugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1: 445–466, https://doi.org/10.1016/s0006-3495(61)86902-6.Suche in Google Scholar

Forti, M., Biella, G., Caccia, S., and de Curtis, M. (1997). Persistent excitability changes in the piriform cortex of the isolated Guinea-pig brain after transient exposure to bicuculline. Eur. J. Neurosci. 9: 435–451, https://doi.org/10.1111/j.1460-9568.1997.tb01621.x.Suche in Google Scholar PubMed

Fournier, J., Müller, C.M., and Laurent, G. (2015). Looking for the roots of cortical sensory computation in three-layered cortices. Curr. Opin. Neurobiol. 31: 119–126, https://doi.org/10.1016/j.conb.2014.09.006.Suche in Google Scholar PubMed PubMed Central

Franks, K.M. and Isaacson, J.S. (2006). Strong single-fiber sensory inputs to olfactory cortex: implications for olfactory coding. Neuron 49: 357–363, https://doi.org/10.1016/j.neuron.2005.12.026.Suche in Google Scholar PubMed

Franks, K.M., Russo, M.J., Sosulski, D.L., Mulligan, A.A., Siegelbaum, S.A., and Axel, R. (2011). Recurrent circuitry dynamically shapes the activation of piriform cortex. Neuron 72: 49–56, https://doi.org/10.1016/j.neuron.2011.08.020.Suche in Google Scholar PubMed PubMed Central

Fuchs, E.C., Doheny, H., Faulkner, H., Caputi, A., Traub, R.D., Bibbig, A., Kopell, N., Whittington, M.A., and Monyer, H. (2001). Genetically altered AMPA-type glutamate receptor kinetics in interneurons disrupt long-range synchrony of gamma oscillation. Proc. Natl. Acad. Sci. U.S.A. 98: 3571–3576, https://doi.org/10.1073/pnas.051631898.Suche in Google Scholar PubMed PubMed Central

Fuchs, E.C., Zivkovic, A.R., Cunningham, M.O., Middleton, S., LeBeau, F.E.N., Bannerman, D.M., Rozov, A., Whittington, M.A., Traub, R.D., Rawlins, J.N.P., et al.. (2007). Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53: 591–604, https://doi.org/10.1016/j.neuron.2007.01.031.Suche in Google Scholar PubMed

Galvan, M., Grafe, P., and ten Bruggencate, G. (1982). Convulsant actions of 4-aminopyridine on the Guinea-pig olfactory cortex slice. Brain Res. 241: 75–86, https://doi.org/10.1016/0006-8993(82)91230-6.Suche in Google Scholar

Garagnani, M., Wennekers, T., and Pulvermuller, F. (2009). Recruitment and consolidation of cell assemblies for words by way of Hebbian learning and competition in multi-layer neural networks. Cognit. Comput. 1: 160–176.10.1007/s12559-009-9011-1Suche in Google Scholar PubMed PubMed Central

Gerrard, L.B., Tantirigama, M.L.S., and Bekkers, J.M. (2018). Pre- and postsynaptic activation of GABAB receptors modulates principal cell excitation in the piriform cortex. Front. Cell. Neurosci. 12: 28, https://doi.org/10.3389/fncel.2018.00028.Suche in Google Scholar PubMed PubMed Central

Girardeau, G., Benchenane, K., Wiener, S.I., Buzsáki, G., and Zugaro, M.B. (2009). Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12: 1222–1223, https://doi.org/10.1038/nn.2384.Suche in Google Scholar PubMed

Gulyás, A.I., Miles, R., Sik, A., Tóth, K., Tamamaki, N., and Freund, T.F. (1993). Hippocampal pyramidal cells excite inhibitory neurons through a single release site. Nature 366: 683–687, https://doi.org/10.1038/366683a0.Suche in Google Scholar PubMed

Guzman, S.J., Schlögl, A., Frotscher, M., and Jonas, P. (2016). Synaptic mechanisms of pattern completion in the hippocampal CA3 network. Science 353: 1117–1123, https://doi.org/10.1126/science.aaf1836.Suche in Google Scholar PubMed

Haberly, L.B. (2001). Parallel-distributed processing in olfactory cortex: new insights from morphological and physiological analysis of neuronal circuitry. Chem. Senses 26: 551–576, https://doi.org/10.1093/chemse/26.5.551.Suche in Google Scholar PubMed

