Startseite New dimensions of connectomics and network plasticity in the central nervous system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

New dimensions of connectomics and network plasticity in the central nervous system

  • Diego Guidolin EMAIL logo , Manuela Marcoli , Guido Maura und Luigi F. Agnati EMAIL logo
Veröffentlicht/Copyright: 28. Dezember 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Cellular network architecture plays a crucial role as the structural substrate for the brain functions. Therefore, it represents the main rationale for the emerging field of connectomics, defined as the comprehensive study of all aspects of central nervous system connectivity. Accordingly, in the present paper the main emphasis will be on the communication processes in the brain, namely wiring transmission (WT), i.e. the mapping of the communication channels made by cell components such as axons and synapses, and volume transmission (VT), i.e. the chemical signal diffusion along the interstitial brain fluid pathways. Considering both processes can further expand the connectomics concept, since both WT-connectomics and VT-connectomics contribute to the structure of the brain connectome. A consensus exists that such a structure follows a hierarchical or nested architecture, and macro-, meso- and microscales have been defined. In this respect, however, several lines of evidence indicate that a nanoscale (nano-connectomics) should also be considered to capture direct protein-protein allosteric interactions such as those occurring, for example, in receptor-receptor interactions at the plasma membrane level. In addition, emerging evidence points to novel mechanisms likely playing a significant role in the modulation of intercellular connectivity, increasing the plasticity of the system and adding complexity to its structure. In particular, the roamer type of VT (i.e. the intercellular transfer of RNA, proteins and receptors by extracellular vesicles) will be discussed since it allowed us to introduce a new concept of ‘transient changes of cell phenotype’, that is the transient acquisition of new signal release capabilities and/or new recognition/decoding apparatuses.


Dedicated to: This article is dedicated to Kjell Fuxe, Tomas Hökfelt and Sylvester Vizi for their pioneering findings on transmitter-identified neuronal systems and innovative views on intercellular communication processes in the brain.


Acknowledgments

This work was supported by Grant 60A06-0515/15 from the University of Padova to DG.

Appendix

Just for illustrative purposes, an abstract model of a neuron potentially implementing both WT and VT modes of intercellular communication is briefly described here. It is based on the so-called neurotransmitter field theory, originally proposed by Greer (2007).

According to this approach, the physical quantity that considered a vehicle of information is the concentration of transmitters in the ECS and the neuron is seen as a processing element transforming an input (recognized) transmitter distribution into an output (released) transmitter distribution. In order to visualize (see Figure 5) how this computation can be performed on a neurotransmitter cloud, let us proceed through two steps:

  1. We can imagine the dendrites of the neuron as a tree with its branches inside the cloud. The surface of the tree is ‘painted’ with a shade of gray corresponding to its sensitivity to the neurotransmitter. When multiplied by the actual concentration of the neurotransmitter in the ECS and integrated over the dendritic tree surface, we shall obtain a first-order approximation of the neuron’s response. More formally, if h(x, y, z) (x, y, z ∈ H=ECS) represents the neurotransmitter cloud, μ(x, y, z) (x, y, z ∈ dendritic surface) is the sensitivity to the transmitter (e.g. the distribution of specific receptors) and σ is the usual sigmoidal activation function (Rumelhart et al., 1986), the neuron’s response (α) will be

    α=σ(Hh(x,y,z)dμ(x,y,z))

    This relationship can be further refined by introducing a ‘dendritic-membrane transfer function’ (χd (h)) accounting for the inherent nonlinear relationship between neurotransmitter concentration in the ECS and the gating of ion channels on the dendritic surface. Thus, we obtain

    (1)α=σ(Hχd(h(x,y,z))dμ(x,y,z))
  2. The neuron also has an axonal tree which releases the neurotransmitter into the extracellular space. Let τ(x, y, z) be the function that quantitatively describes the output of the neuron in terms of the spatial distribution of the chemical transmitter it generates. As a first-approximation, the product of the neuron’s response α and the output function τ will provide the output transmitter cloud g(x, y, z). However, to also take into account the intrinsic nonlinear response corresponding to the release of neurotransmitter by the axon terminals as a function of the neuron firing rate, an ‘axonal-membrane transfer function’ (χa (α)) will also be introduced. Thus, we can finally write

    (2)g(x,y,z)=χa(σ(Hχd(h(ξ,η,ζ))dμ(ξ,η,ζ))τ(x,y,z))

    where different symbols for the spatial coordinates were used in order to differentiate the input manifold from the output one.

Figure 5: Schematic view of the abstract model of neuron.The extracellular space (H) surrounding the dendritic tree hosts a cloud of neurotransmitter [h(x, y, z)]. The surface of the dendritic tree is represented with a gradient of gray levels to indicate its variable sensitivity [μ(x, y, z)] to the transmitter. χd , χa are the transfer functions (see the text) and σ is the activation function. The axonal tree is also represented with shades of gray to indicate the non-homogeneous spatial distribution of its release [described by the function τ(x, y, z)]. It generates in the extracellular space (G) a cloud g(x, y, z) of the released neurotransmitter.
Figure 5:

Schematic view of the abstract model of neuron.

The extracellular space (H) surrounding the dendritic tree hosts a cloud of neurotransmitter [h(x, y, z)]. The surface of the dendritic tree is represented with a gradient of gray levels to indicate its variable sensitivity [μ(x, y, z)] to the transmitter. χd , χa are the transfer functions (see the text) and σ is the activation function. The axonal tree is also represented with shades of gray to indicate the non-homogeneous spatial distribution of its release [described by the function τ(x, y, z)]. It generates in the extracellular space (G) a cloud g(x, y, z) of the released neurotransmitter.

It was demonstrated (see Greer, 2007) that, when limited to the synaptic transmission (i.e. when the functions μ and τ are discrete), this model for neurons is computationally equivalent to the discrete classical models (Vogels et al., 2005) based on neuronal networks and synaptic weights.

This way to look at the neurotransmission, however, could quite easily accommodate features that can hardly be described in the conventional neuronal network-based models. In particular, the following extensions can likely be easily implemented:

  • Different types of cells: the input-output map described by (2) can be applied with no formal changes to any other cell. Each cell type, of course, will have its own transfer functions, input and output surfaces.

  • Different types of WT/VT: each of them can be described following the same strategy outlined before, i.e. by an input cloud h(x, y, z), a sensitivity μ(x, y, z) and a release function τ(x, y, z).

  • Changes in the structure of the ECS: the spatial variables (x, y, z) used in (1) and (2) refer to the ECS. Thus, changes in ECS, such as changes in the geometry of the ECS pathways or in the efficient diffusion coefficient (Syková and Nicholson, 2008), will lead to changes in the neurotransmitter clouds and in the system dynamics.

  • Changes in cell phenotype: the acquisition of new recognition/decoding or release capabilities (occurring, for instance, as a consequence of the roamer type of VT) can also be easily implemented in the model. In fact, from a formal point of view, it corresponds to appropriate changes of the sensitivity μ(x, y, z) and/or release τ(x, y, z) functions.

