Fetal alcohol spectrum disorders and cognitive functions of young children
-
Ioannis Bakoyiannis
, Eleana Gkioka
, Vasileios Pergialiotis , Ioanna Mastroleon , Anastasia Prodromidou , Georgios D. Vlachos und Despina Perrea
Abstract
Fetal alcohol spectrum disorder (FASD) is one of the main causes of mental retardation worldwide. Nearly 1% of children in North America are affected from antenatal exposure to ethanol. Its economic burden in industrialized countries is increasing. It is estimated that, in the United States, 4.0 billion dollars are annually expended in the treatment and rehabilitation of these patients. As a pathologic entity, they present with a broad symptomatology. Fetal alcohol syndrome (FAS) is the most readily recognized clinical manifestation of these disorders. Various factors seem to contribute in the pathogenesis of FASD-related cognitive disorders. During the last 20 years, several potential pretranslational and posttranslational factors have been extensively studied in various experimental animal models. Research has specifically focused on several neurotransmitters, insulin resistance, alterations of the hypothalamic-pituitary-adrenal (HPA) axis, abnormal glycosylation of several proteins, oxidative stress, nutritional antioxidants, and various epigenetic factors. The purpose of the present review is to summarize the clinical manifestations of this disorder during childhood and adolescence and to summarize the possible pathophysiologic and epigenetic pathways that have been implicated in the pathophysiology of FASD.
Conflict of interest statement
Disclosure: The authors report no conflict of interest.
Funding: None to disclose for all authors.
References
Amini, S.A., Dunstan, R.H., Dunkley, P.R., and Murdoch, R.N. (1996). Oxidative stress and the fetotoxicity of alcohol consumption during pregnancy. Free Radic. Biol. Med. 21, 357–365.10.1016/0891-5849(96)00027-5Suche in Google Scholar
Aronne, M.P., Evrard, S.G., Mirochnic, S., and Brusco, A. (2008). Prenatal ethanol exposure reduces the expression of the transcriptional factor Pax6 in the developing rat brain. Ann. NY Acad. Sci. 1139, 478–498.10.1196/annals.1432.006Suche in Google Scholar
Becker, M., Warr-Leeper, G.A., and Leeper, H.A., Jr. (1990). Fetal alcohol syndrome: a description of oral motor, articulatory, short-term memory, grammatical, and semantic abilities. J. Commun. Disord. 23, 97–124.10.1016/0021-9924(90)90016-RSuche in Google Scholar
Bell, S.H., Stade, B., Reynolds, J.N., Rasmussen, C., Andrew, G., Hwang, P.A., and Carlen, P.L. (2010). The remarkably high prevalence of epilepsy and seizure history in fetal alcohol spectrum disorders. Alcohol Clin. Exp. Res. 34, 1084–1089.10.1111/j.1530-0277.2010.01184.xSuche in Google Scholar
Bergamini, C.M., Gambetti, S., Dondi, A., and Cervellati, C. (2004). Oxygen, reactive oxygen species and tissue damage. Curr. Pharm. Des. 10, 1611–1626.10.2174/1381612043384664Suche in Google Scholar
Berman, R.F. and Hannigan, J.H. (2000). Effects of prenatal alcohol exposure on the hippocampus: spatial behavior, electrophysiology, and neuroanatomy. Hippocampus 10, 94–110.10.1002/(SICI)1098-1063(2000)10:1<94::AID-HIPO11>3.0.CO;2-TSuche in Google Scholar
Binkhorst, M., Wortmann, S.B., Funke, S., Kozicz, T., Wevers, R.A., and Morava, E. (2012). Glycosylation defects underlying fetal alcohol spectrum disorder: a novel pathogenetic model. ‘When the wine goes in, strange things come out’ – S.T. Coleridge, The Piccolomini. J. Inherit. Metab. Dis. 35, 399–405.10.1007/s10545-011-9425-2Suche in Google Scholar
Brocardo, P.S., Gil-Mohapel, J., and Christie, B.R. (2011). The role of oxidative stress in fetal alcohol spectrum disorders. Brain Res. Rev. 67, 209–225.10.1016/j.brainresrev.2011.02.001Suche in Google Scholar
Burd, L. and Martsolf, J.T. (1989). Fetal alcohol syndrome: diagnosis and syndromal variability. Physiol. Behav. 46, 39–43.10.1016/0031-9384(89)90318-1Suche in Google Scholar