Haberly, L.B. and Price, J.L. (1978). Association and commissural fiber systems of the olfactory cortex of the rat. J. Comp. Neurol. 178: 711–740.10.1002/cne.901780408Suche in Google Scholar PubMed

Haberly, L.B. and Sutula, T.P. (1992). Neuronal processes that underlie expression of kindled epileptiform events in the piriform cortex in vivo. J. Neurosci. 12: 2211–2124, https://doi.org/10.1523/jneurosci.12-06-02211.1992.Suche in Google Scholar

Haddad, R., Lanjuin, A., Madisen, L., Zeng, H., Murthy, V.N., and Uchida, N. (2013). Olfactory cortical neurons read out a relative time code in the olfactory bulb. Nat. Neurosci. 16: 949–957, https://doi.org/10.1038/nn.3407.Suche in Google Scholar PubMed PubMed Central

Hagiwara, A., Pal, S.K., Sato, T.F., Wienisch, M., and Murthy, V.N. (2012). Optophysiological analysis of associational circuits in the olfactory cortex. Front. Neural Circ. 6: 18.10.3389/fncir.2012.00018Suche in Google Scholar PubMed PubMed Central

Hamidi, S., Lévesque, M., and Avoli, M. (2014). Epileptiform synchronization and high-frequency oscillations in brain slices comprising piriform and entorhinal cortices. Neuroscience 281: 258–268, https://doi.org/10.1016/j.neuroscience.2014.09.065.Suche in Google Scholar PubMed PubMed Central

Harris, K.D. (2005). Neural signatures of cell assembly organization. Nat. Rev. Neurosci. 6: 399–407, https://doi.org/10.1038/nrn1669.Suche in Google Scholar PubMed

Hasselmo, M.E. and Barkai, E. (1995). Cholinergic modulation of activity-dependent synaptic plasticity in the piriform cortex and associative memory function in a network biophysical simulation. J. Neurosci. 15: 6592–6604.10.1523/JNEUROSCI.15-10-06592.1995Suche in Google Scholar

Hasselmo, M.E. and Bower, J.M. (1992). Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. J. Neurophysiol. 67: 1222–1229, https://doi.org/10.1152/jn.1992.67.5.1222.Suche in Google Scholar PubMed

Hebb, D.O. (1949). The organization of behavior: a neuropsychological theory. New York: John Wiley & Sons.Suche in Google Scholar

Hemberger, M., Shein-Idelson, M., Pammer, L., and Laurent, G. (2019). Reliable sequential activation of neural assemblies by single pyramidal cells in a three-layered cortex. Neuron 104: 353–369, https://doi.org/10.1016/j.neuron.2019.07.017.Suche in Google Scholar PubMed

Hoffman, W.H. and Haberly, L.B. (1989). Bursting induces persistent all-or-none EPSPs by an NMDA-dependent process in piriform cortex. J. Neurosci. 9: 206–215, https://doi.org/10.1523/jneurosci.09-01-00206.1989.Suche in Google Scholar

Hoffman, W.H. and Haberly, L.B. (1993). Role of synaptic excitation in the generation of bursting-induced epileptiform potentials in the endopiriform nucleus and piriform cortex. J. Neurophysiol. 70: 2550–2561, https://doi.org/10.1152/jn.1993.70.6.2550.Suche in Google Scholar PubMed

Holtmaat, A. and Caroni, P. (2016). Functional and structural underpinnings of neuronal assembly formation in learning. Nat. Neurosci. 19: 1553–1562.10.1038/nn.4418Suche in Google Scholar PubMed

Houweling, A.R. and Brecht, M. (2008). Behavioral report of single neuron stimulation in somatosensory cortex. Nature 451: 65–68.10.1038/nature06447Suche in Google Scholar PubMed

Huyck, C.R. and Passmore, P.J. (2013). A review of cell assemblies. Biol. Cybern. 107: 263–288.10.1007/s00422-013-0555-5Suche in Google Scholar

Ikeda, K., Suzuki, N., and Bekkers, J.M. (2018). Sodium and potassium conductances in principal neurons of the mouse piriform cortex: a quantitative description. J. Physiol. 596: 5397–5414, https://doi.org/10.1113/jp275824.Suche in Google Scholar

