Home The role of Toll-like receptors in multiple sclerosis and possible targeting for therapeutic purposes
Article
Licensed
Unlicensed Requires Authentication

The role of Toll-like receptors in multiple sclerosis and possible targeting for therapeutic purposes

  • Maziar Gooshe

    Maziar Gooshe is a medical student of Tehran University of Medical Sciences with a broad and acute interest in the discovery of new pathways and underlying mechanis ms of human neurophysiology, having an interest in human reproductive medicine. Also, particularly enjoying collaboration with scientists from different disciplines to develop new skills and solve new challenges. He is already doing his study under the supervision of Dr. Nima Rezaei at the Research Center for Immunodeficiencies, while he is also getting some experiences at the Department of Toxicology and Pharmacology as well as the Experimental Medicine Research Center.

    , Amir Hossein Abdolghaffari

    Amir Hossein Abdolghaffari is a Pharmacology PhD candidate at Tehran University of Medical Sciences, which has published 14 papers in international journals and contributed in 2 chapters of Encyclopedia of Toxicology from Elsevier. His research interest is in signaling and oxidative stress. He is already a researcher at the Department of Pharmacology and Toxicology as well as Institute of Medicinal Plants, ACECR.

    , Maria Elsa Gambuzza

    Maria Elsa Gambuzza is the Rome Adjunct microbiology professor at Degree Course of Biotechnology, University of Messina, who is already doing the Control Authority at the Ministry of Health. She has Degree in Biology – Specialization in Microbiology and Virology – PhD in “Microbial Biotechnology” and in “Clinical Neuroscience”. She has already several publications on role of Toll-like receptors in Alzheimer’s disease and multiple sclerosis.

    and Nima Rezaei

    Nima Rezaei took the degree in Medicine in 2002 from Tehran University of Medical Sciences, the MSc in Molecular and Gentic Medicine in 2006, and the PhD in Human Genetics and Clinical Immunology in 2009 from the University of Sheffield. He is now working in Tehran University of Medical Sciences as an academic faculty member and as the chief executive director of the Children’s Medical Center. He is also the Deputy President of Research Center for Immunodeficiencies. He has presented more than 300 lectures/posters in congresses/meetings and has published more than 380 articles in international scientific journals during the last decade.

    EMAIL logo
Published/Copyright: June 7, 2014
Become an author with De Gruyter Brill

Abstract

The interaction between the immune and nervous systems suggests invaluable mechanisms for several pathological conditions, especially neurodegenerative disorders. Multiple sclerosis (MS) is a potentially disabling chronic autoimmune disease, characterized by chronic inflammation and neurodegenerative pathology of the central nervous system. Toll-like receptors (TLRs) are an important family of receptors involved in host defense and in recognition of invading pathogens. The role of TLRs in the pathogenesis of autoimmune disorders such as MS is only starting to be uncovered. Recent studies suggest an ameliorative role of TLR3 and a detrimental role of other TLRs in the onset and progression of MS and experimental autoimmune encephalomyelitis, a murine model of MS. Thus, modulating TLRs can represent an innovative immunotherapeutic approach in MS therapy. This article outlines the role of these TLRs in MS, also discussing TLR-targeted agonist or antagonists that could be used in the different stages of the disease.


Corresponding author: Nima Rezaei, Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran 14194, Iran, e-mail:

About the authors

Maziar Gooshe

Maziar Gooshe is a medical student of Tehran University of Medical Sciences with a broad and acute interest in the discovery of new pathways and underlying mechanis ms of human neurophysiology, having an interest in human reproductive medicine. Also, particularly enjoying collaboration with scientists from different disciplines to develop new skills and solve new challenges. He is already doing his study under the supervision of Dr. Nima Rezaei at the Research Center for Immunodeficiencies, while he is also getting some experiences at the Department of Toxicology and Pharmacology as well as the Experimental Medicine Research Center.

Amir Hossein Abdolghaffari

Amir Hossein Abdolghaffari is a Pharmacology PhD candidate at Tehran University of Medical Sciences, which has published 14 papers in international journals and contributed in 2 chapters of Encyclopedia of Toxicology from Elsevier. His research interest is in signaling and oxidative stress. He is already a researcher at the Department of Pharmacology and Toxicology as well as Institute of Medicinal Plants, ACECR.

Maria Elsa Gambuzza

Maria Elsa Gambuzza is the Rome Adjunct microbiology professor at Degree Course of Biotechnology, University of Messina, who is already doing the Control Authority at the Ministry of Health. She has Degree in Biology – Specialization in Microbiology and Virology – PhD in “Microbial Biotechnology” and in “Clinical Neuroscience”. She has already several publications on role of Toll-like receptors in Alzheimer’s disease and multiple sclerosis.

Nima Rezaei

Nima Rezaei took the degree in Medicine in 2002 from Tehran University of Medical Sciences, the MSc in Molecular and Gentic Medicine in 2006, and the PhD in Human Genetics and Clinical Immunology in 2009 from the University of Sheffield. He is now working in Tehran University of Medical Sciences as an academic faculty member and as the chief executive director of the Children’s Medical Center. He is also the Deputy President of Research Center for Immunodeficiencies. He has presented more than 300 lectures/posters in congresses/meetings and has published more than 380 articles in international scientific journals during the last decade.

Acknowledgments

This study was supported by a grant from Tehran University of Medical Sciences (grant no. 91-04-30-21129). We gratefully and sincerely thank Dr. Alireza Aleyasin for his invaluable comments.

References

Akira, S. (2009). Pathogen recognition by innate immunity and its signaling. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 85, 143–156.10.2183/pjab.85.143Search in Google Scholar PubMed PubMed Central

Akira, S. and Takeda, K. (2004). Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511.10.1038/nri1391Search in Google Scholar PubMed

Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783–802.10.1016/j.cell.2006.02.015Search in Google Scholar PubMed

Alexopoulou, L., Holt, A.C., Medzhitov, R., Medzhitov, R., and Flavell, R.A. (2001). Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738.10.1038/35099560Search in Google Scholar PubMed

Aliprantis, A.O., Yang, R.B., Mark, M.R., Suggett, S., Devaux, B., Radolf, J.D., Klimpel, G.R., Godowski, P., and Zychlinsky, A. (1999). Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 285, 736–739.10.1126/science.285.5428.736Search in Google Scholar PubMed

Amlie-Lefond, C., Paz, D.A., Connelly, M.P., Huffnagle, G.B., Whelan, N.T., and Whelan, H.T. (2005). Innate immunity for biodefense: a strategy whose time has come. J. Allergy Clin. Immunol. 116, 1334–1342.10.1016/j.jaci.2005.08.048Search in Google Scholar PubMed PubMed Central

Andersson, A., Covacu, R., Sunnemark, D., Danilov, A.I., Dal Bianco, A., Khademi, M., Wallström, E., Lobell, A., Brundin, L., Lassmann, H., et al. (2008). Pivotal advance: HMGB1 expression in active lesions of human and experimental multiple sclerosis. J. Leukoc. Biol. 84, 1248–1255.10.1189/jlb.1207844Search in Google Scholar PubMed

Aravalli, R.N., Hu, S., Rowen, T.N., Palmquist, J.M., and Lokensgard, J.R. (2005). Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. J. Immunol. 175, 4189–4193.10.4049/jimmunol.175.7.4189Search in Google Scholar PubMed

Aravalli, R.N., Peterson, P.K., and Lokensgard, J.R. (2007). Toll-like receptors in defense and damage of the central nervous system. J. Neuroimmune Pharmacol. 2, 297–312.10.1007/s11481-007-9071-5Search in Google Scholar PubMed