References

Adams, V.L., Goodman, R.L., Salm, A.K., Coolen, L.M., Karsch, F.J., and Lehman, M.N. (2006). Morphological plasticity in the neural circuitry responsible for seasonal breading in the ewe. Endocrinology 147, 4843–4851.10.1210/en.2006-0408Suche in Google Scholar

Agnati, L.F. and Fuxe, K. (1984). New concepts on the structure of the neuronal networks: the miniaturization and hierarchical organization of the central nervous system. (Hypothesis). Biosci. Rep. 4, 93–98.10.1007/BF01120304Suche in Google Scholar

Agnati, L.F. and Fuxe, K. (2000). Volume transmission as a key feature of information handling in the central nervous system: possible new interpretative value of the Turing’s B-type machine. Progr. Brain Res. 125, 3–19.10.1016/S0079-6123(00)25003-6Suche in Google Scholar

Agnati, L.F., Fuxe, K., Zoli, M., Rondanini, C., and Ogren, S.O. (1982). New vistas on synaptic plasticity: the receptor mosaic hypothesis on the engram. Med. Biol. 60, 183–190.Suche in Google Scholar

Agnati, L.F., Fuxe, K., Zoli, M., Ozini, I., Toffano, G., and Ferraguti, F. (1986). A correlation analysis of the regional distribution of central enkephalin and beta endorphin immunoreactive terminals and of opiate receptors in adult and old male rats. Evidence for the existence of two main types of communication in the central nervous system: the volume transmission and the wiring transmission. Acta Physiol. Scand. 128, 201–207.10.1111/j.1748-1716.1986.tb07967.xSuche in Google Scholar

Agnati, L.F., Cortelli, P., Biagini, G., Bjelke, B., and Fuxe, K. (1994). Different classes of volume transmission signals exist in the central nervous system and are affected by metabolic signals, temperature gradients and pressure waves. Neuroreport 6, 9–12.10.1097/00001756-199412300-00004Suche in Google Scholar

Agnati, L.F., Fuxe, K., Nicholson, C., and Sykova, E., eds. (2000). Volume transmission revisited. Progress in Brain Research (Amsterdam: Elsevier).Suche in Google Scholar

Agnati, L.F., Franzen, O., Ferré, S., Leo, G., Franco, R., and Fuxe, K. (2003). Possible role of intramembrane receptor-receptor interactions in memory and learning via formation of long-lived heteromeric complexes: focus on motor learning in the basal ganglia. J. Neural Transm. Suppl. 65, 1–28.10.1007/978-3-7091-0643-3_1Suche in Google Scholar

Agnati, L.F., Genedani, S., Lenzi, P.L., Leo, G., Mora, F., Ferré, S., and Fuxe, K. (2005a). Energy gradients for the homeostatic control of brain ECF composition and for VT signal migration: introduction of the tide hypothesis. J. Neural Transm. 112, 45–63.10.1007/s00702-004-0180-5Suche in Google Scholar

Agnati, L.F., Tarakanov, A.O., Ferré, S., Fuxe, K., and Guidolin, D. (2005b). Receptor-receptor interactions, receptor mosaics, and basic principles of molecular network organization: possible implications for drug development. J. Mol. Neurosci. 26, 193–208.10.1385/JMN:26:2-3:193Suche in Google Scholar

Agnati, L.F., Leo, G., Genedani, S., Andreoli, N., Marcellino, D., Woods, A., Piron, L., Guidolin, D., and Fuxe, K. (2008). Structural plasticity in G-protein coupled receptors as demonstrated by the allosteric actions of homocysteine and computer-assisted analysis of disordered domains. Brain Res. Rev. 58, 459–474.10.1016/j.brainresrev.2007.10.003Suche in Google Scholar

Agnati, L.F., Baluška, F., Barlow, P.W., and Guidolin, D. (2009). ‘Mosaic’, ‘self-similarity logic’, and ‘biological attraction’ principles: three explanatory instruments in biology. Commun. Integr. Biol. 2, 552–563.10.4161/cib.2.6.9644Suche in Google Scholar PubMed PubMed Central

Agnati, L.F., Guidolin, D., Guescini, M., Genedani, S., and Fuxe, K. (2010a). Understanding wiring and volume transmission. Brain Res. Rev. 64, 137–159.10.1016/j.brainresrev.2010.03.003Suche in Google Scholar PubMed

Agnati, L.F., Guidolin, D., Baluska, F., Leo, G., Barlow, P.W., Carone, C., and Genedani, S. (2010b). A new hypothesis of pathogenesis based on the divorce between mitochondria and their host cells: possible relevances for the Alzheimer’s disease. Curr. Alzheimer Res. 7, 307–322.10.2174/1567210198607242050Suche in Google Scholar

Agnati, L.F., Guidolin, D., Vilardaga, J.P., Ciruela, F., and Fuxe, K. (2010c). On the expanding terminology in the GPCR field: the meaning of receptor mosaics and receptor heteromers. J. Recept. Sig. Transduct. Res. 30, 287–303.10.3109/10799891003786226Suche in Google Scholar PubMed PubMed Central

Agnati, L.F., Guidolin, D., Leo, G., Guescini, M., Pizzi, M., Stocchi, V., Spano, P.F., Ghidoni, R., Ciruela, F., Genedani, S., et al. (2011). Possible new targets for GPCR modulation: allosteric interactions, plasma membrane domains, intercellular transfer and epigenetic mechanisms. J. Recept. Signal Transduct. Res. 31, 315–331.10.3109/10799893.2011.599393Suche in Google Scholar PubMed

Agnati, L.F., Guidolin, D., Maura, G., Marcoli, M., Leo, G., Carone, C., De Caro, R., Genedani, S., Borroto-Escuela, D.O., and Fuxe, K. (2014a). Information handling by the brain: proposal of a new “paradigm” involving the roamer type of volume transmission and the tunneling nanotube type of wiring transmission. J. Neural Transm. 121, 1431–1449.10.1007/s00702-014-1240-0Suche in Google Scholar PubMed

Agnati, L.F., Genedani, S., Spano, P.F., Guidolin, D., and Fuxe, K. (2014b). Volume Transmission and the Russian-doll Organization of Brain Cell Networks: Aspects of their Integrative Actions. Neuronal Networks in Brain Function, CNS Disorders and Therapeutics. C.L. Faingold, H. Blumenfeld, eds. (Amsterdam: Elsevier), pp. 103–119.10.1016/B978-0-12-415804-7.00008-3Suche in Google Scholar

Agnati, L.F., Guidolin, D., Cervetto, C., Borroto-Escuela, D.O., and Fuxe, K. (2016). Role of iso-receptors in receptor-receptor interactions with a focus on dopamine iso-receptor complexes. Rev. Neurosci. 27, 1–25.10.1515/revneuro-2015-0024Suche in Google Scholar PubMed

Akgün, E., Javed, M.I., Lunzer, M.M., Smeester, B.A., Beitz, A.J., and Portoghese, P.S. (2013). Ligands that interact with putative MOR-mGluR5 heteromer in mice with inflammatory pain produce potent atinociception. Proc. Natl. Acad. Sci. USA 110, 11595–11599.10.1073/pnas.1305461110Suche in Google Scholar PubMed PubMed Central

Anderson, M.L. (2010). Neural reuse: a fundamental organizational principle of the brain. Behav. Brain Sci. 33, 245–313.10.1017/S0140525X10000853Suche in Google Scholar PubMed

Anderson, M.L., Richardson, M.J., and Chemero, A. (2012). Eroding the boundary of cognition: implications of embodiment (1). Top Cogn. Sci. 4, 717–730.10.1111/j.1756-8765.2012.01211.xSuche in Google Scholar PubMed