Illig, K.R. and Haberly, L.B. (2003). Odor-evoked activity is spatially distributed in piriform cortex. J. Comp. Neurol. 457: 361–373, https://doi.org/10.1002/cne.10557.Suche in Google Scholar

Kapur, A., Pearce, R.A., Lytton, W.W., and Haberly, L.B. (1997). GABAA-mediated IPSCs in piriform cortex have fast and slow components with different properties and locations on pyramidal cells. J. Neurophysiol. 78: 2531–2545, https://doi.org/10.1152/jn.1997.78.5.2531.Suche in Google Scholar

Katori, K., Manabe, H., Nakashima, A., Dunfu, E., Sasaki, T., Ikegaya, Y., and Takeuchi, H. (2018). Sharp wave-associated activity patterns of cortical neurons in the mouse piriform cortex. Eur. J. Neurosci. 48: 3246–3254, https://doi.org/10.1111/ejn.14099.Suche in Google Scholar

König, P., Engel, A.K., and Singer, W. (1996). Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci. 19: 130–137, https://doi.org/10.1016/s0166-2236(96)80019-1.Suche in Google Scholar

Kopell, N. (2005). Does it have to be this complicated? Focus on “single-column thalamocortical network model exhibiting gamma oscillations, spindles, and epileptogenic bursts”. J. Neurophysiol. 93: 1829–1830, https://doi.org/10.1152/jn.01147.2004.Suche in Google Scholar PubMed

Kopell, N., Kramer, M.A., Malerba, P., and Whittington, M.A. (2010). Are different rhythms good for different functions? Front. Hum. Neurosci. 4: 187, https://doi.org/10.3389/fnhum.2010.00187.Suche in Google Scholar PubMed PubMed Central

Kumar, A., Schiff, O., Barkai, E., Mel, B.W., Poleg-Polsky, A., and Schiller, J. (2018). NMDA spikes mediate amplification of inputs in the rat piriform cortex. Elife 7, https://doi.org/10.7554/eLife.38446.Suche in Google Scholar PubMed PubMed Central

Kuramoto, Y. (1975). In: Araki, H. (Ed.). International symposium on mathematical problems in theoretical physics. Springer, pp. 420–422.10.1007/BFb0013365Suche in Google Scholar

Kuramoto, Y. (1984). Chemical oscillations, waves and turbulence. Springer series in synergetics, Vol. 19. Springer.10.1007/978-3-642-69689-3Suche in Google Scholar

Large, A.M., Kunz, N.A., Mielo, S.L., and Oswald, A.M. (2016). Inhibition by somatostatin interneurons in olfactory cortex. Front. Neural Circ. 10: 62, https://doi.org/10.3389/fncir.2016.00062.Suche in Google Scholar

Larriva-Sahd, J.A. (2010). Chandelier and interfascicular neurons in the adult mouse piriform cortex. Front. Neuroanat. 4: 148, https://doi.org/10.3389/fnana.2010.00148.Suche in Google Scholar

Lee, D.J., Owen, C.M., Khanifar, E., Kim, R.C., and Binder, D.K. (2009). Isolated amygdala neurocysticercosis in a patient presenting with déjà vu and olfactory auras. Case report. J. Neurosurg. Pediatr. 3: 538–541, https://doi.org/10.3171/2009.2.peds08140.Suche in Google Scholar

Litaudon, P., Amat, C., Bertrand, B., Vigouroux, M., and Buonviso, N. (2003). Piriform cortex functional heterogeneity revealed by cellular responses to odours. Eur. J. Neurosci. 17: 2457–2461, https://doi.org/10.1046/j.1460-9568.2003.02654.x.Suche in Google Scholar

Lopes-dos-Santos, V., Ribeiros, S., and Tort, A.B. (2013). Detecting cell assemblies in large neuronal populations. J. Neurosci. Methods 220: 149–166.10.1016/j.jneumeth.2013.04.010Suche in Google Scholar

Löscher, W. and Ebert, U. (1996). The role of the piriform cortex in kindling. Prog. Neurobiol. 50: 427–481, https://doi.org/10.1016/s0301-0082(96)00036-6.Suche in Google Scholar

