Startseite Mechanisms of action of intravenous immunoglobulin in septic encephalopathy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mechanisms of action of intravenous immunoglobulin in septic encephalopathy

  • Figen Esen , Perihan Ergin Ozcan EMAIL logo , Erdem Tuzun und M. Dustin Boone
Veröffentlicht/Copyright: 12. Dezember 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Acute brain dysfunction associated with sepsis is a serious complication that results in morbidity and mortality. Intravenous immunoglobulin (IVIg) treatment is known to alleviate behavioral deficits in the experimentally induced model of sepsis. To delineate the mechanisms by which IVIg treatment prevents neuronal dysfunction, an array of immunological and apoptosis markers was investigated. Our results suggest that IVIgG and IgGAM administration ameliorates neuronal dysfunction and behavioral deficits by reducing apoptotic cell death and glial cell proliferation. IgGAM treatment might suppress classical complement pathway by reducing C5a activity and proapoptotic NF-κB and Bax expressions, thereby, inhibiting major inflammation and apoptosis cascades. Future animal model experiments performed with specific C5aR and NF-κB agonists/antagonists or C5aR-deficient mice might more robustly disclose the significance of these pathways. C5a, C5aR, and NF-κB, which were shown to be the key molecules in brain injury pathogenesis in sepsis, might also be utilized as potential targets for future treatment trials of septic encephalopathy.

References

Alexander, J.J., Anderson, A.J., Barnum, S.R., Stevens, B., and Tenner, A.J. (2008). The complement cascade: Yin-Yang in neuroinflammation – neuro-protection and –degeneration. J. Neurochem. 107, 1169–1187.10.1111/j.1471-4159.2008.05668.xSuche in Google Scholar PubMed PubMed Central

Arumugam, T.V., Tang, S.C., Lathia, J.D., Cheng, A., Mughal, M.R., Chigurupati, S., Magnus, T., Chan, S.L., Jo, D.G., Ouyang, X., et al. (2007). Intravenous immunoglobulin (IVIg) protects the brain against experimental stroke by preventing complement-mediated neuronal cell death. Proc. Natl. Acad. Sci. USA 104, 14104–14109.10.1073/pnas.0700506104Suche in Google Scholar PubMed PubMed Central

Arumugam, T.V., Selvaraj, P.K., Woodruff, T.M., and Mattson, M.P. (2008). Targeting ischemic brain injury with intravenous immunoglobulin. Expert Opin. Ther. Targets 12, 19–29.10.1517/14728222.12.1.19Suche in Google Scholar PubMed

Basta, M. (2008). Ambivalent effects of immunoglobulins on the complement system: Activation versus inhibition. Mol. Immunol 45, 4073–4079.10.1016/j.molimm.2008.07.012Suche in Google Scholar PubMed

Basta, M., Van Goor, F., Luccioli, S., Billings, E.M., Vortmeyer, A.O., Baranyi, L., Szebeni, J., Alving, C.R., Carroll, M.C., Berkower, I., et al. (2003). F(ab)-mediated neutralization of C3a and C5a anaphylatoxins: a novel effector function of immunoglobulins. Nat. Med. 4, 431–438.10.1038/nm836Suche in Google Scholar PubMed

Bozza, F.A., Dávila, J.C., Ritter, C., Sonneville, R., Sharshar, T., and Dal-Pizzol, F. (2013). Bioenergetics, mitochondrial dysfunction, and oxidative stress in the pathophysiology of septic encephalopathy. Shock 39, 10–16.10.1097/SHK.0b013e31828fade1Suche in Google Scholar PubMed

Chen, Z., Jalabi, W., Shpargel, K.B., Farabaugh, K.T., Dutta, R., Yin, X., Kidd, G.J., Bergmann, C.C., Stohlman, S.A., and Trapp, B.D. (2012). Lipopolysaccharide-induced microglial activation and neuroprotection against experimental brain injury is independent of hematogenous TLR4. J. Neurosci. 32, 11706–11715.10.1523/JNEUROSCI.0730-12.2012Suche in Google Scholar PubMed PubMed Central