Araque, A., Parpura, V., Sanzgiri, R.P., and Haydon, P.G. (1999). Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208–215.10.1016/S0166-2236(98)01349-6Suche in Google Scholar

Arvanitaki, A. (1942). Effects evoked in an axon by the activity of a contiguous one. J. Neurophysiol. 5, 89–108.10.1152/jn.1942.5.2.89Suche in Google Scholar

Bassett, D.S., Wymbs, N.F., Porter, M.A., Mucha, P.J., Carlson, J.M., and Grafton, S.T. (2011). Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. USA 108, 7641–7646.10.1073/pnas.1018985108Suche in Google Scholar PubMed PubMed Central

Bellingham, S.A., Guo, B.B., Coleman, B.M., and Hill, A.F. (2012). Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Front. Physiol. 3, 124.10.3389/fphys.2012.00124Suche in Google Scholar PubMed PubMed Central

Bennett, E.L., Diamond, M.C., Krech, D., and Rosenzweig, M.R. (1964). Chemical and anatomical plasticity of brain. Science 146, 610–619.10.1126/science.146.3644.610Suche in Google Scholar PubMed

Bernardinelli, Y., Muller, D., and Nikonenko, I. (2014). Astrocyte-synapse structural plasticity. Neural Plast. 2014, 232105.10.1155/2014/232105Suche in Google Scholar PubMed PubMed Central

Bhalla, U.S. and Iyengar, R. (1999). Emergent properties of networks of biological signaling pathways. Science 283, 381–387.10.1126/science.283.5400.381Suche in Google Scholar PubMed

Bjelke, B., and Fuxe, K. (1993). Intraventricular beta-endorphin accumulates in DARPP-32 immunoreactive tanycytes. Neuroreport 5, 265–268.10.1097/00001756-199312000-00021Suche in Google Scholar PubMed

Bloom, F., and Segal, D. (1980). Endorphins in the Cerebrospinal Fluid. Neurobiology of Cerebrospinal Fluid. J.H. Wood, ed. (New York: Plenum Press).10.1007/978-1-4684-1039-6_45Suche in Google Scholar

Borroto-Escuela, D.O., Van Creanenbroek, K., Romero-Fernandez, W., Guidolin, D., Woods, A.S., Rivera, A., Haegeman, G., Agnati, L.F., Tarakanov, A.O., and Fuxe, K. (2011). Dopamine D2 and D4 receptor heteromerization and its allosteric receptor-receptor interactions. Biochem. Biophys. Res. Commun. 404, 928–934.10.1016/j.bbrc.2010.12.083Suche in Google Scholar PubMed

Brezina, V. (2010). Beyond the wiring diagram: signalling through complex neuromodulator networks. Phil. Trans. R. Soc. B 365, 2363–2374.10.1098/rstb.2010.0105Suche in Google Scholar

Bullmore, E.T. and Bassett, D.S. (2011). Brain graphs: graphical models of the human brain connectome. Annu. Rev. Clin. Psychol. 7, 113–140.10.1146/annurev-clinpsy-040510-143934Suche in Google Scholar

Bullmore, E. and Sporns, O. (2012). The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349.10.1038/nrn3214Suche in Google Scholar

Bunin, M.A. and Wightman, R.M. (1998). Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: an investigation of extrasynaptic transmission. J. Neurosci. 18, 4854–4860.10.1523/JNEUROSCI.18-13-04854.1998Suche in Google Scholar

Bunin, M.A. and Wightman, R.M. (1999). Paracrine neurotransmission in the CNS: involvement of 5-HT. Trends Neurosci. 22, 377–382.10.1016/S0166-2236(99)01410-1Suche in Google Scholar

Burbach, J.P. (1982). Neuropeptides and cerebrospinal fluid. Ann. Clin. Biochem. 19, 269–277.10.1177/000456328201900416Suche in Google Scholar

Bushong, E.A., Martone, M.E., and Ellisman, M.H. (2004). Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int. J. Dev. Neurosci. 22, 73–86.10.1016/j.ijdevneu.2003.12.008Suche in Google Scholar

Calzolari, A., Raggi, C., Deaglio, S., Sposi, N.M., Stafsnes, M., Fecchi, K., Parolini, I., Malavasi, F., Peschle, C., Sargiacomo, M., et al. (2006). TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway. J. Cell Sci. 119, 4486–4498.10.1242/jcs.03228Suche in Google Scholar

Cao, M., Huang, H., Peng, Y., Dong, Q., and He, Y. (2016). Toward developmental connectomics of the human brain. Front. Neuroanat. 10, 25.10.3389/fnana.2016.00025Suche in Google Scholar

Carmignoto, G. (2000). Reciprocal communication systems between astrocytes and neurones. Progr. Neurobiol. 62, 561–581.10.1016/S0301-0082(00)00029-0Suche in Google Scholar

Changeux, J.P. and Christopoulos, A. (2016). Allosteric modulation as a unifying mechanism for receptor function and modulation. Cell 166, 1084–1102.10.1016/j.cell.2016.08.015Suche in Google Scholar

Chen, K.C. and Nicholson, C. (2000). Changes in brain cell shape create residual extracellular space volume and explain tortuosity behaviour during osmotic challenge. Proc. Natl. Acad. Sci. USA 97, 8306–8311.10.1073/pnas.150338197Suche in Google Scholar

Ciranna, L. (2006). Serotonin as a modulator of glutamate- and GABA-mediated neurotransmission: implications in physiological functions and in pathology. Curr. Neuropharmacol. 4, 101–114.10.2174/157015906776359540Suche in Google Scholar

Cutsuridis, V., Wennekers, T., Graham, B.P., Vida, I., and Taylor, J.G. (2009). Microcircuits: their structure, dynamics and role for brain function. Neural Netw. 22, 1037–1038.10.1016/j.neunet.2009.07.006Suche in Google Scholar

DeFelipe, J., Alonso-Nanclares, L., and Arellano, J.I. (2002). Microstructure of the neocortex: comparative aspects. J. Neurocytol. 31, 299–316.10.1023/A:1024130211265Suche in Google Scholar

Descarries, L. and Mechawar, N. (2000). Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Prog. Brain Res. 125, 27–47.10.1016/S0079-6123(00)25005-XSuche in Google Scholar

Descarries, L., Watkins, K.C., and Lapierre, Y. (1977). Noradrenergic axon terminals in the cerebral cortex of rat. III. Topometric ultrastructural analysis. Brain Res. 133, 197–222.10.1016/0006-8993(77)90759-4Suche in Google Scholar

Descarries, L., Bérubé-Carrière, N., Riad, M., Bo, G.D., Mendez, J.A., and Trudeau, L.E. (2008). Glutamate in dopamine neurons: synaptic versus diffuse transmission. Brain Res. Rev. 58, 290–302.10.1016/j.brainresrev.2007.10.005Suche in Google Scholar PubMed

De Wied, D. and Jolles, J. (1982). Neuropeptides derived from pro-opiocortin: behavioral, physiological, and neurochemical effects. Physiol. Rev. 62, 976–1059.10.1152/physrev.1982.62.3.976Suche in Google Scholar PubMed

Diamond, J.S. (2001). Neuronal glutamate transporters limit activation of NMDA receptors by neurotransmitter spillover on CA1 pyramidal cells. J. Neurosci. 21, 8328–8338.10.1523/JNEUROSCI.21-21-08328.2001Suche in Google Scholar