Luna, V.M. and Schoppa, N.E. (2008). GABAergic circuits control input-spike coupling in the piriform cortex. J. Neurosci. 28: 8851–8859, https://doi.org/10.1523/jneurosci.2385-08.2008.Suche in Google Scholar

Luskin, M.D. and Price, J.L. (1983). The laminar distribution of intracortical fibers originating in the olfactory cortex of the rat. J. Comp. Neurol. 216: 292–302.10.1002/cne.902160306Suche in Google Scholar PubMed

Magistretti, J., Brevi, S., and de Curtis, M. (1999). Biophysical and pharmacological diversity of high-voltage-activated calcium currents in layer II neurones of Guinea-pig piriform cortex. J. Physiol. 518: 705–720, https://doi.org/10.1111/j.1469-7793.1999.0705p.x.Suche in Google Scholar PubMed PubMed Central

Manabe, H., Kusumoto-Yoshida, I., Ota, M., and Mori, K. (2011). Olfactory cortex generates synchronized top-down inputs to the olfactory bulb during slow-wave sleep. J. Neurosci. 31: 8123–8133, https://doi.org/10.1523/jneurosci.6578-10.2011.Suche in Google Scholar

Markram, H., Lübke, J., Frotscher, M., Roth, A., and Sakmann, B. (1997). Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. 500: 409–440, https://doi.org/10.1113/jphysiol.1997.sp022031.Suche in Google Scholar

Meissner-Bernard, C., Dembitskaya, Y., Venance, L., and Fleischmann, A. (2019). Encoding of odor fear memories in the mouse olfactory cortex. Curr. Biol. 29: 367–380.e4, https://doi.org/10.1016/j.cub.2018.12.003.Suche in Google Scholar

Miles, R. (1990). Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the Guinea-pig in vitro. J. Physiol. 428: 61–77, https://doi.org/10.1113/jphysiol.1990.sp018200.Suche in Google Scholar

Miles, R. and Wong, R.K.S. (1983). Single neurones can initiate synchronized population discharge in the hippocampus. Nature 306: 371–373, https://doi.org/10.1038/306371a0.Suche in Google Scholar

Miles, R. and Wong, R.K.S. (1984). Unitary inhibitory synaptic potentials in the Guinea-pig hippocampus in vitro. J. Physiol. 356: 97–113, https://doi.org/10.1113/jphysiol.1984.sp015455.Suche in Google Scholar

Miles, R. and Wong, R.K.S. (1986). Excitatory synaptic interactions between CA3 neurones in the Guinea-pig hippocampus. J. Physiol. 373: 397–418, https://doi.org/10.1113/jphysiol.1986.sp016055.Suche in Google Scholar

Miles, R. and Wong, R.K.S. (1987). Inhibitory control of local excitatory circuits in the Guinea-pig hippocampus. J. Physiol. 388: 611–629, https://doi.org/10.1113/jphysiol.1987.sp016634.Suche in Google Scholar

Miles, R., Tóth, K., Gulyás, A.I., Hajos, N., and Freund, T.F. (1996). Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16: 815–823, https://doi.org/10.1016/s0896-6273(00)80101-4.Suche in Google Scholar

Miyashita, Y. (1988). Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 335: 817–820, https://doi.org/10.1038/335817a0.Suche in Google Scholar PubMed

Mukherjee, B. and Yuan, Q. (2016). NMDA receptors in mouse anterior piriform cortex initialize early odor preference learning and L-type calcium channels engage for long-term memory. Sci. Rep. 6: 35256, https://doi.org/10.1038/srep35256.Suche in Google Scholar PubMed PubMed Central

Narikiyo, K., Manabe, H., and Mori, K. (2014). Sharp wave-associated synchronized inputs from the piriform cortex activate olfactory tubercle neurons during slow-wave sleep. J. Neurophysiol. 111: 72–81, https://doi.org/10.1152/jn.00535.2013.Suche in Google Scholar PubMed PubMed Central

Onsager, L. (1944). Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. Ser. II 65: 117–149, https://doi.org/10.1103/physrev.65.117.Suche in Google Scholar

Palm, G. (1980). On associative memory. Biol. Cybern. 36: 19–31.10.1007/BF00337019Suche in Google Scholar PubMed