Arslan, F., de Kleijn, D.P., Timmers, L., Doevendans, P.A., and Pasterkamp, G. (2008). Bridging innate immunity and myocardial ischemia/reperfusion injury: the search for therapeutic targets. Curr. Pharm. Des. 14, 1205–1216.10.2174/138161208784246090Search in Google Scholar PubMed

Asagiri, M., Hirai, T., Kunigami, T., Kamano, S., Gober, H.J., Okamoto, K., Nishikawa, K., Latz, E., Golenbock, D.T., Aoki, K., et al. (2008). Cathepsin K-dependent Toll-like receptor 9 signaling revealed in experimental arthritis. Science 319, 624–627.10.1126/science.1150110Search in Google Scholar PubMed

Ascherio, A. and Bar-Or, A. (2010). EBV and brain matter(s)? Neurology 74, 1092–1095.10.1212/WNL.0b013e3181dabfb5Search in Google Scholar PubMed

Baldridge, J.R., McGowan, P., Evans, J.T., Cluff, C., Mossman, S., Johnson, D., and Persing, D. (2004). Taking a Toll on human disease: Toll-like receptor 4 agonists as vaccine adjuvants and monotherapeutic agents. Exp. Opin. Biol. Ther. 4, 1129–1138.10.1517/14712598.4.7.1129Search in Google Scholar PubMed

Barrat, F.J., Meeker, T., Gregorio, J., Chan, J.H., Uematsu, S., Akira, S., Chang, B., Duramad, O., and Coffman, R.L. (2005). Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202, 1131–1139.10.1084/jem.20050914Search in Google Scholar PubMed PubMed Central

Barrat, F.J., Meeker, T., Chan, J.H., Guiducci, C., and Coffman, R.L. (2007). Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur. J. Immunol. 37, 3582–3586.10.1002/eji.200737815Search in Google Scholar PubMed

Bartfai, T., Behrens, M.M., Gaidarova, S., Pemberton, J., Shivanyuk, A., and Rebek, J. Jr. (2003). A low molecular weight mimic of the Toll/IL-1 receptor/resistance domain inhibits IL-1 receptor-mediated responses. Proc. Natl. Acad. Sci. USA 100, 7971–7976.10.1073/pnas.0932746100Search in Google Scholar PubMed PubMed Central

Bauer, J., Sminia, T., Wouterlood, F.G., and Dijkstra, C.D. (1994). Phagocytic activity of macrophages and microglial cells during the course of acute and chronic relapsing experimental autoimmune encephalomyelitis. J. Neurosci. Res. 38, 365–375.10.1002/jnr.490380402Search in Google Scholar PubMed

Bell, J.K., Botos, I., Hall, P.R., Askins, J., Shiloach, J., Segal, D.M., and Davies, D.R. (2005). The molecular structure of the Toll-like receptor 3 ligand-binding domain. Proc. Natl. Acad. Sci. USA 102, 10976–10980.10.1073/pnas.0505077102Search in Google Scholar PubMed PubMed Central

Benveniste, E.N. (1997). Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J. Mol. Med. (Berl.) 75, 165–173.10.1007/s001090050101Search in Google Scholar PubMed

Bhoj, V.G. and Chen, Z.J. (2009). Ubiquitylation in innate and adaptive immunity. Nature 458, 430–437.10.1038/nature07959Search in Google Scholar PubMed

Bieback, K., Lien, E., Klagge, I.M., Avota, E., Schneider-Schaulies, J., Duprex, W.P., Wagner, H., Kirschning, C.J., Ter Meulen, V., and Schneider-Schaulies. S. (2002). Hemagglutinin protein of wild-type measles virus activates Toll-like receptor 2 signaling. J. Virol. 76, 8729–8736.10.1128/JVI.76.17.8729-8736.2002Search in Google Scholar PubMed PubMed Central

Biragyn, A., Ruffini, P.A., Leifer, C.A., Klyushnenkova, E., Shakhov, A., Chertov, O., Shirakawa, A.K., Farber, J.M., Segal, D.M., Oppenheim, J.J., et al. (2002). Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298, 1025–1029.10.1126/science.1075565Search in Google Scholar PubMed

Blasius, A.L. and Beutler, B. (2010). Intracellular Toll-like receptors. Immunity 32, 305–315.10.1016/j.immuni.2010.03.012Search in Google Scholar PubMed

Boone, D.L., Turer, E.E., Lee, E.G., Ahmad, R.C., Wheeler, M.T., Tsui, C., Hurley, P., Chien, M., Chai, S., Hitotsumatsu, O., et al. (2004). The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5, 1052–1060.10.1038/ni1110Search in Google Scholar PubMed

Boster, A., Ankeny, D.P., and Racke, M.K. (2010). The potential role of B cell-targeted therapies in multiple sclerosis. Drugs 70, 2343–2356.10.2165/11585230-000000000-00000Search in Google Scholar PubMed

Botos, I., Segal, D.M., and Davies, D.R. (2011). The structural biology of Toll-like receptors. Structure 19, 447–459.10.1016/j.str.2011.02.004Search in Google Scholar PubMed PubMed Central

Bowman, C.C., Rasley, A., Tranguch, S.L., and Marriott, I. (2003). Cultured astrocytes express Toll-like receptors for bacterial products. Glia 43, 281–291.10.1002/glia.10256Search in Google Scholar PubMed

Brikos, C. and O’Neill, L.A. (2008). Signalling of Toll-like receptors. Handb. Exp. Pharmacol. 183, 21–50.10.1007/978-3-540-72167-3_2Search in Google Scholar PubMed

Broadley, S.A., Vanags, D., Williams, B., Johnson, B., Feeney, D., Griffiths, L., Shakib, S., Brown, G., Coulthard, A., Mullins, P., et al. (2009). Results of a phase IIa clinical trial of an anti-inflammatory molecule, chaperonin 10, in multiple sclerosis. Mult. Scler. 15, 329–336.10.1177/1352458508099141Search in Google Scholar PubMed

Broudy, V.C., Kaushansky, K., Segal, G.M., Harlan, J.M., and Adamson, J.W. (1986). Tumor necrosis factor type alpha stimulates human endothelial cells to produce granulocyte/macrophage colony-stimulating factor. Proc. Natl. Acad. Sci. USA 83, 7467–7471.10.1073/pnas.83.19.7467Search in Google Scholar PubMed PubMed Central

Bsibsi, M., Ravid, R., Gveric, D., and van Noort, J.M. (2002). Broad expression of Toll-like receptors in the human central nervous system. J. Neuropathol. Exp. Neurol. 61, 1013–1021.10.1093/jnen/61.11.1013Search in Google Scholar PubMed

Bsibsi, M., Bajramovic, J.J., Vogt, M.H., van Duijvenvoorden, E., Baghat, A., Persoon-Deen, C., Tielen, F., Verbeek, R., Huitinga, I., Ryffel, B., et al. (2010). The microtubule regulator stathmin is an endogenous protein agonist for TLR3. J. Immunol. 184, 6929–6937.10.4049/jimmunol.0902419Search in Google Scholar PubMed

Bulut, Y., Faure, E., Thomas, L., Equils, O., and Arditi, M. (2001). Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J. Immunol. 167, 987–994.10.4049/jimmunol.167.2.987Search in Google Scholar PubMed

Bulut, Y., Faure, E., Thomas, L., Karahashi, H., Michelsen, K.S., Equils, O., Morrison, S.G., Morrison, R.P., and Arditi, M. (2002). Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J. Immunol. 168, 1435–1440.10.4049/jimmunol.168.3.1435Search in Google Scholar PubMed

Burdelya, L.G., Krivokrysenko, V.I., Tallant, T.C., Strom, E., Gleiberman, A.S., Gupta, D., Kurnasov, O.V., Fort, F.L., Osterman, A.L., Didonato, J.A., et al. (2008). An agonist of Toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 320, 226–230.10.1126/science.1154986Search in Google Scholar PubMed PubMed Central