Burden, M.J., Jacobson, S.W., and Jacobson, J.L. (2005). Relation of prenatal alcohol exposure to cognitive processing speed and efficiency in childhood. Alcohol Clin. Exp. Res. 29, 1473–1483.10.1097/01.alc.0000175036.34076.a0Suche in Google Scholar
Chen, Y., Ozturk, N.C., and Zhou, F.C. (2013). DNA methylation program in developing hippocampus and its alteration by alcohol. PLoS One 8, e60503.10.1371/journal.pone.0060503Suche in Google Scholar
Chu, J., Tong, M., and de la Monte, S.M. (2007). Chronic ethanol exposure causes mitochondrial dysfunction and oxidative stress in immature central nervous system neurons. Acta Neuropathol. 113, 659–673.10.1007/s00401-007-0199-4Suche in Google Scholar
Clarren, S.K. and Smith, D.W. (1978). The fetal alcohol syndrome. Lamp 35, 4–7.10.1056/NEJM197805112981906Suche in Google Scholar
Coggins, T.E., Timler, G.R., and Olswang, L.B. (2007). A state of double jeopardy: impact of prenatal alcohol exposure and adverse environments on the social communicative abilities of school-age children with fetal alcohol spectrum disorder. Lang. Speech Hear. Serv. Sch. 38, 117–127.10.1044/0161-1461(2007/012)Suche in Google Scholar
Cooper, J.D. and Rudeen, P.K. (1988). Alterations in regional catecholamine content and turnover in the male rat brain in response to in utero ethanol exposure. Alcohol Clin. Exp. Res. 12, 282–285.10.1111/j.1530-0277.1988.tb00195.xSuche in Google Scholar PubMed
de la Monte, S.M. and Wands, J.R. (2002). Chronic gestational exposure to ethanol impairs insulin-stimulated survival and mitochondrial function in cerebellar neurons. Cell Mol. Life Sci. 59, 882–893.10.1007/s00018-002-8475-xSuche in Google Scholar PubMed
de la Monte, S.M. and Wands, J.R. (2005). Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J. Alzheimers Dis. 7, 45–61.10.3233/JAD-2005-7106Suche in Google Scholar
de la Monte, S.M. and Wands, J.R. (2010). Role of central nervous system insulin resistance in fetal alcohol spectrum disorders. J. Popul. Ther. Clin. Pharmacol. 17, e390–e404.Suche in Google Scholar
de la Monte, S.M., Ganju, N., Tanaka, S., Banerjee, K., Karl, P.J., Brown, N.V., and Wands, J.R. (1999). Differential effects of ethanol on insulin-signaling through the insulin receptor substrate-1. Alcohol Clin. Exp. Res. 23, 770–777.10.1111/j.1530-0277.1999.tb04182.xSuche in Google Scholar
de la Monte, S.M., Ganju, N., Banerjee, K., Brown, N.V., Luong, T., and Wands, J.R. (2000). Partial rescue of ethanol-induced neuronal apoptosis by growth factor activation of phosphoinositol-3-kinase. Alcohol Clin. Exp. Res. 24, 716–726.10.1111/j.1530-0277.2000.tb02044.xSuche in Google Scholar
de la Monte, S.M., Neely, T.R., Cannon, J., and Wands, J.R. (2001). Ethanol impairs insulin-stimulated mitochondrial function in cerebellar granule neurons. Cell Mol. Life Sci. 58, 1950–1960.10.1007/PL00000829Suche in Google Scholar PubMed
Detering, N., Collins, R., Hawkins, R.L., Ozand, P.T., and Karahasan, A.M. (1980). The effects of ethanol on developing catecholamine neurons. Adv. Exp. Med. Biol. 132, 721–727.10.1007/978-1-4757-1419-7_75Suche in Google Scholar PubMed
Diaz de Leon-Guerrero, S., Pedraza-Alva, G., and Perez-Martinez, L. (2011). In sickness and in health: the role of methyl-CpG binding protein 2 in the central nervous system. Eur. J. Neurosci. 33, 1563–1574.10.1111/j.1460-9568.2011.07658.xSuche in Google Scholar PubMed PubMed Central
Dong, J., Sulik, K.K., and Chen, S.Y. (2010). The role of NOX enzymes in ethanol-induced oxidative stress and apoptosis in mouse embryos. Toxicol. Lett. 193, 94–100.10.1016/j.toxlet.2009.12.012Suche in Google Scholar PubMed PubMed Central