Palm, G., Knoblauch, A., Hauser, F., and Schuz, A. (2014). Cell assemblies in the cerebral cortex. Biol. Cybern. 108: 559–572.10.1007/s00422-014-0596-4Suche in Google Scholar PubMed

Panuccio, G., Sanchez, G., Lévesque, M., Salami, P., de Curtis, M., and Avoli, M. (2012). On the ictogenic properties of the piriform cortex in vitro. Epilepsia 53: 459–468, https://doi.org/10.1111/j.1528-1167.2012.03408.x.Suche in Google Scholar PubMed PubMed Central

Pashkovski, S., Iurilli, G., Brann, D., Chicharro, D., Drummey, K., Franks, K., Panzeri, S., and Datta, S.R. (2020). Structure and flexibility in cortical representations of odour space. Nature 583: 253–258, https://doi.org/10.1038/s41586-020-2451-1.Suche in Google Scholar PubMed PubMed Central

Pelletier, M.R. and Carlen, P.L. (1996). Repeated tetanic stimulation in piriform cortex in vitro: epileptogenesis and pharmacology. J. Neurophysiol. 76: 4069–4079, https://doi.org/10.1152/jn.1996.76.6.4069.Suche in Google Scholar PubMed

Pinsky, P.F. and Rinzel, J. (1994). Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J. Comput. Neurosci. 1: 39–60, https://doi.org/10.1007/bf00962717.Suche in Google Scholar

Piredda, S. and Gale, K. (1985). A crucial epileptogenic site in the deep prepiriform cortex. Nature 317: 623–625, https://doi.org/10.1038/317623a0.Suche in Google Scholar PubMed

Poo, C. and Isaacson, J.S. (2009). Odor representations in olfactory cortex: “sparse” coding, global inhibition, and oscillations. Neuron 62: 850–861, https://doi.org/10.1016/j.neuron.2009.05.022.Suche in Google Scholar PubMed PubMed Central

Poo, C. and Isaacson, J.S. (2011). A major role for intracortical circuits in the strength and tuning of odor-evoked excitation in olfactory cortex. Neuron 72: 41–48, https://doi.org/10.1016/j.neuron.2011.08.015.Suche in Google Scholar PubMed PubMed Central

Postlethwaite, M., Constanti, A., and Libri, V. (1998). Muscarinic agonist-induced burst firing in immature rat olfactory cortex neurons in vitro. J. Neurophysiol. 79: 2003–2012, https://doi.org/10.1152/jn.1998.79.4.2003.Suche in Google Scholar PubMed

Pouille, F., Marin-Burgin, A., Adesnik, H., Atallah, B.V., and Scanziani, M. (2009). Input normalization by global feedforward inhibition expands cortical dynamic range. Nat. Neurosci. 12: 1577–1585, https://doi.org/10.1038/nn.2441.Suche in Google Scholar PubMed

Price, J.L. and Sprich, W.W. (1975). Observations on the lateral olfactory tract of the rat. J. Comp. Neurol. 162: 321–336, https://doi.org/10.1002/cne.901620304.Suche in Google Scholar PubMed

Racca, C., Catania, M.V., Monyer, H., and Sakmann, B. (1996). Expression of AMPA-glutamate receptor B subunit in rat hippocampal GABAergic neurons. Eur. J. Neurosci. 8: 1580–1590, https://doi.org/10.1111/j.1460-9568.1996.tb01303.x.Suche in Google Scholar PubMed

Reichinnek, S., Künsting, T., Draguhn, A., and Both, M. (2010). Field potential signature of distinct multicellular activity patterns in the mouse hippocampus. J. Neurosci. 30: 15441–15449, https://doi.org/10.1523/jneurosci.2535-10.2010.Suche in Google Scholar

Rennaker, R.L., Chen, C.F., Ruyle, A.M., Sloan, A.M., and Wilson, D.A. (2007). Spatial and temporal distribution of odorant-evoked activity in the piriform cortex. J. Neurosci. 27: 1534–1542, https://doi.org/10.1523/jneurosci.4072-06.2007.Suche in Google Scholar PubMed PubMed Central