Burns, K., Janssens, S., Brissoni, B., Olivos, N., Beyaert, R., and Tschopp, J. (2003). Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J. Exp. Med. 197, 263–268.10.1084/jem.20021790Search in Google Scholar PubMed PubMed Central

Carpenter, S. and O’Neill, L.A. (2009). Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins. Biochem. J. 422, 1–10.10.1042/BJ20090616Search in Google Scholar PubMed

Carty, M. and Bowie, A.G. (2011). Evaluating the role of Toll-like receptors in diseases of the central nervous system. Biochem. Pharmacol. 81, 825–837.10.1016/j.bcp.2011.01.003Search in Google Scholar PubMed

Castro-Borrero, W., Graves, D., Frohman, T.C., Flores, A.B., Hardeman, P., Logan, D., Orchard, M., Greenberg, B., and Frohman, E.M. (2012). Current and emerging therapies in multiple sclerosis: a systematic review. Ther. Adv. Neurol. Disord. 5, 205–220.10.1177/1756285612450936Search in Google Scholar PubMed PubMed Central

Chakrabarti, A., Jha, B.K., and Silverman, R.H. (2011). New insights into the role of RNase L in innate immunity. J. Interferon Cytokine Res. 31, 49–57.10.1089/jir.2010.0120Search in Google Scholar PubMed PubMed Central

Chang, Y.C., Kao, W.C., Wang, W.Y., Yang, R.B., and Peck, K. (2009). Identification and characterization of oligonucleotides that inhibit Toll-like receptor 2-associated immune responses. FASEB. J. 23, 3078–3088.10.1096/fj.09-129312Search in Google Scholar PubMed

Chang, C.I., Lee, T.Y., Kim, S., Sun, X., Hong, S.W., Yoo, J.W., Dua, P., Kang, H.S., Kim, S., Li, C.J., et al. (2012). Enhanced intracellular delivery and multi-target gene silencing triggered by tripodal RNA structures. J. Gene Med. 14, 138–146.10.1002/jgm.1653Search in Google Scholar PubMed

Chearwae, W. and Bright, J.J. (2008). 15-deoxy-Delta(12,14)-prostaglandin J(2) and curcumin modulate the expression of Toll-like receptors 4 and 9 in autoimmune T lymphocyte. J. Clin. Immunol. 28, 558–570.10.1007/s10875-008-9202-7Search in Google Scholar PubMed

Chen, K., Huang, J., Gong, W., Iribarren, P., Dunlop, N.M., and Wang, J.M. (2007). Toll-like receptors in inflammation, infection and cancer. Int. Immunopharmacol. 7, 1271–1285.10.1016/j.intimp.2007.05.016Search in Google Scholar PubMed

Chen, Q., Davidson, T.S., Huter, E.N., and Shevach, E.M. (2009). Engagement of TLR2 does not reverse the suppressor function of mouse regulatory T cells, but promotes their survival. J. Immunol. 183, 4458–4466.10.4049/jimmunol.0901465Search in Google Scholar PubMed PubMed Central

Christ, W.J., Asano, O., Robidoux, A.L., Perez, M., Wang, Y., Dubuc, G.R., Gavin, W.E., Hawkins, L.D., McGuinness, P.D., Mullarkey, M.A., et al. (1995). E5531, a pure endotoxin antagonist of high potency. Science 268, 80–83.10.1126/science.7701344Search in Google Scholar PubMed

Christensen, S.R., Shupe, J., Nickerson, K., Kashgarian, M., Flavell, R.A., and Shlomchik, M.J. (2006). Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417–428.10.1016/j.immuni.2006.07.013Search in Google Scholar PubMed

Cluff, C.W., Baldridge, J.R., Stöver, A.G., Evans, J.T., Johnson, D.A., Lacy, M.J., Clawson, V.G., Yorgensen, V.M., Johnson, C.L., Livesay, M.T., et al. (2005). Synthetic Toll-like receptor 4 agonists stimulate innate resistance to infectious challenge. Infect. Immun. 73, 3044–3052.10.1128/IAI.73.5.3044-3052.2005Search in Google Scholar PubMed PubMed Central

Coban, C., Ishii, K.J., Kawai, T., Hemmi, H., Sato, S., Uematsu, S., Yamamoto, M., Takeuchi, O., Itagaki, S., Kumar, N., et al. (2005). Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J. Exp. Med. 201, 19–25.10.1084/jem.20041836Search in Google Scholar PubMed PubMed Central

Codarri, L., Gyülvészi, G., Tosevski, V., Hesske, L., Fontana, A., Magnenat, L., Suter, T., and Becher, B. (2011). RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol. 12, 560–567.10.1038/ni.2027Search in Google Scholar PubMed

Coelho, P.S., Klein, A., Talvani, A., Coutinho, S.F., Takeuchi, O., Akira, S., Silva, J.S., Canizzaro, H., Gazzinelli, R.T., and Teixeira, M.M. (2002). Glycosylphosphatidylinositol-anchored mucin-like glycoproteins isolated from Trypanosoma cruzi trypomastigotes induce in vivo leukocyte recruitment dependent on MCP-1 production by IFN-gamma-primed-macrophages. J. Leukoc. Biol. 71, 837–844.10.1189/jlb.71.5.837Search in Google Scholar

Compton, T., Kurt-Jones, E.A., Boehme, K.W., Belko, J., Latz, E., Golenbock, D.T., and Finberg, R.W. (2003). Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J. Virol. 77, 4588–4596.10.1128/JVI.77.8.4588-4596.2003Search in Google Scholar

Constantinescu, C.S., Farooqi, N., O’Brien, K., and Gran, B. (2011). Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br. J. Pharmacol. 164, 1079–1106.10.1111/j.1476-5381.2011.01302.xSearch in Google Scholar

Coornaert, B., Carpentier, I., and Beyaert, R. (2009). A20: central gatekeeper in inflammation and immunity. J. Biol. Chem. 284, 8217–8221.10.1074/jbc.R800032200Search in Google Scholar

Couture, L.A., Piao, W., Ru, L.W., Vogel, S.N., and Toshchakov, V.Y. (2012). Targeting Toll-like receptor (TLR) signaling by Toll/interleukin-1 receptor (TIR) domain-containing adapter protein/MyD88 adapter-like (TIRAP/Mal)-derived decoy peptides. J. Biol. Chem. 287, 24641–24648.10.1074/jbc.M112.360925Search in Google Scholar

Curtin, F., Lang, A.B., Perron, H., Laumonier, M., Vidal, V., Porchet, H.C., and Hartung, H.P. (2012). GNbAC1, a humanized monoclonal antibody against the envelope protein of multiple sclerosis-associated endogenous retrovirus: a first-in-humans randomized clinical study. Clin. Ther. 34, 2268–2278.10.1016/j.clinthera.2012.11.006Search in Google Scholar

David, S.A. (2001). Towards a rational development of anti-endotoxin agents: novel approaches to sequestration of bacterial endotoxins with small molecules. J. Mol. Recognit. 14, 370–387.10.1002/jmr.549Search in Google Scholar

DeLuca, J. and Nocentini, U. (2011). Neuropsychological, medical and rehabilitative management of persons with multiple sclerosis. NeuroRehabilitation 29, 197–219.10.3233/NRE-2011-0695Search in Google Scholar

Deng, C., Radu, C., Diab, A., Tsen, M.F., Hussain, R., Cowdery, J.S., Racke, M.K., and Thomas, J.A. (2003). IL-1 receptor-associated kinase 1 regulates susceptibility to organ-specific autoimmunity. J. Immunol. 170, 2833–2842.10.4049/jimmunol.170.6.2833Search in Google Scholar