Downing, C., Johnson, T.E., Larson, C., Leakey, T.I., Siegfried, R.N., Rafferty, T.M., and Cooney, C.A. (2011). Subtle decreases in DNA methylation and gene expression at the mouse Igf2 locus following prenatal alcohol exposure: effects of a methyl-supplemented diet. Alcohol 45, 65–71.10.1016/j.alcohol.2010.07.006Suche in Google Scholar PubMed PubMed Central
Druse, M.J., Tajuddin, N., Kuo, A., and Connerty, M. (1990). Effects of in utero ethanol exposure on the developing dopaminergic system in rats. J. Neurosci. Res. 27, 233–240.10.1002/jnr.490270214Suche in Google Scholar PubMed
Dudek, H., Datta, S.R., Franke, T.F., Birnbaum, M.J., Yao, R., Cooper, G.M., Segal, R.A., Kaplan, D.R., and Greenberg, M.E. (1997). Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661–665.10.1126/science.275.5300.661Suche in Google Scholar PubMed
Fast, D.K. and Conry, J. (2009). Fetal alcohol spectrum disorders and the criminal justice system. Dev. Disabil. Res. Rev. 15, 250–257.10.1002/ddrr.66Suche in Google Scholar PubMed
Flak, A.L., Su, S., Bertrand, J., Denny, C.H., Kesmodel, U.S., and Cogswell, M.E. (2014). The association of mild, moderate, and binge prenatal alcohol exposure and child neuropsychological outcomes: a meta-analysis. Alcohol Clin. Exp. Res. 38, 214–226.10.1111/acer.12214Suche in Google Scholar PubMed
Floyd, R.A. and Carney, J.M. (1992). Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann. Neurol. 32, S22–S27.10.1002/ana.410320706Suche in Google Scholar PubMed
Fryer, S.L., McGee, C.L., Matt, G.E., Riley, E.P., and Mattson, S.N. (2007). Evaluation of psychopathological conditions in children with heavy prenatal alcohol exposure. Pediatrics 119, e733–e741.10.1542/peds.2006-1606Suche in Google Scholar PubMed
Fuglestad, A.J., Fink, B.A., Eckerle, J.K., Boys, C.J., Hoecker, H.L., Kroupina, M.G., Zeisel, S.H., Georgieff, M.K., and Wozniak, J.R. (2013). Inadequate intake of nutrients essential for neurodevelopment in children with fetal alcohol spectrum disorders (FASD). Neurotoxicol. Teratol. 39, 128–132.10.1016/j.ntt.2013.06.005Suche in Google Scholar
Ge, Y., Belcher, S.M., Pierce, D.R., and Light, K.E. (2004). Altered expression of Bcl2, Bad and Bax mRNA occurs in the rat cerebellum within hours after ethanol exposure on postnatal day 4 but not on postnatal day 9. Brain Res. Mol. Brain Res. 129, 124–134.10.1016/j.molbrainres.2004.06.034Suche in Google Scholar
Gillespie, R.A., Eriksen, J., Hao, H.L., and Druse, M.J. (1997). Effects of maternal ethanol consumption and buspirone treatment on dopamine and norepinephrine reuptake sites and D1 receptors in offspring. Alcohol Clin. Exp. Res. 21, 452–459.10.1111/j.1530-0277.1997.tb03790.xSuche in Google Scholar
Gold, P.E. (2003). Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol. Learn. Mem. 80, 194–210.10.1016/j.nlm.2003.07.003Suche in Google Scholar
Goodrich-Hunsaker, N.J., Livingstone, S.A., Skelton, R.W., and Hopkins, R.O. (2010). Spatial deficits in a virtual water maze in amnesic participants with hippocampal damage. Hippocampus 20, 481–491.Suche in Google Scholar
Gordon, A.S., Collier, K., and Diamond, I. (1986). Ethanol regulation of adenosine receptor-stimulated cAMP levels in a clonal neural cell line: an in vitro model of cellular tolerance to ethanol. Proc. Natl. Acad. Sci. USA 83, 2105–2108.10.1073/pnas.83.7.2105Suche in Google Scholar
Green, C.R., Mihic, A.M., Nikkel, S.M., Stade, B.C., Rasmussen, C., Munoz, D.P., and Reynolds, J.N. (2009). Executive function deficits in children with fetal alcohol spectrum disorders (FASD) measured using the Cambridge Neuropsychological Tests Automated Battery (CANTAB). J. Child Psychol. Psychiatry. 50, 688–697.10.1111/j.1469-7610.2008.01990.xSuche in Google Scholar
Guizzetti, M. and Costa, L.G. (2007). Cholesterol homeostasis in the developing brain: a possible new target for ethanol. Hum. Exp. Toxicol. 26, 355–360.10.1177/0960327107078412Suche in Google Scholar
Guizzetti, M., Moore, N.H., Giordano, G., VanDemark, K.L., and Costa, L.G. (2010). Ethanol inhibits neuritogenesis induced by astrocyte muscarinic receptors. Glia 58, 1395–1406.10.1002/glia.21015Suche in Google Scholar