Roland, B., Deneux, T., Franks, K.M., Bathellier, B., and Fleischmann, A. (2017). Odor identity coding by distributed ensembles of neurons in the mouse olfactory cortex. Elife 6, https://doi.org/10.7554/eLife.26337.Suche in Google Scholar PubMed PubMed Central

Roopun, A.K., Simonotto, J.D., Pierce, M.L., Jenkins, A., Schofield, I., Kaiser, M., Whittington, M.A., Traub, R.D., and Cunningham, M.O. (2010). A non-synaptic mechanism underlying interictal discharges in human epileptic neocortex. Proc. Natl. Acad. Sci. U.S.A. 107: 338–343, https://doi.org/10.1073/pnas.0912652107.Suche in Google Scholar PubMed PubMed Central

Saar, D., Grossman, Y., and Barkai, E. (2001). Long-lasting cholinergic modulation underlies rule learning in rats. J. Neurosci. 21: 1385–1392, https://doi.org/10.1523/jneurosci.21-04-01385.2001.Suche in Google Scholar

Sakurai, Y. (1999). How do cell assemblies encode information in the brain? Neurosci. Biobehav. Rev. 23: 785–796, https://doi.org/10.1016/s0149-7634(99)00017-2.Suche in Google Scholar

Schoonover, C.E., Ohashi, S.N., Axel, R., and Fink, A.J.P. (2021). Representational drift in primary olfactory cortex. Nature 594: 541–546, https://doi.org/10.1038/s41586-021-03628-7.Suche in Google Scholar

Sheridan, D.C., Hughes, A.R., Erdélyi, F., Szabó, G., Hentges, S.T., and Schoppa, N.E. (2014). Matching of feedback inhibition with excitation ensures fidelity of information flow in the anterior piriform cortex. Neuroscience 275: 519–530, https://doi.org/10.1016/j.neuroscience.2014.06.033.Suche in Google Scholar

Shimshek, D.R., Bus, T., Kim, J., Mihaljevic, A., Mack, V., Seeburg, P.H., Sprengel, R., and Schaefer, A.T. (2005). Enhanced odor discrimination and impaired olfactory memory by spatially controlled switch of AMPA receptors. PLoS Biol. 3: e354, https://doi.org/10.1371/journal.pbio.0030354.Suche in Google Scholar

Srinivasan, S. and Stevens, C.F. (2018). The distributed circuit within the piriform cortex makes odor discrimination robust. J. Comp. Neurol. 526: 2725–2743, https://doi.org/10.1002/cne.24492.Suche in Google Scholar

Stern, M., Bolding, K.A., Abbott, L.F., and Franks, K.M. (2018). A transformation from temporal to ensemble coding in a model of piriform cortex. Elife 7: e34831, https://doi.org/10.7554/eLife.34831.Suche in Google Scholar

Stevens, J.C., Cain, W.S., and Burke, R.J. (1988). Variability of olfactory thresholds. Chem. Senses 13: 643–653, https://doi.org/10.1093/chemse/13.4.643.Suche in Google Scholar

Stokes, C.C. and Isaacson, J.S. (2010). From dendrite to soma: dynamic routing of inhibition by complementary interneuron microcircuits in olfactory cortex. Neuron 67: 452–465, https://doi.org/10.1016/j.neuron.2010.06.029.Suche in Google Scholar

Suppes, T., Kriegstein, A.R., and Prince, D.A. (1985). The influence of dopamine on epileptiform burst activity in hippocampal pyramidal neurons. Brain Res. 326: 273–280, https://doi.org/10.1016/0006-8993(85)90036-8.Suche in Google Scholar

Suzuki, N. and Bekkers, J.M. (2006). Neural coding by two classes of principal cells in the mouse piriform cortex. J. Neurosci. 26: 11938–11947, https://doi.org/10.1523/jneurosci.3473-06.2006.Suche in Google Scholar PubMed PubMed Central

Suzuki, N. and Bekkers, J.M. (2007). Inhibitory interneurons in the piriform cortex. Clin. Exp. Pharmacol. Physiol. 34: 1064–1069, https://doi.org/10.1111/j.1440-1681.2007.04723.x.Suche in Google Scholar PubMed

Suzuki, N. and Bekkers, J.M. (2010a). Inhibitory neurons in the anterior piriform cortex of the mouse: classification using molecular markers. J. Comp. Neurol. 518: 1670–1687, https://doi.org/10.1002/cne.22295.Suche in Google Scholar PubMed