Doly, S., Madeira, A., Fischer, J., Brisorgueil, M.J., Daval, G., Bernard, R., Vergé, D., and Conrath, M. (2004). The 5-HT2A receptor is widely distributed in the rat spinal cord and mainly localized at the plasma membrane of postsynaptic neurons. J. Comp. Neurol. 472, 496–511.10.1002/cne.20082Suche in Google Scholar

Eguiluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., and Apkarian, A.V. (2005). Scale-free brain functional networks. Phys. Rev. Lett. 94, 018102.10.1103/PhysRevLett.94.018102Suche in Google Scholar

Eid, L. and Parent, M. (2016). Chemical anatomy of pallidal afferents in primates. Brain Struct. Funct. 221, 4291–4317.10.1007/s00429-016-1216-ySuche in Google Scholar

Färber, K. and Kettenmann, H. (2005). Physiology of microglial cells. Brain Res. Rev. 48, 133–143.10.1016/j.brainresrev.2004.12.003Suche in Google Scholar

Fellin, T. and Carmignoto, G. (2004). Neurone-to-astrocyte signaling in the brain represents a distinct multifunctional unit. J. Physiol. 559, 3–15.10.1113/jphysiol.2004.063214Suche in Google Scholar

Février, B. and Raposo, G. (2004). Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr. Opin. Cell Biol. 16, 415–421.10.1016/j.ceb.2004.06.003Suche in Google Scholar

Flechsig, P. (1901). Developmental (myelogenetic) localization of the cerebral cortex in the human subject. Lancet 158, 1027–1030.10.1016/S0140-6736(01)01429-5Suche in Google Scholar

Floresco, S.B. (2007). Dopaminergic regulation of limbic-striatal interplay. J. Psychiatry Neurosci. 32, 400–411.Suche in Google Scholar

Floresco, S.B., West, A.R., Ash, B., Moore, H., and Grace, A.A. (2003). Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat. Neurosci. 6, 968–973.10.1038/nn1103Suche in Google Scholar PubMed

Friston, K.J. (2011). Functional and effective connectivity: a review. Brain Connectivity 1, 13–36.10.1089/brain.2011.0008Suche in Google Scholar PubMed

Fuxe, K. and Agnati, L.F., eds. (1991). Volume Transmission in the Brain, Novel Mechanisms for Neural Transmission, Vol. 1 (New York: Raven Press).Suche in Google Scholar

Fuxe, K., Hökfelt, T., Eneroth, P., Gustafsson, J.A., and Skett, P. (1977). Prolactin-like immunoreactivity: localization in nerve terminals of rat hypothalamus. Science 196, 899–900.10.1126/science.323973Suche in Google Scholar PubMed

Fuxe, K., Agnati, L.F., Benfenati, F., Celani, M., Zini, I., Zoli, M., and Mutt, V. (1983). Evidence for the existence of receptor-receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides. J. Neural Transm. S18, 165–179.Suche in Google Scholar

Fuxe, K., Jansson, A., Diaz-Cabiale, Z., Andersson, A., Tinner, B., Finnman, U.B., Misane, I., Razani, H., Wang, F.H., Agnati, L.F., et al. (1998). Galanin modulates 5-hydroxytryptamine functions. Focus on galanin and galanin fragment/5-hydroxytryptamine1A receptor interactions in the brain. Ann. N.Y. Acad. Sci. 863, 274–290.10.1111/j.1749-6632.1998.tb10702.xSuche in Google Scholar PubMed

Fuxe, K., Dahlström, A., Höistad, M., Marcellino, D., Jansson, A., Rivera, A., Diaz-Cabiale, Z., Jacobsen, K., Tinner-Staines, B., Hagman, B., et al. (2007). From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission. Brain Res. Rev. 55, 17–54.10.1016/j.brainresrev.2007.02.009Suche in Google Scholar PubMed

Fuxe, K., Dahlström, A., Jonsson, G., Marcellino, D., Guescini, M., Dam, M., Manger, P., and Agnati, L.F. (2010). The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog. Neurobiol. 90, 82–100.10.1016/j.pneurobio.2009.10.012Suche in Google Scholar PubMed

Fuxe, K., Borroto-Escuela, D.O., Tarakanov, A., Romero Fernandez, W., Manger, P., Rivera, A., van Craenenbroeck, K., Skieterska, K., Diaz-Cabiale, Z., Filip, M., et al. (2013). Understanding the balance and integration of volume and synaptic transmission. Relevance for psychiatry. Neurol. Psych. Brain Res. 19, 141–158.10.1016/j.npbr.2013.10.002Suche in Google Scholar

Gainetdinov, R.R., Premont, R.T., Bohn, L.M., Lefkowitz, R.J., and Caron, M.G. (2004). Desensitization of G protein-coupled receptors and neural functions. Annu. Rev. Neurosci. 27, 107–144.10.1146/annurev.neuro.27.070203.144206Suche in Google Scholar PubMed

Gally, J.A., Montague, P.R., Reeke, G.N., and Edelman, G.M. (1990). The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc. Natl. Acad. Sci. USA 87, 3547–3551.10.1073/pnas.87.9.3547Suche in Google Scholar PubMed PubMed Central

Garthwaite, J. (2016). From synaptically localized to volume transmission by nitric oxide. J. Physiol. 594, 9–18.10.1113/JP270297Suche in Google Scholar PubMed PubMed Central

Geffen, L.B., Jessell, T.M., Cuello, A.C., and Iversen, L.L. (1976). Release of dopamine from dendrites in rat substantia nigra. Nature 260, 258–260.10.1038/260258a0Suche in Google Scholar PubMed

Gerdes, H.H. and Carvalho, R.N. (2008). Intercellular transfer mediated by tunneling nanotubes. Curr. Opin. Cell Biol. 20, 470–475.10.1016/j.ceb.2008.03.005Suche in Google Scholar PubMed

Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C.F., Jenkinson, M., et al. (2016). A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178.10.1038/nature18933Suche in Google Scholar PubMed PubMed Central

Glaume, C. (2010). Astroglial wiring is adding complexity to neuroglial networking. Front. Neuroenerg. 2, 129.Suche in Google Scholar

Golding, N.L., Staff, N.P., and Spruston, N. (2002). Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331.10.1038/nature00854Suche in Google Scholar PubMed

Golgi, C. (1914). La moderna evoluzione delle dottrine e delle conoscenze sulla vita, XLVII (1). Rendiconti Regio Istituto Lombardo, Milano, Italy.Suche in Google Scholar

Gong, G., He, Y., Concha, L., Lebel, C., Gross, D.W., Evans, A.C., and Beaulieu C, et al. (2009). Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb. Cortex 19, 524–536.10.1093/cercor/bhn102Suche in Google Scholar PubMed PubMed Central

Goto, Y., Otani, S., and Grace, A.A. (2007). The yin and yang of dopamine release: a new perspective. Neuropharmacology 53, 583–587.10.1016/j.neuropharm.2007.07.007Suche in Google Scholar PubMed PubMed Central

Greer, D.S. (2007). Neurotransmitter fields. ICANN’07 – Proceedings of the 17th International Conference on Artificial Neural Networks. J. Marques de Sá, L.A. Alexandre, W. Duch, D. Mandic, eds. (Berlin-Heidelberg: Springer-Verlag), pp. 19–28.10.1007/978-3-540-74695-9_3Suche in Google Scholar