Haley, D.W., Handmaker, N.S., and Lowe, J. (2006). Infant stress reactivity and prenatal alcohol exposure. Alcohol Clin. Exp. Res. 30, 2055–2064.10.1111/j.1530-0277.2006.00251.xSuche in Google Scholar
Hamilton, D.A., Driscoll, I., and Sutherland, R.J. (2002). Human place learning in a virtual Morris water task: some important constraints on the flexibility of place navigation. Behav. Brain Res. 129, 159–170.10.1016/S0166-4328(01)00343-6Suche in Google Scholar
Hanson, J.W., Jones, K.L., and Smith, D.W. (1976). Fetal alcohol syndrome. Experience with 41 patients. J. Am. Med. Assoc. 235, 1458–1460.10.1001/jama.1976.03260400024021Suche in Google Scholar
Haycock, P.C. and Ramsay, M. (2009). Exposure of mouse embryos to ethanol during preimplantation development: effect on DNA methylation in the h19 imprinting control region. Biol. Reprod. 81, 618–627.10.1095/biolreprod.108.074682Suche in Google Scholar
Hellemans, K.G., Sliwowska, J.H., Verma, P., and Weinberg, J. (2010). Prenatal alcohol exposure: fetal programming and later life vulnerability to stress, depression and anxiety disorders. Neurosci. Biobehav. Rev. 34, 791–807.10.1016/j.neubiorev.2009.06.004Suche in Google Scholar
Idrus, N.M., Happer, J.P., and Thomas, J.D. (2013). Cholecalciferol attenuates perseverative behavior associated with developmental alcohol exposure in rats in a dose-dependent manner. J. Steroid Biochem. Mol. Biol. 136, 146–149.10.1016/j.jsbmb.2012.10.012Suche in Google Scholar
Ikonomidou, C., Bittigau, P., Ishimaru, M.J., Wozniak, D.F., Koch, C., Genz, K., Price, M.T., Stefovska, V., Horster, F., Tenkova, T., et al. (2000). Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 287, 1056–1060.10.1126/science.287.5455.1056Suche in Google Scholar
Jucaite, A., Fernell, E., Halldin, C., Forssberg, H., and Farde, L. (2005). Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Biol. Psychiatr. 57, 229–238.10.1016/j.biopsych.2004.11.009Suche in Google Scholar
Kelly, G.M., Druse, M.J., Tonetti, D.A., and Oden, B.G. (1986). Maternal ethanol consumption: binding of L-glutamate to synaptic membranes from whole brain, cortices, and cerebella of offspring. Exp. Neurol. 91, 219–228.10.1016/0014-4886(86)90063-4Suche in Google Scholar
Kim, K.C., Go, H.S., Bak, H.R., Choi, C.S., Choi, I., Kim, P., Han, S.H., Han, S.M., Shin, C.Y., and Ko, K.H. (2010). Prenatal exposure of ethanol induces increased glutamatergic neuronal differentiation of neural progenitor cells. J. Biomed. Sci. 17, 85.10.1186/1423-0127-17-85Suche in Google Scholar PubMed PubMed Central
Kim, P., Park, J.H., Choi, C.S., Choi, I., Joo, S.H., Kim, M.K., Kim, S.Y., Kim, K.C., Park, S.H., Kwon, K.J., et al. (2013). Effects of ethanol exposure during early pregnancy in hyperactive, inattentive and impulsive behaviors and MeCP2 expression in rodent offspring. Neurochem. Res. 38, 620–631.10.1007/s11064-012-0960-5Suche in Google Scholar PubMed
Kleiber, M.L., Laufer, B.I., Wright, E., Diehl, E.J., and Singh, S.M. (2012). Long-term alterations to the brain transcriptome in a maternal voluntary consumption model of fetal alcohol spectrum disorders. Brain Res. 1458, 18–33.10.1016/j.brainres.2012.04.016Suche in Google Scholar PubMed
Koppel, J., Acker, C., Davies, P., Lopez, O.L., Jimenez, H., Azose, M., Greenwald, B.S., Murray, P.S., Kirkwood, C.M., Kofler, J., et al. (2014). Psychotic Alzheimer’s disease is associated with gender-specific tau phosphorylation abnormalities. Neurobiol. Aging S0197-4580, 00237-1.10.1016/j.neurobiolaging.2014.03.003Suche in Google Scholar
Kot-Leibovich, H. and Fainsod, A. (2009). Ethanol induces embryonic malformations by competing for retinaldehyde dehydrogenase activity during vertebrate gastrulation. Dis. Model Mech. 2, 295–305.10.1242/dmm.001420Suche in Google Scholar