Deretic, V. (2011). Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol. Rev. 240, 92–104.10.1111/j.1600-065X.2010.00995.xSearch in Google Scholar

Devaux, B., Enderlin, F., Wallner, B., and Smilek, D.E. (1997). Induction of EAE in mice with recombinant human MOG, and treatment of EAE with a MOG peptide. J. Neuroimmunol. 75, 169–173.10.1016/S0165-5728(97)00019-2Search in Google Scholar

Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S., and Reis e Sousa, C. (2004). Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531.10.1126/science.1093616Search in Google Scholar PubMed

Diestel, A., Aktas, O., Hackel, D., Hake, I., Meier, S., Raine, C.S., Nitsch, R., Zipp, F., and Ullrich, O. (2003). Activation of microglial poly(ADP-ribose)-polymerase-1 by cholesterol breakdown products during neuroinflammation: a link between demyelination and neuronal damage. J. Exp. Med. 198, 1729–1740.10.1084/jem.20030975Search in Google Scholar PubMed PubMed Central

Dulay, A.T., Buhimschi, C.S., Zhao, G., Oliver, E.A., Mbele, A., Jing, S., and Buhimschi, I.A. (2009). Soluble TLR2 is present in human amniotic fluid and modulates the intraamniotic inflammatory response to infection. J. Immunol. 182, 7244–7253.10.4049/jimmunol.0803517Search in Google Scholar PubMed

Dunn-Siegrist, I., Leger, O., Daubeuf, B., Poitevin, Y., Dépis, F., Herren, S., Kosco-Vilbois, M., Dean, Y., Pugin, J., and Elson, G. (2007). Pivotal involvement of Fcgamma receptor IIA in the neutralization of lipopolysaccharide signaling via a potent novel anti-TLR4 monoclonal antibody 15C1. J. Biol. Chem. 282, 34817–34827.10.1074/jbc.M706440200Search in Google Scholar PubMed

Duramad, O., Fearon, K.L., Chang, B., Chan, J.H., Gregorio, J., Coffman, R.L., and Barrat, F.J. (2005). Inhibitors of TLR-9 act on multiple cell subsets in mouse and man in vitro and prevent death in vivo from systemic inflammation. J. Immunol. 174, 5193–5200.10.4049/jimmunol.174.9.5193Search in Google Scholar PubMed

Dutta, R. and Trapp, B.D. (2011). Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog. Neurobiol. 93, 1–12.10.1016/j.pneurobio.2010.09.005Search in Google Scholar PubMed PubMed Central

Elinav, E., Strowig, T., Henao-Mejia, J., and Flavell, R.A. (2011). Regulation of the antimicrobial response by NLR proteins. Immunity 34, 665–679.10.1016/j.immuni.2011.05.007Search in Google Scholar PubMed

Ellestad, K.K., Tsutsui, S., Noorbakhsh, F., Warren, K.G., Yong, V.W., Pittman, Q.J., and Power, C. (2009). Early life exposure to lipopolysaccharide suppresses experimental autoimmune encephalomyelitis by promoting tolerogenic dendritic cells and regulatory T cells. J. Immunol. 183, 298–309.10.4049/jimmunol.0803576Search in Google Scholar PubMed

Eriksson, M., Meadows, S.K., Basu, S., Mselle, T.F., Wira, C.R., and Sentman, C.L. (2006). TLRs mediate IFN-gamma production by human uterine NK cells in endometrium. J. Immunol. 176, 6219–6224.10.4049/jimmunol.176.10.6219Search in Google Scholar PubMed

Farez, M.F., Quintana, F.J., Gandhi, R., Izquierdo, G., Lucas, M., and Weiner, H.L. (2009). Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE. Nat. Immunol. 10, 958–964.10.1038/ni.1775Search in Google Scholar PubMed PubMed Central

Farina, C., Aloisi, F., and Meinl, E. (2007). Astrocytes are active players in cerebral innate immunity. Trends Immunol. 28, 138–145.10.1016/j.it.2007.01.005Search in Google Scholar

Firouzi, R., Rolland, A., Michel, M., Jouvin-Marche, E., Hauw, J.J., Malcus-Vocanson, C., Lazarini, F., Gebuhrer, L., Seigneurin, J.M., Touraine, J.L., et al. (2003). Multiple sclerosis-associated retrovirus particles cause T lymphocyte-dependent death with brain hemorrhage in humanized SCID mice model. J. Neurovirol. 9, 79–93.10.1080/13550280390173328Search in Google Scholar

Fitzgerald, D.C., Ciric, B., Touil, T., Harle, H., Grammatikopolou, J., Das Sarma, J., Gran, B., Zhang, G.X., and Rostami, A. (2007). Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis. J. Immunol. 179, 3268–3275.10.4049/jimmunol.179.5.3268Search in Google Scholar

Fort, M.M., Mozaffarian, A., Stöver, A.G., Correia Jda, S., Johnson, D.A., Crane, R.T., Ulevitch, R.J., Persing, D.H., Bielefeldt-Ohmann, H., Probst, P., et al. (2005). A synthetic TLR4 antagonist has anti-inflammatory effects in two murine models of inflammatory bowel disease. J. Immunol. 174, 6416–6423.10.4049/jimmunol.174.10.6416Search in Google Scholar

Franciotta, D., Salvetti, M., Lolli, F., Serafini, B., and Aloisi, F. (2008). B cells and multiple sclerosis. Lancet Neurol. 7, 852–858.10.1016/S1474-4422(08)70192-3Search in Google Scholar

Frohman, E.M., Racke, M.K., and Raine, C.S. (2006). Multiple sclerosis – the plaque and its pathogenesis. N. Engl. J. Med. 354, 942–955.10.1056/NEJMra052130Search in Google Scholar PubMed

Fukao, T., Tanabe, M., Terauchi, Y., Ota, T., Matsuda, S., Asano, T., Kadowaki, T., Takeuchi, T., and Koyasu, S. (2002). PI3K-mediated negative feedback regulation of IL-12 production in DCs. Nat. Immunol. 3, 875–881.10.1038/ni825Search in Google Scholar PubMed

Gambuzza, M., Licata, N., Palella, E., Celi, D., Foti Cuzzola, V., Italiano, D., Marino, S., and Bramanti, P. (2011). Targeting Toll-like receptors: emerging therapeutics for multiple sclerosis management. J. Neuroimmunol. 239, 1–12.10.1016/j.jneuroim.2011.08.010Search in Google Scholar PubMed

Gay, N.J. and Keith, F.J. (1991). Drosophila Toll and IL-1 receptor. Nature 351, 355–356.10.1038/351355b0Search in Google Scholar PubMed

Gay, N.J., Gangloff, M., and O’Neill, L.A. (2011). What the Myddosome structure tells us about the initiation of innate immunity. Trends Immunol. 32, 104–109.10.1016/j.it.2010.12.005Search in Google Scholar PubMed

Gearing, A.J. (2007). Targeting Toll-like receptors for drug development: a summary of commercial approaches. Immunol. Cell Biol. 85, 490–494.10.1038/sj.icb.7100102Search in Google Scholar PubMed

Gerondakis, S., Grumont, R.J., and Banerjee, A. (2007). Regulating B-cell activation and survival in response to TLR signals. Immunol. Cell Biol. 85, 471–475.10.1038/sj.icb.7100097Search in Google Scholar PubMed

Gibson, F.C., 3rd, Ukai, T., and Genco, C.A. (2008). Engagement of specific innate immune signaling pathways during Porphyromonas gingivalis induced chronic inflammation and atherosclerosis. Front. Biosci. 13, 2041–2059.10.2741/2822Search in Google Scholar PubMed