Suzuki, N. and Bekkers, J.M. (2010b). Distinctive classes of GABAergic interneurons provide layer-specific phasic inhibition in the anterior piriform cortex. Cerebr. Cortex 20: 2971–2984, https://doi.org/10.1093/cercor/bhq046.Suche in Google Scholar PubMed PubMed Central

Suzuki, N. and Bekkers, J.M. (2011). Two layers of synaptic processing by principal neurons in piriform cortex. J. Neurosci. 31: 2156–2166, https://doi.org/10.1523/jneurosci.5430-10.2011.Suche in Google Scholar PubMed PubMed Central

Tantirigama, M.L., Huang, H.H., and Bekkers, J.M. (2017). Spontaneous activity in the piriform cortex extends the dynamic range of cortical odor coding. Proc. Natl. Acad. Sci. U.S.A. 114: 2407–2412, https://doi.org/10.1073/pnas.1620939114.Suche in Google Scholar PubMed PubMed Central

Traub, R.D. and Miles, R. (1991). Neuronal networks of the hippocampus. New York: Cambridge University Press.10.1017/CBO9780511895401Suche in Google Scholar

Traub, R.D., Jefferys, J.G.R., Miles, R., Whittington, M.A., and Tóth, K. (1994). A branching dendritic model of a rodent CA3 pyramidal neurone. J. Physiol. 481: 79–95, https://doi.org/10.1113/jphysiol.1994.sp020420.Suche in Google Scholar PubMed PubMed Central

Traub, R.D., Whittington, M.A., Stanford, I.M., and Jefferys, J.G.R. (1996). A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383: 621–624, https://doi.org/10.1038/383621a0.Suche in Google Scholar PubMed

Traub, R.D., Jefferys, J.G.R., and Whittington, M.A. (1999). Fast oscillations in cortical circuits. Cambridge, MA: MIT Press.10.7551/mitpress/2962.001.0001Suche in Google Scholar

Traub, R.D., Bibbig, A., Fisahn, A., LeBeau, F.E.N., Whittington, M.A., and Buhl, E.H. (2000). A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. Eur. J. Neurosci. 12: 4093–4106, https://doi.org/10.1046/j.1460-9568.2000.00300.x.Suche in Google Scholar PubMed

Traub, R.D., Buhl, E.H., Gloveli, T., and Whittington, M.A. (2003a). Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels. J. Neurophysiol. 89: 909–921, https://doi.org/10.1152/jn.00573.2002.Suche in Google Scholar PubMed

Traub, R.D., Cunningham, M.O., Gloveli, T., LeBeau, F.E.N., Bibbig, A., Buhl, E.H., and Whittington, M.A. (2003b). GABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations. Proc. Natl. Acad. Sci. U.S.A. 100: 11047–11052, https://doi.org/10.1073/pnas.1934854100.Suche in Google Scholar PubMed PubMed Central

Traub, R.D., Contreras, D., Cunningham, M.O., Murray, H., LeBeau, F.E.N., Roopun, A., Bibbig, A., Wilent, W.B., Higley, M.J., and Whittington, M.A. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles and epileptogenic bursts. J. Neurophysiol. 93: 2194–2232, https://doi.org/10.1152/jn.00983.2004.Suche in Google Scholar PubMed

Traub, R.D., Whittington, M.A., Gutiérrez, R., and Draguhn, A. (2018). Electrical coupling between hippocampal neurons: contrasting roles of principal cell gap junctions and interneuron gap junctions. Cell Tissue Res. 373: 671–691, https://doi.org/10.1007/s00441-018-2881-3.Suche in Google Scholar PubMed

Traub, R.D., Whittington, M.A., Maier, N., Schmitz, D., and Nagy, J.I. (2020). Could electrical coupling contribute to the formation of cell assemblies? Rev. Neurosci. 31: 121–141, https://doi.org/10.1515/revneuro-2019-0059.Suche in Google Scholar PubMed