Craft, J.M., Watterson, D.M., and Van, Eldik, L.J. (2005). Neuroinflammation: a potential therapeutic target. Expert Opin. Ther. Targets 9, 887–900.10.1517/14728222.9.5.887Suche in Google Scholar PubMed

Crow, A.R., Song, S., Semple, J.W., Freedman, J., and Lazarus, A.H. (2007). A role for IL-1 receptor antagonist or other cytokines in the acute therapeutic effects of IVIg? Blood 109, 155–158.10.1182/blood-2006-05-023796Suche in Google Scholar PubMed

Dodel, R.C., Du, Y., Depboylu, C., Hampel, H., Frölich, L., Haag, A., Hemmeter, U., Paulsen, S., Teipel, S.J., Brettschneider, S., et al. (2004). Intravenous immunoglobulins containing antibodies against beta-amyloid for the treatment of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 75, 1472–1474.10.1136/jnnp.2003.033399Suche in Google Scholar PubMed PubMed Central

Esen, F., Senturk, E., Ozcan, P.E., Ahishali, B., Arican, N., Orhan, N., Ekizoglu, O., Kucuk, M., and Kaya, M. (2012). Intravenous immunoglobulins prevent the breakdown of the blood–brain barrier in experimentally induced sepsis. Crit. Care Med. 40, 1214–1220.10.1097/CCM.0b013e31823779caSuche in Google Scholar PubMed

Esen, F., Orhun, G., Ozcan, P.E., Senturk, E., Kucukerden, M., Giris, M., Akcan, U., Yilmaz, C.U., Orhan, N., Arican, N., et al. (2017). Neuroprotective effects of intravenous immunoglobulin are mediated through inhibition of complement activation and apoptosis in a rat model of sepsis. Intensive Care Med. Exp. 5, 1.10.1186/s40635-016-0114-1Suche in Google Scholar PubMed PubMed Central

Fang, J., Lian, Y., Xie, K., Cai, S., and Wen, P. (2014). Epigenetic modulation of neuronal apoptosis and cognitive functions in sepsis-associated encephalopathy. Neurol. Sci. 35, 283–288.10.1007/s10072-013-1508-4Suche in Google Scholar PubMed

Flierl, M.A., Stahel, P.F., Rittirsch, D., Huber-Lang, M., Niederbichler, A.D., Hoesel, L.M. Touban, B.M., Morgan, S.J., Smith, W.R., Ward, P.A., et al. (2009). Inhibition of complement C5a prevents breakdown of the blood-brain barrier and pituitary dysfunction in experimental sepsis. Crit. Care 13, R12.10.1186/cc7710Suche in Google Scholar PubMed PubMed Central

Gaillard, P.J., de Boer, A.B., and Breimer, D.D. (2003). Pharmacological investigations on LPS-induced permeability changes in the blood-brain barrier in vitro. Microvasc. Res. 65, 24–31.10.1016/S0026-2862(02)00009-2Suche in Google Scholar

González, H., Elgueta, D., Montoya, A., and Pacheco, R. (2014). Neuroimmune regulation of microglial activity involved inneuroinflammation and neurodegenerative diseases. J. Neuroimmunol. 274, 1–13.10.1016/j.jneuroim.2014.07.012Suche in Google Scholar PubMed

Griffin, W.S., Sheng, J.G., Royston, M.C., Gentleman, S.M., McKenzie, J.E., Graham, D.I., Roberts, G.W., and Mrak, R.E. (1998). Glial-neuronal interactions in Alzheimer’s disease: the potential role of a “cytokine cycle” in disease progression. Brain Pathol. 8, 65–72.10.1111/j.1750-3639.1998.tb00136.xSuche in Google Scholar PubMed PubMed Central