Goh, E.T., Arthur, J.S., Cheung, P.C., Cheung, P.C., Akira, S., Toth, R., and Cohen, P. (2012). Identification of the protein kinases that activate the E3 ubiquitin ligase Pellino 1 in the innate immune system. Biochem. J. 441, 339–346.10.1042/BJ20111415Search in Google Scholar PubMed

Gomariz, R.P., Gutiérrez-Cañas, I., Arranz, A., Carrión, M., Juarranz, Y., Leceta, J., and Martínez, C. (2010). Peptides targeting Toll-like receptor signalling pathways for novel immune therapeutics. Curr. Pharm. Des. 16, 1063–1080.10.2174/138161210790963841Search in Google Scholar PubMed

Goverman, J.M. (2011). Immune tolerance in multiple sclerosis. Immunol. Rev. 241, 228–240.10.1111/j.1600-065X.2011.01016.xSearch in Google Scholar PubMed PubMed Central

Guillot, L., Balloy, V., McCormack, F.X., Golenbock, D.T., Chignard, M., and Si-Tahar, M. (2002). Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J. Immunol. 168, 5989–5992.10.4049/jimmunol.168.12.5989Search in Google Scholar PubMed

Guo, B., Chang, E.Y., and Cheng, G. (2008). The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J. Clin. Invest. 118, 1680–1690.10.1172/JCI33342Search in Google Scholar PubMed PubMed Central

Hajjar, A.M., O’Mahony, D.S., Ozinsky, A., Underhill, D.M., Aderem, A., Klebanoff, S.J., and Wilson, C.B. (2001). Cutting edge: functional interactions between Toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J. Immunol. 166, 15–19.10.4049/jimmunol.166.1.15Search in Google Scholar PubMed

Hanafy, K.A. and Sloane, J.A. (2011). Regulation of remyelination in multiple sclerosis. FEBS Lett. 585, 3821–3828.10.1016/j.febslet.2011.03.048Search in Google Scholar PubMed

Hansen, B.S., Hussain, R.Z., Lovett-Racke, A.E., Thomas, J.A., and Racke, M.K. (2006). Multiple Toll-like receptor agonists act as potent adjuvants in the induction of autoimmunity. J. Neuroimmunol. 172, 94–103.10.1016/j.jneuroim.2005.11.006Search in Google Scholar PubMed

Hauser, S.L., Waubant, E., Arnold, D.L., Vollmer, T., Antel, J., Fox, R.J., Bar-Or, A., Panzara, M., Sarkar, N., Agarwal, S., et al. (2008). B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688.10.1056/NEJMoa0706383Search in Google Scholar PubMed

Hayashi, F., Smith, K.D., Ozinsky, A., Hawn, T.R., Yi, E.C., Goodlett, D.R., Eng, J.K., Akira, S., Underhill, D.M., and Aderem, A. (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103.10.1038/35074106Search in Google Scholar PubMed

Hayashi, T., Yao, S., Crain, B., Chan, M., Tawatao, R.I., Gray, C., Vuong, L., Lao, F., Cottam, H.B., Carson, D.A., et al. (2012). Treatment of autoimmune inflammation by a TLR7 ligand regulating the innate immune system. PLoS One 7, e45860.10.1371/journal.pone.0045860Search in Google Scholar PubMed PubMed Central

Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H., and Bauer, S. (2004). Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303, 1526–1529.10.1126/science.1093620Search in Google Scholar PubMed

Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., et al. (2000), A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745.10.1038/35047123Search in Google Scholar PubMed

Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K., and Akira, S. (2002). Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3, 196–200.10.1038/ni758Search in Google Scholar PubMed

Henneke, P., Takeuchi O., van Strijp, J.A., Guttormsen, H.K., Smith, J.A., Schromm, A.B., Espevik, T.A., Akira, S., Nizet, V., Kasper, D.L., et al. (2001). Novel engagement of CD14 and multiple Toll-like receptors by group B streptococci. J. Immunol. 167, 7069–7076.10.4049/jimmunol.167.12.7069Search in Google Scholar PubMed

Hennessy, E.J., Parker, A.E., and O’Neill, L.A. (2010). Targeting Toll-like receptors: emerging therapeutics? Nat. Rev. Drug Discov. 9, 293–307.10.1038/nrd3203Search in Google Scholar PubMed

Henrick, B.M., Nag, K., Yao, X.D., Drannik, A.G., Aldrovandi, G.M., and Rosenthal, K.L. (2012). Milk matters: soluble Toll-like receptor 2 (sTLR2) in breast milk significantly inhibits HIV-1 infection and inflammation. PLoS One 7, e40138.10.1371/journal.pone.0040138Search in Google Scholar PubMed PubMed Central

Herrmann, I., Kellert, M., Schmidt, H., Mildner, A., Hanisch, U.K., Brück, W., Prinz, M., and Nau, R. (2006). Streptococcus pneumoniae Infection aggravates experimental autoimmune encephalomyelitis via Toll-like receptor 2. Infect. Immun. 74, 4841–4848.10.1128/IAI.00026-06Search in Google Scholar PubMed PubMed Central

Hertz, C.J., Wu, Q., Porter, E.M., Zhang, Y.J., Weismüller, K.H., Godowski, P.J., Ganz, T., Randell, S.H., and Modlin, R.L. (2003). Activation of Toll-like receptor 2 on human tracheobronchial epithelial cells induces the antimicrobial peptide human β defensin-2. J. Immunol. 171, 6820–6826.10.4049/jimmunol.171.12.6820Search in Google Scholar PubMed

Hirschfeld, M., Weis, J.J., Toshchakov, V., Salkowski, C.A., Cody, M.J., Ward, D.C., Qureshi, N., Michalek, S.M., and Vogel, S.N. (2001). Signaling by Toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect. Immun. 69, 1477–1482.10.1128/IAI.69.3.1477-1482.2001Search in Google Scholar PubMed PubMed Central

Hodgkinson, L. (2010). Digestive Disease Week 2010. Turning science into medicine – part 2. IDrugs 13, 424–426.Search in Google Scholar

Holley, M.M., Zhang, Y., Lehrmann, E., Wood, W.H., Becker, K.G., and Kielian, T. (2012). Toll-like receptor 2 (TLR2)-TLR9 crosstalk dictates IL-12 family cytokine production in microglia. Glia 60, 29–42.10.1002/glia.21243Search in Google Scholar PubMed PubMed Central

Horng, T., Barton, G.M., and Medzhitov, R. (2001). TIRAP: an adapter molecule in the Toll signaling pathway. Nat. Immunol. 2, 835–841.10.1038/ni0901-835Search in Google Scholar PubMed

Ireland, D.D., Stohlman, S.A., Hinton, D.R., Kapil, P., Silverman, R.H., Atkinson, R.A., and Bergmann, C.C. (2009). RNase L mediated protection from virus induced demyelination. PLoS Pathog. 5, e1000602.10.1371/journal.ppat.1000602Search in Google Scholar PubMed PubMed Central

Iwamura, C. and Nakayama, T. (2008). Toll-like receptors in the respiratory system: their roles in inflammation. Curr. Allergy Asthma Rep. 8, 7–13.10.1007/s11882-008-0003-0Search in Google Scholar PubMed

Iyer, S., Kontoyiannis, D., Chevrier, D., Woo, J., Mori, N., Cornejo, M., Kollias, G., and Buelow R. (2000). Inhibition of tumor necrosis factor mRNA translation by a rationally designed immunomodulatory peptide. J. Biol. Chem. 275, 17051–17057.10.1074/jbc.M909219199Search in Google Scholar PubMed