Grillner, S. and Graybel, A.M., eds. (2004). Report of the 93rd Dahlem Workshop on ‘Microcircuits: The Interface between Neurons and Global Brain Function’ (Berlin: Germany).Suche in Google Scholar

Grizzi, F. and Chiriva-Internati, M. (2005). The complexity of anatomical systems. Theor. Biol. Med. Model 2, 26.10.1186/1742-4682-2-26Suche in Google Scholar PubMed PubMed Central

Guescini, M., Leo, G., Genedani, S., Carone, C., Pederzoli, F., Ciruela, F., Guidolin, D., Stocchi, V., Mantuano, M., Borroto-Escuela, D.O., et al. (2012). Microvesicle and tunneling nanotube mediated intercellular transfer of g-protein coupled receptors in cell cultures. Exp. Cell Res. 318, 603–613.10.1016/j.yexcr.2012.01.005Suche in Google Scholar PubMed

Guidolin, D., Fuxe, K., Neri, G., Nussdorfer, G.G., and Agnati, L.F. (2007). On the role of receptor-receptor interactions and volume transmission in learning and memory. Brain Res. Rev. 55, 119–133.10.1016/j.brainresrev.2007.02.004Suche in Google Scholar PubMed

Guidolin, D., Albertin, G., Guescini, M., Fuxe, K., and Agnati, L.F. (2011). Central nervous system and computation. Q. Rev. Biol. 86, 265–285.10.1086/662456Suche in Google Scholar PubMed

Guidolin, D., Agnati, L.F., Marcoli, M., Borroto-Escuela, D.O., and Fuxe, K. (2015). G protein-coupled receptor type A heteromers as an emerging therapeutic target. Expert Opin. Ther. Targets 19, 265–283.10.1517/14728222.2014.981155Suche in Google Scholar PubMed

Guidolin, D., Tortorella, C., De Caro, R., and Agnati, L.F. (2016). Does a self-similarity logic shape the organization of the nervous system? The Fractal Geometry of the Brain (Series in Computational Neuroscience). A. Di Ieva, ed. (New York: Springer). doi: 0.1007/978-1-4939-3995-4_9.0.1007/978-1-4939-3995-4_9Suche in Google Scholar

Guillemin, R. (1978). Peptides in the brain: the new endocrinology of the neuron. Science 202, 390–402.10.1126/science.212832Suche in Google Scholar

Hagmann, P. (2005). From diffusion MRI to brain connectomics. PhD Thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne.Suche in Google Scholar

Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V.J., Meuli, R., and Thiran, J.P. (2007). Mapping human whole-brain structural networks with diffusion MRI. PLoS One 2, e597.10.1371/journal.pone.0000597Suche in Google Scholar

He, Y., and Evans, A. (2010). Graph theoretical modeling of brain connectivity. Curr. Opin. Neurol. 23, 341–350.10.1097/WCO.0b013e32833aa567Suche in Google Scholar

Herrick-Davis, K., Grinde, E., Cowan, A., and Mazurkiewicz, J.E. (2013). Fluorescence correlation spectroscopy analysis of serotonin, adrenergic, muscarinic, and dopamine receptor dimerization: the oligomer number puzzle. Mol. Pharmacol. 84, 630–642.10.1124/mol.113.087072Suche in Google Scholar

Hilgetag, C.C., Burns, G.A.P.C., O’Neill, M.A., Scannell, J.W., and Young, M.P. (2000). Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Phil. Trans. R. Soc. Lond. B Biol. Sci. 355, 91–110.10.1098/rstb.2000.0551Suche in Google Scholar

Hirasawa, H., Contini, M., and Raviola, E. (2015). Extrasynaptic release of GABA and dopamine by retinal dopaminergic neurons. Phil. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140186.10.1098/rstb.2014.0186Suche in Google Scholar

Hirase, H., Qian, L., Barth, P., and Buzsáki, G. (2004). Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol. 2, E96.10.1371/journal.pbio.0020096Suche in Google Scholar

Hokfelt, T., Kellerth, J.O., Nilsson, G., and Pernow, B. (1975). Experimental immunohistochemical studies on the localization and distribution of substance P in cat primary sensory neurons. Brain Res. 100, 235–252.10.1016/0006-8993(75)90481-3Suche in Google Scholar

Holtmaat, A. and Svoboda, K. (2009). Experience-dependent structural synaptic plasticity in the mammalian brain. Nature Rev. Neurosci. 10, 647–658.10.1038/nrn2699Suche in Google Scholar PubMed

Hopcroft, J.E. and Ullman, J.D. (1979). Introduction to Automata Theory, Languages and Computation (Boston: Addison-Wesley).Suche in Google Scholar

Hrabetová, S., Hrabe, J., and Nicholson, C. (2003). Dead-space microdomains hinder extracellular diffusion in rat neocortex during ischemia. J. Neurosci. 23, 8351–8359.10.1523/JNEUROSCI.23-23-08351.2003Suche in Google Scholar

Jacob, F. (1970). La logique du vivant. Une histoire de l’hérédité. (Paris: Gallimard).Suche in Google Scholar

Jansson, A. (2000). Long distance signalling in volume transmission. Focus on clearance mechanisms. Prog. Brain Res. 125, 399–413.10.1016/S0079-6123(00)25028-0Suche in Google Scholar

Jansson, A., Maze, l.T., Andbjer, B., Rosen, L., Guidolin, D., Zoli, M., Syková, E., Agnati, L.F., and Fuxe, K. (1999). Effects of nitric oxide inhibition on the spread of biotinylated dextran and on extracellular space parameters in the neostriatum of the male rat. Neuroscience 91, 69–80.10.1016/S0306-4522(98)00575-2Suche in Google Scholar

Jansson, A., Descarries, L., Cornea-Hebert, V., Riad, M., Verge, D., Bancila, M., Agnati, L.F., and Fuxe, K. (2002). Transmitter receptor mismatches in central dopamine serotonin and neuropeptide systems. The Neuronal Environment, Brain Homeostasis in Health and Disease. W. Walz and N.J. Totowa, eds. (New York: Humana Press), pp. 83–107.Suche in Google Scholar

Jennings, K.A. (2013). A comparison of the subsecond dynamics of neurotransmission of dopamine and serotonin. ACS Chem. Neurosci. 4, 704–714.10.1021/cn4000605Suche in Google Scholar

Kenakin, T., Agnati, L.F., Caron, M., Fredholm, B., Guidolin, D., Kobilka, B., Lefkowitz, R.W., Lohse, M., Woods, A., and Fuxe, K. (2010). International workshop at the Nobel Forum, Karolinska Institutet on G protein-coupled receptors: finding the words to describe monomers, oligomers, and their molecular mechanisms and defining their meaning. Can a consensus be reached? J. Recept. Signal Transduct. Res. 30, 284–286.10.3109/10799893.2010.512438Suche in Google Scholar

Kerchner, G.A. and Nicoll, R.A. (2008). Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat. Rev. Neurosci. 9, 813–825.10.1038/nrn2501Suche in Google Scholar

Kim, J.W., Wieckowski, E., Taylor, D.D., Reichert, T.E., Watkins, S., and Whiteside, T.L. (2005). Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin. Cancer Res. 11, 1010–1020.10.1158/1078-0432.1010.11.3Suche in Google Scholar