Lebel, C., Rasmussen, C., Wyper, K., Walker, L., Andrew, G., Yager, J., and Beaulieu, C. (2008). Brain diffusion abnormalities in children with fetal alcohol spectrum disorder. Alcohol Clin. Exp. Res. 32, 1732–1740.10.1111/j.1530-0277.2008.00750.xSuche in Google Scholar
Li, Y.X., Yang, H.T., Zdanowicz, M., Sicklick, J.K., Qi, Y., Camp, T.J., and Diehl, A.M. (2007). Fetal alcohol exposure impairs Hedgehog cholesterol modification and signaling. Lab. Invest. 87, 231–240.10.1038/labinvest.3700516Suche in Google Scholar
Light, K.E., Serbus, D.C., and Santiago, M. (1989). Exposure of rats to ethanol from postnatal days 4 to 8: alterations of cholinergic neurochemistry in the cerebral cortex and corpus striatum at day 20. Alcohol Clin. Exp. Res. 13, 29–35.10.1111/j.1530-0277.1989.tb00279.xSuche in Google Scholar
Lovinger, D.M., White, G., and Weight, F.F. (1989). Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 243, 1721–1724.10.1126/science.2467382Suche in Google Scholar
Luo, J. and Miller, M.W. (1997). Differential sensitivity of human neuroblastoma cell lines to ethanol: correlations with their proliferative responses to mitogenic growth factors and expression of growth factor receptors. Alcohol Clin. Exp. Res. 21, 1186–1194.10.1097/00000374-199710000-00005Suche in Google Scholar
Luo, J. and Miller, M.W. (1998). Growth factor-mediated neural proliferation: target of ethanol toxicity. Brain Res. Brain Res. Rev. 27, 157–167.10.1016/S0165-0173(98)00009-5Suche in Google Scholar
Lupton, C., Burd, L., and Harwood, R. (2004). Cost of fetal alcohol spectrum disorders. Am. J. Med. Genet. C Semin. Med. Genet. 15, 42–50.10.1002/ajmg.c.30015Suche in Google Scholar PubMed
Marcus, J.C. (1987). Neurological findings in the fetal alcohol syndrome. Neuropediatrics 18, 158–160.10.1055/s-2008-1052471Suche in Google Scholar PubMed
Mattson, S.N., Roesch, S.C., Fagerlund, A., Autti-Ramo, I., Jones, K.L., May, P.A., Adnams, C.M., Konovalova, V., and Riley, E.P. (2010). Toward a neurobehavioral profile of fetal alcohol spectrum disorders. Alcohol Clin. Exp. Res. 34, 1640–1650.10.1111/j.1530-0277.2010.01250.xSuche in Google Scholar PubMed PubMed Central
May, P.A., Gossage, J.P., Kalberg, W.O., Robinson, L.K., Buckley, D., Manning, M., and Hoyme, H.E. (2009). Prevalence and epidemiologic characteristics of FASD from various research methods with an emphasis on recent in-school studies. Dev. Disabil. Res. Rev. 15, 176–192.10.1002/ddrr.68Suche in Google Scholar PubMed
May, P.A., Blankenship, J., Marais, A.S., Gossage, J.P., Kalberg, W.O., Joubert, B., Cloete, M., Barnard, R., De Vries, M., Hasken, J., et al. (2013). Maternal alcohol consumption producing fetal alcohol spectrum disorders (FASD): quantity, frequency, and timing of drinking. Drug Alcohol Depend. 133, 502–512.10.1016/j.drugalcdep.2013.07.013Suche in Google Scholar PubMed PubMed Central
McGee, C.L., Bjorkquist, O.A., Riley, E.P., and Mattson, S.N. (2009). Impaired language performance in young children with heavy prenatal alcohol exposure. Neurotoxicol. Teratol. 31, 71–75.10.1016/j.ntt.2008.09.004Suche in Google Scholar PubMed PubMed Central
Miller, M.W. (2007). Exposure to ethanol during gastrulation alters somatosensory-motor cortices and the underlying white matter in the macaque. Cereb. Cortex 17, 2961–2971.10.1093/cercor/bhm024Suche in Google Scholar PubMed
Niccols, A. (2007). Fetal alcohol syndrome and the developing socio-emotional brain. Brain Cognit. 65, 135–142.10.1016/j.bandc.2007.02.009Suche in Google Scholar PubMed
Nyaradi, A., Li, J., Hickling, S., Foster, J., and Oddy, W.H. (2013). The role of nutrition in children’s neurocognitive development, from pregnancy through childhood. Front. Hum. Neurosci. 26, 97.10.3389/fnhum.2013.00097Suche in Google Scholar PubMed PubMed Central