Jack, C.S., Arbour, N., Manusow, J., Montgrain, V., Blain, M., McCrea, E., Shapiro, A., and Antel, J.P. (2005). TLR signaling tailors innate immune responses in human microglia and astrocytes. J. Immunol. 175, 4320–4330.10.4049/jimmunol.175.7.4320Search in Google Scholar PubMed

Jack, C.S., Arbour, N., Blain, M., Meier, U.C., Prat, A., and Antel, J.P. (2007). Th1 polarization of CD4+ T cells by Toll-like receptor 3-activated human microglia. J. Neuropathol. Exp. Neurol. 66, 848–859.10.1097/nen.0b013e3181492a7Search in Google Scholar PubMed

Jakovac, H., Grebic, D., Barac-Latas, V., Mrakovcic, I., and Radosevic-Stasic, B. (2013). Expression pattern of the endoplasmic reticulum stress protein gp96 in monophasic and chronic relapsing form of experimental autoimmune encephalomyelitis in rats. Histol. Histopathol. 28, 61–78.Search in Google Scholar

Jasani, B., Navabi, H., and Adams, M. (2009). Ampligen: a potential Toll-like 3 receptor adjuvant for immunotherapy of cancer. Vaccine 27, 3401–3404.10.1016/j.vaccine.2009.01.071Search in Google Scholar

Jeannin, P., Renno, T., Goetsch, L., Miconnet, I., Aubry, J.P., Delneste, Y., Herbault, N., Baussant, T., Magistrelli, G., Soulas, C., et al. (2000). OmpA targets dendritic cells, induces their maturation and delivers antigen into the MHC class I presentation pathway. Nat. Immunol. 1, 502–509.10.1038/82751Search in Google Scholar

Jenkins, K.A. and Mansell, A. (2010). TIR-containing adaptors in Toll-like receptor signalling. Cytokine 49, 237–244.10.1016/j.cyto.2009.01.009Search in Google Scholar

Jeong, E. and Lee, J.Y. (2011). Intrinsic and extrinsic regulation of innate immune receptors. Yonsei Med. J. 52, 379–392.10.3349/ymj.2011.52.3.379Search in Google Scholar

Jeyaseelan, S., Manzer, R., Young, S.K., Yamamoto, M., Akira, S., Mason, R.J., and Worthen, G.S. (2005). Toll-IL-1 receptor domain-containing adaptor protein is critical for early lung immune responses against Escherichia coli lipopolysaccharide and viable Escherichia coli. J. Immunol. 175, 7484–7495.10.4049/jimmunol.175.11.7484Search in Google Scholar

Jiang, D., Liang, J., Fan, J., Yu, S., Chen, S., Luo, Y., Prestwich, G.D., Mascarenhas, M.M., Garg, H.G., Quinn, D.A., et al. (2005). Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat. Med. 11, 1173–1179.10.1038/nm1315Search in Google Scholar

Jin, M.S. and Lee, J.O. (2008). Structures of the Toll-like receptor family and its ligand complexes. Immunity 29, 182–191.10.1016/j.immuni.2008.07.007Search in Google Scholar

Johnson, G.B., Brunn, G.J., Kodaira, Y., and Platt, J.L. (2002). Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J. Immunol. 168, 5233–5239.10.4049/jimmunol.168.10.5233Search in Google Scholar

Johnson, A.J., Suidan, G.L., McDole, J., and Pirko I. (2007). The CD8 T cell in multiple sclerosis: suppressor cell or mediator of neuropathology? Int. Rev. Neurobiol. 79, 73–97.10.1016/S0074-7742(07)79004-9Search in Google Scholar

Johnson, T.P., Tyagi, R., Patel, K., Schiess, N., Calabresi, P.A., and Nath, A. (2013). Impaired Toll-like receptor 8 signaling in multiple sclerosis. J. Neuroinflammation 10, 74.10.1186/1742-2094-10-74Search in Google Scholar PubMed PubMed Central

Jones, S.W., Christison, R., Bundell, K., Voyce, C.J., Brockbank, S.M., Newham, P., and Lindsay, M.A. (2005). Characterisation of cell-penetrating peptide-mediated peptide delivery. Br. J. Pharmacol. 145, 1093–1102.10.1038/sj.bjp.0706279Search in Google Scholar PubMed PubMed Central

Jurk, M., Heil, F., Vollmer, J., Schetter, C., Krieg, A.M., Wagner, H., Lipford, G., and Bauer, S. (2002). Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat. Immunol. 3, 499.10.1038/ni0602-499Search in Google Scholar PubMed

Kabeya, Y., Kawamata, T., Suzuki, K., and Ohsumi, Y. (2007). Cis1/Atg31 is required for autophagosome formation in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 356, 405–410.10.1016/j.bbrc.2007.02.150Search in Google Scholar PubMed

Kaisho, T. and Akira, S. (2003). Regulation of dendritic cell function through Toll-like receptors. Curr. Mol. Med. 3, 373–385.10.2174/1566524033479726Search in Google Scholar PubMed

Kaisho, T. and Akira, S. (2006). Toll-like receptor function and signaling. J. Allergy Clin. Immunol. 117, 979–987; quiz 988.10.1016/j.jaci.2006.02.023Search in Google Scholar PubMed

Kariko, K., Ni, H., Capodici, J., Lamphier, M., and Weissman, D. (2004). mRNA is an endogenous ligand for Toll-like receptor 3. J. Biol. Chem. 279, 12542–12550.10.1074/jbc.M310175200Search in Google Scholar PubMed

Kawai, T. and Akira, S. (2006). TLR signaling. Cell Death Differ. 13, 816–825.10.1038/sj.cdd.4401850Search in Google Scholar PubMed

Kawai, T. and Akira, S. (2009). The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 21, 317–337.10.1093/intimm/dxp017Search in Google Scholar PubMed PubMed Central

Kawai, T. and Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384.10.1038/ni.1863Search in Google Scholar PubMed

Kawasaki, K., Akashi, S., Shimazu, R., Yoshida, T., Miyake, K., and Nishijima, M. (2000). Mouse Toll-like receptor 4.MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by Taxol. J. Biol. Chem. 275, 2251–2254.10.1074/jbc.275.4.2251Search in Google Scholar PubMed

Kawata, T., Bristol, J.R., Rossignol, D.P., Rose, J.R., Kobayashi, S., Yokohama, H., Ishibashi, A., Christ, W.J., Katayama, K., Yamatsu, I., et al. (1999). E5531, a synthetic non-toxic lipid A derivative blocks the immunobiological activities of lipopolysaccharide. Br. J. Pharmacol. 127, 853–862.10.1038/sj.bjp.0702596Search in Google Scholar

Kenny, E.F. and O’Neill, L.A. (2008). Signalling adaptors used by Toll-like receptors: an update. Cytokine 43, 342–349.10.1016/j.cyto.2008.07.010Search in Google Scholar

Keogh, B. and Parker, A.E. (2011). Toll-like receptors as targets for immune disorders. Trends Pharmacol. Sci. 32, 435–442.10.1016/j.tips.2011.03.008Search in Google Scholar

Kerfoot, S.M., Long, E.M., Hickey, M.J., Andonegui, G., Lapointe, B.M., Zanardo, R.C., Bonder, C., James, W.G., Robbins, S.M., and Kubes, P. (2004). TLR4 contributes to disease-inducing mechanisms resulting in central nervous system autoimmune disease. J. Immunol. 173, 7070–7077.10.4049/jimmunol.173.11.7070Search in Google Scholar

Khuda, I.I., Koide, N., Noman, A.S., Dagvadorj, J., Tumurkhuu, G., Naiki, Y., Komatsu, T., Yoshida, T., and Yokochi, T. (2009). Astrocyte elevated gene-1 (AEG-1) is induced by lipopolysaccharide as Toll-like receptor 4 (TLR4) ligand and regulates TLR4 signalling. Immunology 128, e700–e706.10.1111/j.1365-2567.2009.03063.xSearch in Google Scholar