Kullmann, D.M., Erdemli, G., and Asztely, F. (1996). LTP of AMPA and NMDA receptor-mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron 17, 461–474.10.1016/S0896-6273(00)80178-6Suche in Google Scholar

Lakkaraju, A. and Rodriguez-Boulan, E. (2008). Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol. 18, 199–209.10.1016/j.tcb.2008.03.002Suche in Google Scholar PubMed PubMed Central

Lanciego, J.L. and Wouterlood, F.G. (2011). A half century of experimental neuroanatomical tracing. J. Chem. Neuroanat. 42, 157–183.10.1016/j.jchemneu.2011.07.001Suche in Google Scholar PubMed

Le Bihan, D. and Johansen-Berg, H. (2011). Diffusion MRI at 25: exploring brain tissue structure and function. NeuroImage 61, 324–341.10.1016/j.neuroimage.2011.11.006Suche in Google Scholar PubMed PubMed Central

Le Boudec, J.Y. and Thiran, P. (2001). Network Calculus: A Theory of Deterministic Queuing Systems for the Internet (Lecture Notes in Computer Science) (Berlin Heidelberg: Springer).10.1007/3-540-45318-0Suche in Google Scholar

Lee, Y., El Andaloussi, S., and Wood, M.J. (2012). Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum. Mol. Genet. 21, R125–R134.10.1093/hmg/dds317Suche in Google Scholar

Lendvai, B. and Vizi, E.S. (2008). Nonsynaptic chemical transmission through nicotinic acetylcholine receptors. Physiol. Rev. 88, 333–349.10.1152/physrev.00040.2006Suche in Google Scholar

Lichtman, J.W. and Sanes, J.R. (2008). Ome sweet ome: what can the genome tell us about the connectome? Curr. Opin. Neurobiol. 18, 346–353.10.1016/j.conb.2008.08.010Suche in Google Scholar

Ljungdahl, A., Hökfelt, T., and Nilsson, G. (1978). Distribution of substance P-like immunoreactivity in the central nervous system of the rat. I. Cell bodies and nerve terminals. Neuroscience 3, 861–943.10.1016/0306-4522(78)90116-1Suche in Google Scholar

Lorente de Nò, R. (1938). Architectonics and structure of the cerebral cortex. Physiology of the Nervous System. J.F. Fulton, ed. (New York: Oxford University Press), pp. 291–330.Suche in Google Scholar

MacMillan, S.J., Mark, M.A., and Duggan, A.W. (1998). The release of β-endorphin and the neuropeptide-receptor mismatch in the brain. Brain Res. 794, 127–136.10.1016/S0006-8993(98)00223-6Suche in Google Scholar

Marcoli, M., Agnati, L.F., Benedetti, F., Genedani, S., Guidolin, D., Ferraro, L., Maura, G., and Fuxe, K. (2015). On the role of the extracellular space on the holistic behavior of the brain. Rev. Neurosci. 26, 489–506.10.1515/revneuro-2015-0007Suche in Google Scholar PubMed

Marullo, S. and Bouvier, M. (2007). Resonance energy transfer approaches in molecular pharmacology and beyond. Trends Pharmacol. Sci. 28, 362–365.10.1016/j.tips.2007.06.007Suche in Google Scholar PubMed

McEwen, B.S. (2010). Stress, sex, and neural adaptation to a changing environment: mechanisms of neural remodeling. Ann. N.Y. Acad. Sci. 1204, 38–59.10.1111/j.1749-6632.2010.05568.xSuche in Google Scholar PubMed PubMed Central

Meunier, D., Lambiotte, R., and Bullmore, E.T. (2010). Modular and hierarchically modular organization of brain networks. Front. Neurosci. 4, 200.10.3389/fnins.2010.00200Suche in Google Scholar PubMed PubMed Central

Mori, S. and van Zijl, P.C. (2002). Fibertracking: principles and strategies – a technical review. NMR Biomed. 15, 468–480.10.1002/nbm.781Suche in Google Scholar PubMed

Mountcastle, V.B. (1998). Perceptual Neuroscience: The Cerebral Cortex (Boston: Harvard University Press).Suche in Google Scholar

Mundorf, M.L., Joseph, J.D., Austin, C.M., Caron, M.G., and Wightman, R.M. (2001). Catecholamine release and uptake in the mouse prefrontal cortex. J. Neurochem. 79, 130–142.10.1046/j.1471-4159.2001.00554.xSuche in Google Scholar PubMed

Nagya, J.I., Dudekb, E.F., and Rashb, J.E. (2004). Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res. Rev. 47, 191–215.10.1016/j.brainresrev.2004.05.005Suche in Google Scholar PubMed

Nelson, S.M., Cohen, A.L., Power, J.D., Wig, G.S., Miezin, F.M., Wheeler, M.E., Velanova, K., Donaldson, D.I., Phillips, J.S., Schlaggar, B.L., et al. (2010). A parcellation scheme for human left lateral parietal cortex. Neuron 67, 156–170.10.1016/j.neuron.2010.05.025Suche in Google Scholar PubMed PubMed Central

Nicholson, C. (1979). Brain cell microenvironment as a communication channel. The Neurosciences: Fourth Study Program. F.O. Schmitt, F.G. Worden, eds. (Cambridge, MA: MIT Press), pp. 457–476.Suche in Google Scholar

Nicholson, C. (2001). Diffusion and related transport mechanisms in brain tissue. Rep. Prog. Phys. 64, 815–884.10.1088/0034-4885/64/7/202Suche in Google Scholar

Nicholson, C. and Phillips, J.M. (1981). Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J. Physiol. (Lond.) 321, 225–257.10.1113/jphysiol.1981.sp013981Suche in Google Scholar PubMed PubMed Central

Onfelt, B., Nedvetzki, S., Benninger, R.K., Purbhoo, M.A., Sowinski, S., Hume A.N., Seabra, M.C., Neil, M.A., French, P.M., and Davis, D.M. (2006). Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J. Immunol. 177, 8476–8483.10.4049/jimmunol.177.12.8476Suche in Google Scholar PubMed

Oviedo-Orta, E. and Evans, W.H. (2004). Gap junctions and connexin mediated communication in the immune system. Biochim. Biophys. Acta 1662, 102–112.10.1016/j.bbamem.2003.10.021Suche in Google Scholar PubMed

Ovsepian, S.V., O’Leary, V.B., and Zaborszky, L. (2016). Cholinergic mechanisms in the cerebral cortex: beyond synaptic transmission. Neuroscientist 22, 238–251.10.1177/1073858415588264Suche in Google Scholar PubMed PubMed Central

Pasti, L., Volterra, A., Pozzan, T., and Carmignoto, G. (1997). Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 17, 7817–7830.10.1523/JNEUROSCI.17-20-07817.1997Suche in Google Scholar

Patlak, C.S., Hospod, F.E., Trowbridge, S.D., and Newman, G.C. (1998). Diffusion of radiotracers in normal and ischemic brain slices. J. Cereb. Blood Flow Metab. 18, 776–802.10.1097/00004647-199807000-00009Suche in Google Scholar PubMed

Pereira, A. and Furlan, F.A. (2010). Astrocytes and human cognition: modeling information integration and modulation of neuronal activity. Progr. Neurobiol. 92, 405–420.10.1016/j.pneurobio.2010.07.001Suche in Google Scholar PubMed