O’Hare, E.D., Lu, L.H., Houston, S.M., Bookheimer, S.Y., Mattson, S.N., O’Connor, M.J., and Sowell, E.R. (2009). Altered frontal-parietal functioning during verbal working memory in children and adolescents with heavy prenatal alcohol exposure. Hum. Brain Mapp. 30, 3200–3208.10.1002/hbm.20741Suche in Google Scholar PubMed PubMed Central
Pandey, S.C., Ugale, R., Zhang, H., Tang, L., and Prakash, A. (2008). Brain chromatin remodeling: a novel mechanism of alcoholism. J. Neurosci. 28, 3729–3737.10.1523/JNEUROSCI.5731-07.2008Suche in Google Scholar PubMed PubMed Central
Patten, A.R., Brocardo, P.S., and Christie, B.R. (2013). Omega-3 supplementation can restore glutathione levels and prevent oxidative damage caused by prenatal ethanol exposure. J. Nutr. Biochem. 24, 760–769.10.1016/j.jnutbio.2012.04.003Suche in Google Scholar PubMed
Powell, E.M., Campbell, D.B., Stanwood, G.D., Davis, C., Noebels, J.L., and Levitt, P. (2003). Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. J. Neurosci. 23, 622–631.10.1523/JNEUROSCI.23-02-00622.2003Suche in Google Scholar
Puglia, M.P. and Valenzuela, C.F. (2010). Ethanol acutely inhibits ionotropic glutamate receptor-mediated responses and long-term potentiation in the developing CA1 hippocampus. Alcohol Clin. Exp. Res. 34, 594–606.10.1111/j.1530-0277.2009.01128.xSuche in Google Scholar PubMed PubMed Central
Ramachandran, V., Perez, A., Chen, J., Senthil, D., Schenker, S., and Henderson, G.I. (2001). In utero ethanol exposure causes mitochondrial dysfunction, which can result in apoptotic cell death in fetal brain: a potential role for 4-hydroxynonenal. Alcohol Clin. Exp. Res. 25, 862–871.10.1111/j.1530-0277.2001.tb02292.xSuche in Google Scholar
Ramadoss, J. and Magness, R.R. (2011). 2-D DIGE uterine endothelial proteomic profile for maternal chronic binge-like alcohol exposure. J. Proteomics 74, 2986–2994.10.1016/j.jprot.2011.07.029Suche in Google Scholar PubMed PubMed Central
Rathbun, W. and Druse, M.J. (1985). Dopamine, serotonin, and acid metabolites in brain regions from the developing offspring of ethanol-treated rats. J. Neurochem. 44, 57–62.10.1111/j.1471-4159.1985.tb07112.xSuche in Google Scholar PubMed
Redmond, S.M. and Rice, M.L. (1998). The socioemotional behaviors of children with SLI: social adaptation or social deviance? J. Speech Lang. Hear. Res. 41, 688–700.10.1044/jslhr.4103.688Suche in Google Scholar PubMed
Ryan, S.H., Williams, J.K., and Thomas, J.D. (2008). Choline supplementation attenuates learning deficits associated with neonatal alcohol exposure in the rat: effects of varying the timing of choline administration. Brain Res. 27, 91–100.10.1016/j.brainres.2008.08.048Suche in Google Scholar PubMed PubMed Central
Sari, Y. and Zhou, F.C. (2004). Prenatal alcohol exposure causes long-term serotonin neuron deficit in mice. Alcohol Clin. Exp. Res. 28, 941–948.10.1097/01.ALC.0000128228.08472.39Suche in Google Scholar PubMed
Sasaoka, T., Wada, T., and Tsuneki, H. (2014). [Insulin resistance and cognitive function]. Nihon Rinsho 72, 633–640.Suche in Google Scholar
Schneider, M.L., Moore, C.F., Barnhart, T.E., Larson, J.A., DeJesus, O.T., Mukherjee, J., Nickles, R.J., Converse, A.K., Roberts, A.D., and Kraemer, G.W. (2005). Moderate-level prenatal alcohol exposure alters striatal dopamine system function in rhesus monkeys. Alcohol Clin. Exp. Res. 29, 1685–1697.10.1097/01.alc.0000179409.80370.25Suche in Google Scholar PubMed
Shen, R.Y., Hannigan, J.H., and Kapatos, G. (1999). Prenatal ethanol reduces the activity of adult midbrain dopamine neurons. Alcohol Clin. Exp. Res. 23, 1801–1807.10.1111/j.1530-0277.1999.tb04076.xSuche in Google Scholar
Shetty, A.K., Burrows, R.C., and Phillips, D.E. (1993). Alterations in neuronal development in the substantia nigra pars compacta following in utero ethanol exposure: immunohistochemical and Golgi studies. Neuroscience 52, 311–322.10.1016/0306-4522(93)90159-DSuche in Google Scholar