Traub, R.D. and Wong, R.K.S. (1982). Cellular mechanism of neuronal synchronization in epilepsy. Science 216: 745–747.10.1126/science.7079735Suche in Google Scholar PubMed

ul Quraish, A., Yang, J., Murakami, K., Oda, S., Takayanagi, M., Kimura, A., Kakuta, S., and Kishi, K. (2004). Quantitative analysis of axon collaterals of single superficial pyramidal cells in layer IIb of the piriform cortex of the Guinea pig. Brain Res. 1026: 84–94, https://doi.org/10.1016/j.brainres.2004.07.085.Suche in Google Scholar PubMed

Uva, L., Saccucci, S., Chikhladze, M., Tassi, L., Gnatkovsky, V., Milesi, G., Morbin, M., and de Curtis, M. (2017). A novel focal seizure pattern generated in superficial layers of the olfactory cortex. J. Neurosci. 37: 3544–3554, https://doi.org/10.1523/jneurosci.2239-16.2016.Suche in Google Scholar

Vaughan, D.N. and Jackson, G.D. (2014). The piriform cortex and human focal epilepsy. Front. Neurol. 5: 259, https://doi.org/10.3389/fneur.2014.00259.Suche in Google Scholar PubMed PubMed Central

Whalley, B.J., Postlethwaite, M., and Constanti, A. (2005). Further characterization of muscarinic agonist-induced epileptiform bursting activity in immature rat piriform cortex, in vitro. Neuroscience 134: 549–566, https://doi.org/10.1016/j.neuroscience.2005.04.018.Suche in Google Scholar PubMed

Whittington, M.A., Traub, R.D., and Jefferys, J.G.R. (1995). Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373: 612–615, https://doi.org/10.1038/373612a0.Suche in Google Scholar PubMed

Whittington, M.A., Stanford, I.M., Colling, S.B., Jefferys, J.G.R., and Traub, R.D. (1997). Spatiotemporal patterns of γ frequency oscillations tetanically induced in the rat hippocampal slice. J. Physiol. 502: 591–607, https://doi.org/10.1111/j.1469-7793.1997.591bj.x.Suche in Google Scholar PubMed PubMed Central

Wiegand, H.F., Beed, P., Bendels, M.H., Leibold, C., Schmitz, D., and Johenning, F.W. (2011). Complementary sensory and associative microcircuitry in primary olfactory cortex. J. Neurosci. 31: 12149–12158, https://doi.org/10.1523/jneurosci.0285-11.2011.Suche in Google Scholar

Wilson, D.A. (1998). Habituation of odor responses in the rat anterior piriform cortex. J. Neurophysiol. 79: 1425–1440.10.1152/jn.1998.79.3.1425Suche in Google Scholar PubMed

Wilson, M. and Bower, J.M. (1992). Cortical oscillations and temporal interactions in a computer simulation of piriform cortex. J. Neurophysiol. 67: 981–995, https://doi.org/10.1152/jn.1992.67.4.981.Suche in Google Scholar PubMed

Yang, J., Ul Quraish, A., Murakami, K., Ishikawa, Y., Takayanagi, M., Kakuta, S., and Kishi, K. (2004). Quantitative analysis of axon collaterals of single neurons in layer IIa of the piriform cortex of the guinea pig. J. Comp. Neurol. 473: 30–42.10.1002/cne.20104Suche in Google Scholar PubMed

Young, J.C., Vaughan, D.N., Nasser, H.M., and Jackson, G.D. (2019). Anatomical imaging of the piriform cortex in epilepsy. Exp. Neurol. 320: 113013, https://doi.org/10.1016/j.expneurol.2019.113013.Suche in Google Scholar PubMed

Zhang, X., Yan, W., Wang, W., Fan, H., Hou, R., Chen, Y., Chen, Z., Ge, C., Duan, S., Compte, A., et al.. (2019). Active information maintenance in working memory by a sensory cortex. Elife 24: 8.10.7554/eLife.43191Suche in Google Scholar PubMed PubMed Central

Zhou, S., Migliore, M., and Yu, Y. (2016). Odor experience facilitates sparse representations of new odors in a large-scale olfactory bulb model. Front. Neuroanat. 10: 10, https://doi.org/10.3389/fnana.2016.00010.Suche in Google Scholar PubMed PubMed Central

Received: 2021-04-10
Accepted: 2021-06-19
Published Online: 2021-07-15
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2021-0056/html
Button zum nach oben scrollen