Picard, N.A. and Zanardi, C.A. (2015). Brain motion and volume transmission: keeping the interstice flowing. Med. Hypotheses 85, 41–44.10.1016/j.mehy.2015.03.021Suche in Google Scholar PubMed

Plested, A.J.R. (2016). Structural mechanisms of activation and desensitization in neurotransmitter-gated ion channels. Nat. Struct. Mol. Biol. 23, 494–502.10.1038/nsmb.3214Suche in Google Scholar PubMed

Quah, B.J., Barlow, V.P., McPhun, V., Matthaei, K.I., Hulett, M.D., and Parish, C.R. (2008). Bystander B cells rapidly acquire antigen receptors from activated B cells by membrane transfer. Proc. Natl. Acad. Sci. USA 105, 4259–4264.10.1073/pnas.0800259105Suche in Google Scholar PubMed PubMed Central

Rajendran, L., Honsho, M., Zahn, T.R., Keller, P., Geiger, K.D., Verkade, P., and Simons, K. (2006). Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc. Natl. Acad. Sci. USA 103, 11172–11177.10.1073/pnas.0603838103Suche in Google Scholar PubMed PubMed Central

Rakic, P. (2008). Confusing cortical columns. Proc. Natl. Acad. Sci. USA 105, 12099–12100.10.1073/pnas.0807271105Suche in Google Scholar PubMed PubMed Central

Rash, J.E., Dillman, R.K., Bilhartz, B.L., Duffy, H.S., Whalen, L.R., and Yasumura, T. (1996). Mixed synapses discovered and mapped throughout mammalian spinal cord. Proc. Natl. Acad. Sci. USA 93, 4235–4239.10.1073/pnas.93.9.4235Suche in Google Scholar PubMed PubMed Central

Reichenbach, A., Derouiche, A., and Kirchhoff, F. (2010). Morphology and dynamics of perisynaptic glia. Brain Res. Rev. 63, 11–25.10.1016/j.brainresrev.2010.02.003Suche in Google Scholar PubMed

Rice, M.E. and Cragg, S.J. (2008). Dopamine spillover after quantal release: rethinking dopamine transmission in the nigrostriatal pathway. Brain Res. Rev. 58, 303–313.10.1016/j.brainresrev.2008.02.004Suche in Google Scholar PubMed PubMed Central

Rice, M.E. and Patel, J.C. (2015). Somatodendritic dopamine release: recent mechanistic insights. Phil. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140185.10.1098/rstb.2014.0185Suche in Google Scholar PubMed PubMed Central

Ridet, I. and Privat, A. (2000). Volume transmission. Trends Neurosci. 23, 58–59.10.1016/S0166-2236(99)01523-4Suche in Google Scholar

Rivera, A., Agnati, L.F., Horvath, T.L., Valderrama, J.J., de La Calle, A., and Fuxe, K. (2006). Uncoupling protein 2/3 immunoreactivity and the ascending dopaminergic and noradrenergic neuronal systems. Relevance for volume transmission. Neuroscience 137, 1447–1461.10.1016/j.neuroscience.2005.05.051Suche in Google Scholar

Robertson, J.M. (2002). The astrocentric hypothesis: proposed role of astrocytes in consciousness and memory formation. J. Physiol. (Paris) 96, 251–255.10.1016/S0928-4257(02)00013-XSuche in Google Scholar

Rouach, N., Koulakoff, A., Abudara, V., Willecke, K., and Glaume, C. (2008). Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322, 1551–1555.10.1126/science.1164022Suche in Google Scholar PubMed

Rózsa, M., Baka, J., Bordé, S., Rózsa, B., Katona, G., and Tamás, G. (2015). Unitary GABAergic volume transmission from individual interneurons to astrocytes in the cerebral cortex. Brain Struct. Funct. doi: 10.1007/s00429-015-1166-9.10.1007/s00429-015-1166-9Suche in Google Scholar PubMed

Rumelhart, D., Hinton, G., and McClelland, J. (1986). A general framework for parallel distributed processing. Parallel Distributed Processing, Explorations in the Microstructure of Cognition. Vol. 1: Foundations. D. Rumelhart, J. McClelland, PDP Research group, eds. (Cambridge, MA: The MIT Press).10.7551/mitpress/5236.003.0018Suche in Google Scholar

Rustom, A., Saffrich, R., Markovic, I., Walther, P., and Gerdes, H.-H. (2004). Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010.10.1126/science.1093133Suche in Google Scholar PubMed

Savtchenko, L.P. and Rusakov, D.A. (2007). The optimal height of the synaptic cleft. Proc. Natl. Acad. Sci. USA 104, 1823–1828.10.1073/pnas.0606636104Suche in Google Scholar PubMed PubMed Central

Schipke, C.G., Haas, B., and Kettenmann, H. (2008). Astrocytes discriminate and selectively respond to the activity of a subpopulation of neurons within the barrel cortex. Cereb. Cortex 18, 2450–2459.10.1093/cercor/bhn009Suche in Google Scholar PubMed

Schmahmann, J.D. and Pandya, D.N. (2007). Cerebral white matter – historical evolution of facts and notions concerning the organization of the fiber pathways of the brain. J. Hist. Neurosci. 16, 237–267.10.1080/09647040500495896Suche in Google Scholar PubMed

Schmitt, F.O. (1984). Molecular regulators of brain function. A new view. Neuroscience 13, 991–1001.10.1016/0306-4522(84)90283-5Suche in Google Scholar

Shepherd, G.M. (1979). The Synaptic Organization of the Brain (New York: Oxford University Press).Suche in Google Scholar

Simons, M. and Raposo, G. (2009). Exosomes – vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 21, 575–581.10.1016/j.ceb.2009.03.007Suche in Google Scholar

Skieterska, K., Duchou, J., Lintermans, B., and Van Craenenbroeck, K. (2013). Detection of G protein-coupled receptor (GPCR) dimerization by coimmunoprecipitation. Methods Cell Biol. 117, 323–340.10.1016/B978-0-12-408143-7.00017-7Suche in Google Scholar

Smalheiser, N.R. (2007). Exosomal transfer of proteins and RNAs at synapses in the nervous system. Biol. Direct. 2, 35.10.1186/1745-6150-2-35Suche in Google Scholar

Smith, J.S., and Rajagopal, S. (2016). The β-arrestin: multifunctional regulators of G protein-coupled receptors. J. Biol. Chem. 291, 8969–8977.10.1074/jbc.R115.713313Suche in Google Scholar

Sowinski, S., Jolly, C., Berninghausen, O., Purbhoo, M.A., Chauveau, A., Köhler, K., Oddos, S., Eissmann, P., Brodsky, F.M., Hopkins, C., et al. (2008). Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat. Cell Biol. 10, 211–219.10.1038/ncb1682Suche in Google Scholar

Sporns, O. (2012). Discovering the Human Connectome (Cambridge, MA: MIT Press).10.7551/mitpress/9266.001.0001Suche in Google Scholar

Sporns, O. (2013). The human connectome: origins and challenges. NeuroImage 80, 53–61.10.1016/j.neuroimage.2013.03.023Suche in Google Scholar

Sporns, O. and Betzel, R.F. (2016). Modular brain networks. Annu. Rev. Psychol. 67, 613–640.10.1146/annurev-psych-122414-033634Suche in Google Scholar