Hernandes, M.S., D’Avila, J.C., Trevelin, S.C., Reis, P.A., Kinjo, E.R., Lopes, L.R., Castro-Faria-Neto, H.C., Cunha, F.Q., Britto, L.R., and Bozza, F.A. (2014). The role of Nox2-derived ROS in the development of cognitive impairment after sepsis. J. Neuroinflamm. 11, 36.10.1186/1742-2094-11-36Suche in Google Scholar PubMed PubMed Central

Hoogland, I.C., Houbolt, C., van Westerloo, D.J., van Gool, W.A., and van de Beek, D. (2015). Systemic inflammation and microglial activation: systematic review of animal experiments. J. Neuroinflamm. 12, 114.10.1186/s12974-015-0332-6Suche in Google Scholar PubMed PubMed Central

Jacob, A., Hensley, L.K., Safratowich, B.D., Quigg, R.J., and Alexander, J.J. (2007). The role of complement cascade in endotoxin-induced septic encephalopathy. Lab. Invest. 87, 1186–1194.10.1038/labinvest.3700686Suche in Google Scholar PubMed

Jonas, E., Dwenger, A., and Jonas, M. (1995). Chemiluminescence response and adherence of neutrophils to cultured endothelial cells – influence of immunoglobulin G. J. Biolumin. Chemilumin. 10, 169–173.10.1002/bio.1170100305Suche in Google Scholar PubMed

Lapointe, B.M., Herx, L.M., Gill, V., Metz, L.M., and Kubes, P. (2004). IVIg therapy in brain inflammation: etiology dependent differential effects on leukocyte recruitment. Brain 127, 2649–2656.10.1093/brain/awh297Suche in Google Scholar PubMed

Lossinsky, A.S. and Shivers, R.R. (2004). Structural pathways for macromolecular and cellular transport across the blood-brain barrier during inflammatory conditions. Histol. Histopathol. 19, 535–564.Suche in Google Scholar

Michels, M., Vieira, A.S., Vuolo, F., Zapelini, H.G., Mendonça, B., Mina, F., Dominguini, D., Steckert, A., Schuck, P.F., Quevedo, J., et al. (2015). The role of microglia activation in the development of sepsis-induced long-term cognitive impairment. Brain Behav. Immun. 43, 54–59.10.1016/j.bbi.2014.07.002Suche in Google Scholar PubMed

Misra, N., Bayry, J., Ephrem, A., Dasgupta, S., Delignat, S., Duong Van Huyen, J.P., Prost, F., Lacroix-Desmazes, S., Nicoletti, A., Kazatchkine, M.D., et al. (2005). Intravenous immunoglobulin in neurological disorders: a mechanistic perspective. J Neurol. 252, i1–i6.10.1007/s00415-005-1102-7Suche in Google Scholar PubMed

Monje, M.L., Toda, H., and Palmer, T.D. (2003). Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765.10.1126/science.1088417Suche in Google Scholar PubMed

Negi, V.S., Elluru, S., Sibéril, S., Graff-Dubois, S., Mouthon, L., Kazatchkine, M.D., Lacroix-Desmazes, S., Bayry, J., and Kaveri, S.V. (2007). Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J. Clin. Immunol. 27, 233–245.10.1007/s10875-007-9088-9Suche in Google Scholar PubMed

Ozcan, P.E., Senturk, E., Orhun, G., Gumru, S., Arican, N., Orhan, N., Yılmaz, C.U., Kaya, M., Aricioglu, F., and Esen, F. (2015). Effects of intravenous immunoglobulin therapy on behavior deficits and functions in sepsis model. Ann. Intensive Care 5, 62.10.1186/s13613-015-0062-zSuche in Google Scholar PubMed PubMed Central

Papadopoulos, M.C., Lamb, F.J., Moss, R.F., Davies, D.C., Tighe, D., and Bennett, E.D. (1999). Faecal peritonitis causes edema and neuronal injury in pig cerebral cortex. Clin. Sci. 96, 461–466.10.1042/cs0960461Suche in Google Scholar

Papadopoulos, M.C., Davies, D.C., Moss, R.F., Tighe, D., and Bennett, E.D. (2000). Pathophysiology of septic encephalopathy: a review. Crit. Care Med. 28, 3019–3024.10.1097/00003246-200008000-00057Suche in Google Scholar PubMed