Kinjyo, I., Hanada, T., Inagaki-Ohara, K., Mori, H., Aki, D., Ohishi, M., Yoshida, H., Kubo, M., and Yoshimura, A. (2002). SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 17, 583–591.10.1016/S1074-7613(02)00446-6Search in Google Scholar

Kleinman, M.E., Yamada, K., Takeda, A., Chandrasekaran, V., Nozaki, M., Baffi, J.Z., Albuquerque, R.J., Yamasaki, S., Itaya, M., Pan, Y., et al. (2008). Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452, 591–597.10.1038/nature06765Search in Google Scholar

Koenigsknecht-Talboo, J. and Landreth, G.E. (2005). Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J. Neurosci. 25, 8240–8249.10.1523/JNEUROSCI.1808-05.2005Search in Google Scholar

Kraft, A.D. and Harry, G.J. (2011). Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int. J. Environ. Res. Public Health 8, 2980–3018.10.3390/ijerph8072980Search in Google Scholar

Kreutzberg, G.W. (1996). Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19, 312–318.10.1016/0166-2236(96)10049-7Search in Google Scholar

Krieg, A.M. (2003). CpG motifs: the active ingredient in bacterial extracts? Nat. Med. 9, 831–835.Search in Google Scholar

Kumar, S., Patel, R., Moore, S., Crawford, D.K., Suwanna, N., Mangiardi, M., and Tiwari-Woodruff, S.K. (2013). Estrogen receptor beta ligand therapy activates PI3K/Akt/mTOR signaling in oligodendrocytes and promotes remyelination in a mouse model of multiple sclerosis. Neurobiol. Dis. 56, 131–144.10.1016/j.nbd.2013.04.005Search in Google Scholar PubMed PubMed Central

Kurt-Jones, E.A., Popova, L., Kwinn, L., Haynes, L.M., Jones, L.P., Tripp, R.A., Walsh, E.E., Freeman, M.W., Golenbock, D.T., Anderson, L.J., et al. (2000). Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 1, 398–401.10.1038/80833Search in Google Scholar PubMed

Kurtzke, J.F. (2000). Multiple sclerosis in time and space – geographic clues to cause. J. Neurovirol. 6, S134–S140.Search in Google Scholar

Kutzelnigg, A., Lucchinetti, C.F., Stadelmann, C., Brück, W., Rauschka, H., Bergmann, M., Schmidbauer, M., Parisi, J.E., and Lassmann, H. (2005). Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128, 2705–2712.10.1093/brain/awh641Search in Google Scholar PubMed

Lampropoulou, V., Hoehlig, K., Roch, T., Neves, P., Calderón Gómez, E., Sweenie, C.H., Hao, Y., Freitas, A.A., Steinhoff, U., Anderton, S.M., et al. (2008). TLR-activated B cells suppress T cell-mediated autoimmunity. J. Immunol. 180, 4763–4773.10.4049/jimmunol.180.7.4763Search in Google Scholar PubMed

Lampropoulou, V., Calderon-Gomez, E., Roch, T., Neves, P., Shen, P., Stervbo, U., Boudinot, P., Anderton, S.M., and Fillatreau, S. (2010). Suppressive functions of activated B cells in autoimmune diseases reveal the dual roles of Toll-like receptors in immunity. Immunol. Rev. 233, 146–161.10.1111/j.0105-2896.2009.00855.xSearch in Google Scholar PubMed

Lassmann, H. (2008). Mechanisms of inflammation induced tissue injury in multiple sclerosis. J. Neurol. Sci. 274, 45–47.10.1016/j.jns.2008.04.003Search in Google Scholar PubMed

Leadbetter, E.A., Rifkin, I.R., Hohlbaum, A.M., Beaudette, B.C., Shlomchik, M.J., and Marshak-Rothstein, A. (2002). Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607.10.1038/416603aSearch in Google Scholar PubMed

LeBouder, E., Rey-Nores, J.E., Rushmere, N.K., Grigorov, M., Lawn, S.D., Affolter, M., Griffin, G.E., Ferrara, P., Schiffrin, E.J., Morgan, B.P., et al. (2003). Soluble forms of Toll-like receptor (TLR)2 capable of modulating TLR2 signaling are present in human plasma and breast milk. J. Immunol. 171, 6680–6689.10.4049/jimmunol.171.12.6680Search in Google Scholar PubMed

Ledeboer, A., Hutchinson, M.R., Watkins, L.R., and Johnson, K.W. (2007). Ibudilast (AV-411). A new class therapeutic candidate for neuropathic pain and opioid withdrawal syndromes. Expert Opin. Investig. Drugs 16, 935–950.10.1517/13543784.16.7.935Search in Google Scholar PubMed

Lee, S.J. and Lee, S. (2002). Toll-like receptors and inflammation in the CNS. Curr Drug Targets Inflamm Allergy 1, 181–191.10.2174/1568010023344698Search in Google Scholar PubMed

Lee, J., Chuang, T.H., Redecke, V., She, L., Pitha, P.M., Carson, D.A., Raz, E., and Cottam, H.B. (2003). Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 100, 6646–6651.10.1073/pnas.0631696100Search in Google Scholar PubMed PubMed Central

Lee, J.S., Lee, J.Y., Lee, M.Y., Hwang, D.H., and Youn, H.S. (2008). Acrolein with an alpha, beta-unsaturated carbonyl group inhibits LPS-induced homodimerization of Toll-like receptor 4. Mol. Cells 25, 253–257.Search in Google Scholar

Lehnardt, S., Lachance, C., Patrizi, S., Lefebvre, S., Follett, P.L., Jensen, F.E., Rosenberg, P.A., Volpe, J.J., and Vartanian, T. (2002). The Toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J. Neurosci. 22, 2478–2486.10.1523/JNEUROSCI.22-07-02478.2002Search in Google Scholar

Lehnardt, S., Massillon, L., Follett, P., Jensen, F.E., Ratan, R., Rosenberg, P.A., Volpe, J.J., and Vartanian, T. (2003). Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc. Natl. Acad. Sci. USA 100, 8514–8519.10.1073/pnas.1432609100Search in Google Scholar PubMed PubMed Central

Leissring, M.A. (2008). The AbetaCs of Abeta-cleaving proteases. J. Biol. Chem. 283, 29645–29649.10.1074/jbc.R800022200Search in Google Scholar PubMed PubMed Central

Li, Y., Chu, N., Hu, A., Gran, B., Rostami, A., and Zhang, G.X. (2007). Increased IL-23p19 expression in multiple sclerosis lesions and its induction in microglia. Brain 130, 490–501.10.1093/brain/awl273Search in Google Scholar PubMed

Li, F., Thiele, I., Jamshidi, N., and Palsson, B.Ø. (2009a). Identification of potential pathway mediation targets in Toll-like receptor signaling. PLoS Comput. Biol. 5, e1000292.10.1371/journal.pcbi.1000292Search in Google Scholar PubMed PubMed Central

Li, M., Chen, Q., Shen, Y., and Liu, W. (2009b). Candida albicans phospholipomannan triggers inflammatory responses of human keratinocytes through Toll-like receptor 2. Exp. Dermatol. 18, 603–610.10.1111/j.1600-0625.2008.00832.xSearch in Google Scholar PubMed

Li, G., Liang, X., and Lotze, M.T. (2013). HMGB1: the central cytokine for all lymphoid cells. Front. Immunol. 4, 68.10.3389/fimmu.2013.00068Search in Google Scholar PubMed PubMed Central

Liang, S.L., Quirk, D., and Zhou, A. (2006). RNase L: its biological roles and regulation. IUBMB Life 58, 508–514.10.1080/15216540600838232Search in Google Scholar PubMed