Sporns, O. and Zwi, J.D. (2004). The small world of the cerebral cortex. Neuroinformatics 2, 145–162.10.1385/NI:2:2:145Suche in Google Scholar

Sporns, O., Tononi, G., and Kötter, R. (2005). The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, 245–251.10.1371/journal.pcbi.0010042Suche in Google Scholar

Stam, C.J. (2010). Characterization of anatomical and functional connectivity in the brain: a complex networks perspective. Int. J. Psychophysiol. 77, 186–194.10.1016/j.ijpsycho.2010.06.024Suche in Google Scholar

Stam, C.J. and Reijneveld, J.C. (2007). Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed. Phys. 1, 3.10.1186/1753-4631-1-3Suche in Google Scholar

Steinert, J.R., Kopp-Scheinpflug, C., Baker, C., Challiss, R.A.J., Mistry, R., Haustein, M.D., Griffin, S.J., Tong, H., Graham, B.P., and Forsythe, I.D. (2008). Nitric oxide is a volume transmitter regulating postsynaptic excitability at a glutamatergic synapse. Neuron 60, 642–656.10.1016/j.neuron.2008.08.025Suche in Google Scholar

Steno, N. (1965). Lecture on the Anatomy of the Brain (Copenhagen: Nordisk Forlag Brusck).Suche in Google Scholar

Stevens, B. (2008). Neuron-astrocyte signaling in the development and plasticity of neural circuits. Neurosignals 16, 278–288.10.1159/000123038Suche in Google Scholar

Sun, M.K. and Alkon, D.L. (2002). Carbonic anhydrase gating of attention: memory therapy and enhancement. Trends Pharmacol. Sci. 23, 83–89.10.1016/S0165-6147(02)01899-0Suche in Google Scholar

Syková, E. and Chvátal, A. (2000). Glial cells and volume transmission in the CNS. Neurochem. Int. 36, 397–409.10.1016/S0197-0186(99)00131-XSuche in Google Scholar

Syková, E. and Nicholson, C. (2008). Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340.10.1152/physrev.00027.2007Suche in Google Scholar

Syková, E., Mazel, T., Vargová, L., Vorísek, I., and Prokopová- Kubinová, S. (2000). Extracellular space diffusion and pathological states. Prog. Brain Res. 125, 155–178.10.1016/S0079-6123(00)25008-5Suche in Google Scholar

Szapiro, G. and Barbour, B. (2007). Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nat. Neurosci. 10, 735–742.10.1038/nn1907Suche in Google Scholar PubMed

Tang, A.-H., Chen, H., Li, T.P., Metzbower, S.R., MacGillavry, H.D., and Blanpied, T.A. (2016). A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature 536, 210–214.10.1038/nature19058Suche in Google Scholar

Theodosis, D.T., Poulain, D.A., and Oliet, S.H.R. (2008). Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol. Rev. 88, 983–1008.10.1152/physrev.00036.2007Suche in Google Scholar

Ungerstedt, U., Butcher, L.L., Butcher, S.G., Andén, N.E., and Fuxe, K. (1969). Direct chemical stimulation of dopaminergic mechanisms in the neostriatum of the rat. Brain Res. 14, 461–471.10.1016/0006-8993(69)90122-XSuche in Google Scholar

Van den Heuvel, M.P. and Sporns, O. (2013). Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696.10.1016/j.tics.2013.09.012Suche in Google Scholar

Van Essen, D.C., Drury, H.A., Joshi, S., and Miller, M.I. (1998). Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. Proc. Natl. Acad. USA 95, 788–795.10.1073/pnas.95.3.788Suche in Google Scholar

Van Essen, D.C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T.E.J., Bucholz, R., Chang, A., Chen, L., Corbetta, M., Curtiss, S.W., et al. (2012). The Human Connectome Project: a data acquisition perspective. NeuroImage 62, 2222–2231.10.1016/j.neuroimage.2012.02.018Suche in Google Scholar

van Niel, G., Porto-Carreiro, I., Simoes, S., and Raposo, G. (2006). Exosomes: a common pathway for a specialized function. J. Biochem. 140, 13–21.10.1093/jb/mvj128Suche in Google Scholar

Vella, L.J., Sharples, R.A., Nisbet, R.M., Cappai, R., and Hill, A.F. (2008). The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur. Biophys. J. 37, 323–332.10.1007/s00249-007-0246-zSuche in Google Scholar

Vizi, E.S. (1980a). Modulation of cortical release of acetylcholine by noradrenaline released from nerves arising from the rat locus coeruleus. Neuroscience 5, 2139–2144.10.1016/0306-4522(80)90129-3Suche in Google Scholar

Vizi, E.S. (1980b). Non-synaptic modulation of transmitter release: pharmacological implication. Trends Pharmacol. Sci. 1, 172–175.10.1016/0165-6147(79)90061-0Suche in Google Scholar

Vizi, E.S. (1984). Non-Synaptic Interactions between Neurons: Modulation of Neurochemical Transmission (Chichester: John Wiley and Sons).Suche in Google Scholar

Vizi, E.S. (2000). Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the CNS. Pharmacol. Rev. 52, 63–89.Suche in Google Scholar

Vizi, E.S., Fekete, A., Karoly, R., and Mike, A. (2010). Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment. Br. J. Pharmacol. 160, 785–809.10.1111/j.1476-5381.2009.00624.xSuche in Google Scholar PubMed PubMed Central

Vogels, T.P., Rajan, K., and Abbott, L.F. (2005). Neural network dynamics. Annual Rev. Neurosci. 28, 357–376.10.1146/annurev.neuro.28.061604.135637Suche in Google Scholar PubMed

Volterra, A., and Meldolesi, J. (2005). Astrocytes, from brain glue to communication elements: the revolution continues. Nat. Rev. Neurosci. 6, 626–640.10.1038/nrn1722Suche in Google Scholar PubMed

Watts, D., and Strogatz, S. (1998). Collective dynamics of small world networks. Nature 393, 440–442.10.1515/9781400841356.301Suche in Google Scholar

Wig, G.S., Schlaggar, B.L., and Petersen, S.E. (2011). Concepts and principles in the analysis of brain networks. Ann. N.Y. Acad. Sci. 1224, 126–146.10.1111/j.1749-6632.2010.05947.xSuche in Google Scholar PubMed

Wreggett, K.A., and Wells, J.W. (1995). Cooperativity manifest in the binding properties of purified cardiac muscarinic receptors. J. Biol. Chem. 270, 22488–22499.10.1074/jbc.270.38.22488Suche in Google Scholar PubMed

Yano, S., Brown, E.M., and Chattopadhyay, N. (2004). Calcium-sensing receptor in the brain. Cell Calcium 35, 257–264.10.1016/j.ceca.2003.10.008Suche in Google Scholar PubMed

Zalesky, A., Fornito, A., Harding, I.H., Cocchi, L., Yucel, M., et al. (2010). Whole-brain anatomical networks: does the choice of nodes matter? NeuroImage 50, 970–983.10.1016/j.neuroimage.2009.12.027Suche in Google Scholar PubMed

Received: 2016-8-9
Accepted: 2016-9-20
Published Online: 2016-12-28
Published in Print: 2017-2-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2016-0051/pdf
Button zum nach oben scrollen