Soscia, S.J., Tong, M., Xu, X.J., Cohen, A.C., Chu, J., Wands, J.R., and de la Monte, S.M. (2006). Chronic gestational exposure to ethanol causes insulin and IGF resistance and impairs acetylcholine homeostasis in the brain. Cell Mol. Life Sci. 63, 2039–2056.10.1007/s00018-006-6208-2Suche in Google Scholar
Sowell, E.R., Mattson, S.N., Thompson, P.M., Jernigan, T.L., Riley, E.P., and Toga, A.W. (2001a). Mapping callosal morphology and cognitive correlates: effects of heavy prenatal alcohol exposure. Neurology 57, 235–244.10.1212/WNL.57.2.235Suche in Google Scholar
Sowell, E.R., Thompson, P.M., Mattson, S.N., Tessner, K.D., Jernigan, T.L., Riley, E.P., and Toga, A.W. (2001b). Voxel-based morphometric analyses of the brain in children and adolescents prenatally exposed to alcohol. Neuroreport 12, 515–523.10.1097/00001756-200103050-00018Suche in Google Scholar
Sowell, E.R., Thompson, P.M., Peterson, B.S., Mattson, S.N., Welcome, S.E., Henkenius, A.L., Riley, E.P., Jernigan, T.L., and Toga, A.W. (2002). Mapping cortical gray matter asymmetry patterns in adolescents with heavy prenatal alcohol exposure. Neuroimage 17, 1807–1819.10.1006/nimg.2002.1328Suche in Google Scholar
Sowell, E.R., Mattson, S.N., Kan, E., Thompson, P.M., Riley, E.P., and Toga, A.W. (2008). Abnormal cortical thickness and brain-behavior correlation patterns in individuals with heavy prenatal alcohol exposure. Cereb. Cortex 18, 136–144.10.1093/cercor/bhm039Suche in Google Scholar
Spencer, T.J., Biederman, J., Madras, B.K., Dougherty, D.D., Bonab, A.A., Livni, E., Meltzer, P.C., Martin, J., Rauch, S., and Fischman, A.J. (2007). Further evidence of dopamine transporter dysregulation in ADHD: a controlled PET imaging study using altropane. Biol. Psychiatry 62, 1059–1061.10.1016/j.biopsych.2006.12.008Suche in Google Scholar
Squire, L.R. (1992). Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–231.10.1037/0033-295X.99.2.195Suche in Google Scholar
Stade, B., Ali, A., Bennett, D., Campbell, D., Johnston, M., Lens, C., Tran, S., and Koren, G. (2009). The burden of prenatal exposure to alcohol: revised measurement of cost. Can. J. Clin. Pharmacol. 16, e91–e102.Suche in Google Scholar
Stouder, C., Somm, E., and Paoloni-Giacobino, A. (2011). Prenatal exposure to ethanol: a specific effect on the H19 gene in sperm. Reprod. Toxicol. 31, 507–512.10.1016/j.reprotox.2011.02.009Suche in Google Scholar
Sutherland, R.J., McDonald, R.J., and Savage, D.D. (1997). Prenatal exposure to moderate levels of ethanol can have long-lasting effects on hippocampal synaptic plasticity in adult offspring. Hippocampus 7, 232–238.10.1002/(SICI)1098-1063(1997)7:2<232::AID-HIPO9>3.0.CO;2-OSuche in Google Scholar
Swanson, D.J., King, M.A., Walker, D.W., and Heaton, M.B. (1995). Chronic prenatal ethanol exposure alters the normal ontogeny of choline acetyltransferase activity in the rat septohippocampal system. Alcohol Clin. Exp. Res. 19, 1252–1260.10.1111/j.1530-0277.1995.tb01608.xSuche in Google Scholar
Tajuddin, N.F. and Druse, M.J. (1993). Treatment of pregnant alcohol-consuming rats with buspirone: effects on serotonin and 5-hydroxyindoleacetic acid content in offspring. Alcohol Clin. Exp. Res. 17, 110–114.10.1111/j.1530-0277.1993.tb00734.xSuche in Google Scholar
Tajuddin, N.F. and Druse, M.J. (1999). In utero ethanol exposure decreased the density of serotonin neurons. Maternal ipsapirone treatment exerted a protective effect. Brain Res. Dev. Brain Res. 117, 91–97.10.1016/S0165-3806(99)00102-9Suche in Google Scholar
Takadera, T. and Ohyashiki, T. (2004). Glycogen synthase kinase-3 inhibitors prevent caspase-dependent apoptosis induced by ethanol in cultured rat cortical neurons. Eur. J. Pharmacol. 499, 239–245.10.1016/j.ejphar.2004.07.115Suche in Google Scholar
Thorne, J.C., Coggins, T.E., Carmichael Olson, H., and Astley, S.J. (2007). Exploring the utility of narrative analysis in diagnostic decision making: picture-bound reference, elaboration, and fetal alcohol spectrum disorders. J. Speech Lang. Hear. Res. 50, 459–474.10.1044/1092-4388(2007/032)Suche in Google Scholar