Prasad, N.K., Papoff, G., Zeuner, A., Bonnin, E., Kazatchkine, M.D., Ruberti, G., and Kaveri, S.V. (1998). Therapeutic preparations of normal polyspecific IgG (IVIg) induce apoptosis in human lymphocytes and monocytes: a novel mechanism of action of IVIg involving the Fas apoptotic pathway. J. Immunol. 161, 3781–3790.10.4049/jimmunol.161.7.3781Suche in Google Scholar

Pytel, P. and Alexander, J.J. (2009). Pathogenesis of septic encephalopathy. Curr. Opin. Neurol. 22, 283–287.10.1097/WCO.0b013e32832b3101Suche in Google Scholar PubMed

Qin, L., Wu, X., Block, M.L., Liu, Y., Breese, G.R., Hong, J.S., Knapp, D.J., and Crews F.T. (2007). Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55, 453–462.10.1002/glia.20467Suche in Google Scholar PubMed PubMed Central

Riedemann, N.C., Guo, R.F., Neff, T.A., Laudes, I.J., Keller, K.A., Sarma, V.J., Markiewski, M.M., Mastellos, D., Strey, C.W., Pierson, C.L., et al. (2002). Increased C5a receptor expression in sepsis. J. Clin. Invest. 110, 101–108.10.1172/JCI200215409Suche in Google Scholar

Sharshar, T., Hopkinson, N.S., Orlikowski, D., and Annane, D. (2005). Science review: the brain in sepsis – culprit and victim. Crit. Care 9, 37–44.10.1186/cc2951Suche in Google Scholar PubMed PubMed Central

Stangel, M. and Compston, A. (2001). Polyclonal immunoglobulins (IVIg) modulate nitric oxide production and microglial functions in vitro via Fc receptors. J. Neuroimmunol. 112, 63–71.10.1016/S0165-5728(00)00412-4Suche in Google Scholar PubMed

Sui, D.M., Xie, Q., Yi, W.J., Gupta, S., Yu, X.Y., Li, J.B., Wang, J., Wang, J.F., and Deng, X.M. (2016). Resveratrol protects against sepsis-associated encephalopathy and inhibits the NLRP3/IL-1β axis in microglia. Mediat. Inflamm. 2016, 1045657.10.1155/2016/1045657Suche in Google Scholar PubMed PubMed Central

Toungouz, M., Denys, C.H., De Groote, D., and Dupont, E. (1995). In vitro inhibition of tumor necrosis factor α and interleukin-6 production by intravenous immunoglobulins. Br. J. Haematol. 89, 698–703.10.1111/j.1365-2141.1995.tb08404.xSuche in Google Scholar PubMed

Vaszelka, S., Urbanyi, Z., Pazmany, T., Németh, L., Obála, I., Dung, N.T.K., Ábrahám, C.S., Szabó, G., and Deli, M.A. (2005). Human serum amyloid P component attenuates the bacterial lipopolysaccaride-induced increase in blood brain barrier permeability in mice. Neurosci. Lett. 352, 57–60.10.1016/j.neulet.2003.08.028Suche in Google Scholar PubMed

Ward, P.A. (2008). Role of the complement in experimental sepsis. J. Leukoc. Biol. 83, 467–470.10.1189/jlb.0607376Suche in Google Scholar PubMed

Weberpals, M., Hermes, M., Hermann, S., Kummer, M.P., Terwel, D., Semmler, A., Berger, M., Schäfers, M., and Heneka, M.T. (2009). NOS2 gene deficiency protects from sepsis-induced long-term cognitive deficits. J. Neurosci. 29, 14177–14184.10.1523/JNEUROSCI.3238-09.2009Suche in Google Scholar PubMed PubMed Central

Received: 2017-08-11
Accepted: 2017-10-02
Published Online: 2017-12-12
Published in Print: 2018-06-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2017-0065/html
Button zum nach oben scrollen