Uban, K.A., Comeau, W.L., Ellis, L.A., Galea, L.A., and Weinberg, J. (2013). Basal regulation of HPA and dopamine systems is altered differentially in males and females by prenatal alcohol exposure and chronic variable stress. Psychoneuroendocrinology 38, 1953–1966.10.1016/j.psyneuen.2013.02.017Suche in Google Scholar
Ungerer, M., Knezovich, J., and Ramsay, M. (2013). In utero alcohol exposure, epigenetic changes, and their consequences. Alcohol Res. 35, 37–46.Suche in Google Scholar
VanDemark, K.L., Guizzetti, M., Giordano, G., and Costa, L.G. (2009). Ethanol inhibits muscarinic receptor-induced axonal growth in rat hippocampal neurons. Alcohol Clin. Exp. Res. 33, 1945–1955.10.1111/j.1530-0277.2009.01032.xSuche in Google Scholar
Vaurio, L., Riley, E.P., and Mattson, S.N. (2011). Neuropsychological comparison of children with heavy prenatal alcohol exposure and an IQ-matched comparison group. J. Int. Neuropsychol. Soc. 17, 463–473.10.1017/S1355617711000063Suche in Google Scholar
Wadman, R., Durkin, K., and Conti-Ramsden, G. (2008). Self-esteem, shyness, and sociability in adolescents with specific language impairment (SLI). J. Speech Lang. Hear. Res. 51, 938–952.10.1044/1092-4388(2008/069)Suche in Google Scholar
Weinberg, J., Taylor, A.N., and Gianoulakis, C. (1996). Fetal ethanol exposure: hypothalamic-pituitary-adrenal and beta-endorphin responses to repeated stress. Alcohol Clin. Exp. Res. 20, 122–131.10.1111/j.1530-0277.1996.tb01054.xSuche in Google Scholar PubMed
Yang, M., Lu, J., Miao, J., Rizak, J., Yang, J., Zhai, R., Zhou, J., Qu, J., Wang, J., Ma, Y., et al. (2014). Alzheimer’s disease and methanol toxicity (part 1): chronic methanol feeding led to memory impairments and tau hyperphosphorylation in mice. J. Alzheimers Dis. doi:10.3233/jad-131529 [E-pub ahead of print].10.3233/JAD-131529Suche in Google Scholar PubMed
Zhou, F.C., Sari, Y., and Powrozek, T.A. (2005). Fetal alcohol exposure reduces serotonin innervation and compromises development of the forebrain along the serotonergic pathway. Alcohol Clin. Exp. Res. 29, 141–149.10.1097/01.ALC.0000150636.19677.6FSuche in Google Scholar
Zhou, D., Lebel, C., Lepage, C., Rasmussen, C., Evans, A., Wyper, K., Pei, J., Andrew, G., Massey, A., Massey, D., et al. (2011). Developmental cortical thinning in fetal alcohol spectrum disorders. Neuroimage 58, 16–25.10.1016/j.neuroimage.2011.06.026Suche in Google Scholar PubMed
©2014 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Dopamine and reward seeking: the role of ventral tegmental area
- Fetal alcohol spectrum disorders and cognitive functions of young children
- Amyloid β in hereditary cerebral hemorrhage with amyloidosis-Dutch type
- Candidate biomarkers of multiple system atrophy in cerebrospinal fluid
- Role of neuroimaging in drug development
- MicroRNAs in central nervous system development
- Autonomic contributions in postural control: a review of the evidence
- The role of Toll-like receptors (TLRs) in stroke
- The role of Toll-like receptors in multiple sclerosis and possible targeting for therapeutic purposes
Artikel in diesem Heft
- Frontmatter
- Dopamine and reward seeking: the role of ventral tegmental area
- Fetal alcohol spectrum disorders and cognitive functions of young children
- Amyloid β in hereditary cerebral hemorrhage with amyloidosis-Dutch type
- Candidate biomarkers of multiple system atrophy in cerebrospinal fluid
- Role of neuroimaging in drug development
- MicroRNAs in central nervous system development
- Autonomic contributions in postural control: a review of the evidence
- The role of Toll-like receptors (TLRs) in stroke
- The role of Toll-like receptors in multiple sclerosis and possible targeting for therapeutic purposes