Liew, F.Y., Xu, D., Brint, E.K., and O’Neill, L.A. (2005). Negative regulation of Toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446–458.10.1038/nri1630Search in Google Scholar PubMed

Lin, Y. and Wen, L. (2013). Inflammatory response following diffuse axonal injury. Int. J. Med. Sci. 10, 515–521.10.7150/ijms.5423Search in Google Scholar PubMed PubMed Central

Linker, R.A., Reinhardt, M., Bendszus, M., Ladewig, G., Briel, A., Schirner, M., Mäurer, M., and Hauff, P. (2005). In vivo molecular imaging of adhesion molecules in experimental autoimmune encephalomyelitis (EAE). J. Autoimmun. 25, 199–205.10.1016/j.jaut.2005.09.019Search in Google Scholar PubMed

Lipford, G., Forsbach, A., Zepp, C., Nguyen, T., Weeratna, R., McCluskie, M., Vollmer, J., Davis, H., and Krieg, A.M. (2007). Selective Toll-like Receptor 7/8/9 Antagonists for the Oral Treatment of Autoimmune Diseases. American College of Rheumatology, Annual scientific meeting.Search in Google Scholar

Liu, X., Ukai, T., Yumoto, H., Davey, M., Goswami, S., Gibson, F.C. 3rd, and Genco, C.A. (2008). Toll-like receptor 2 plays a critical role in the progression of atherosclerosis that is independent of dietary lipids. Atherosclerosis 196, 146–154.10.1016/j.atherosclerosis.2007.03.025Search in Google Scholar PubMed PubMed Central

Liu-Bryan, R., Scott, P., Sydlaske, A., Rose, D.M., and Terkeltaub, R. (2005). Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum. 52, 2936–2946.10.1002/art.21238Search in Google Scholar PubMed

Loiarro, M., Capolunghi, F., Fantò, N., Gallo, G., Campo, S., Arseni, B., Carsetti, R., Carminati, P., De Santis, R., Ruggiero, V., et al. (2007). Pivotal advance: inhibition of MyD88 dimerization and recruitment of IRAK1 and IRAK4 by a novel peptidomimetic compound. J. Leukoc. Biol. 82, 801–810.10.1189/jlb.1206746Search in Google Scholar PubMed

Loiarro, M., Ruggiero, V., and Sette, C. (2010). Targeting TLR/IL-1R signalling in human diseases. Mediators Inflamm. 2010, 674363.10.1155/2010/674363Search in Google Scholar PubMed PubMed Central

Loo, Y.M. and Gale, M., Jr. (2011). Immune signaling by RIG-I-like receptors. Immunity 34, 680–692.10.1016/j.immuni.2011.05.003Search in Google Scholar PubMed PubMed Central

Lubbad, A., Oriowo, M.A., and Khan, I. (2009). Curcumin attenuates inflammation through inhibition of TLR-4 receptor in experimental colitis. Mol. Cell. Biochem. 322, 127–135.10.1007/s11010-008-9949-4Search in Google Scholar PubMed

Macfarlane, D.E. and Manzel, L. (1998). Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J. Immunol. 160, 1122–1131.10.4049/jimmunol.160.3.1122Search in Google Scholar

Maitra, U., Davis, S., Reilly, C.M., and Li, L. (2009). Differential regulation of Foxp3 and IL-17 expression in CD4 T helper cells by IRAK-1. J. Immunol. 182, 5763–5769.10.4049/jimmunol.0900124Search in Google Scholar PubMed PubMed Central

Mancek-Keber, M. and Jerala, R. (2006). Structural similarity between the hydrophobic fluorescent probe and lipid A as a ligand of MD-2. FASEB. J. 20, 1836–1842.10.1096/fj.06-5862comSearch in Google Scholar PubMed

Mantovani, A., Sozzani, S., Locati, M., Allavena, P., and Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555.10.1016/S1471-4906(02)02302-5Search in Google Scholar

Marshak-Rothstein, A. (2006). Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6, 823–835.10.1038/nri1957Search in Google Scholar PubMed PubMed Central

Marta, M. (2009). Toll-like receptors in multiple sclerosis mouse experimental models. Ann. NY Acad. Sci. 1173, 458–462.10.1111/j.1749-6632.2009.04849.xSearch in Google Scholar PubMed

Marta, M., Andersson, A., Isaksson, M., Kämpe, O., and Lobell, A. (2008). Unexpected regulatory roles of TLR4 and TLR9 in experimental autoimmune encephalomyelitis. Eur. J. Immunol. 38, 565–575.10.1002/eji.200737187Search in Google Scholar PubMed

Massari, P., Henneke, P., Ho, Y., Latz, E., Golenbock, D.T., and Wetzler, L.M. (2002). Cutting edge: immune stimulation by neisserial porins is Toll-like receptor 2 and MyD88 dependent. J. Immunol. 168, 1533–1537.10.4049/jimmunol.168.4.1533Search in Google Scholar PubMed

Matsumoto, M. and Seya, T. (2008). TLR3: interferon induction by double-stranded RNA including poly(I:C). Adv. Drug Deliv. Rev. 60, 805–812.10.1016/j.addr.2007.11.005Search in Google Scholar PubMed

Means, T.K., Wang, S., Lien, E., Yoshimura, A., Golenbock, D.T., and Fenton, M.J. (1999). Human Toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J. Immunol. 163, 3920–3927.10.4049/jimmunol.163.7.3920Search in Google Scholar

Mellanby, R.J., Cambrook, H., Turner, D.G., O’Connor, R.A., Leech, M.D., Kurschus, F.C., MacDonald, A.S., Arnold, B., and Anderton, S.M. (2012). TLR-4 ligation of dendritic cells is sufficient to drive pathogenic T cell function in experimental autoimmune encephalomyelitis. J. Neuroinflammation 9, 248.10.1186/1742-2094-9-248Search in Google Scholar PubMed PubMed Central

Miggin, S.M. and O’Neill, L.A. (2006). New insights into the regulation of TLR signaling. J. Leukoc. Biol. 80, 220–226.10.1189/jlb.1105672Search in Google Scholar PubMed

Mitsuzawa, H., Nishitani, C., Hyakushima, N., Shimizu, T., Sano, H., Matsushima, N., Fukase, K., and Kuroki, Y. (2006). Recombinant soluble forms of extracellular TLR4 domain and MD-2 inhibit lipopolysaccharide binding on cell surface and dampen lipopolysaccharide-induced pulmonary inflammation in mice. J. Immunol. 177, 8133–8139.10.4049/jimmunol.177.11.8133Search in Google Scholar PubMed

Miyake, K. (2007). Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin. Immunol. 19, 3–10.10.1016/j.smim.2006.12.002Search in Google Scholar PubMed

Monie, T.P., Gay, N.J., and Gangloff, M. (2009). Bioinformatic analysis of Toll-like receptor sequences and structures. Methods Mol. Biol. 517, 69–79.10.1007/978-1-59745-541-1_5Search in Google Scholar

Mujtaba, M.G., Flowers, L.O., Patel, C.B., Patel, R.A., Haider, M.I., Johnson, H.M. (2005). Treatment of mice with the suppressor of cytokine signaling-1 mimetic peptide, tyrosine kinase inhibitor peptide, prevents development of the acute form of experimental allergic encephalomyelitis and induces stable remission in the chronic relapsing/remitting form. J. Immunol. 175, 5077–5086.10.4049/jimmunol.175.8.5077Search in Google Scholar

Mullarkey, M., Rose, J.R., Bristol, J., Kawata, T., Kimura, A., Kobayashi, S., Przetak, M., Chow, J., Gusovsky, F., Christ, W.J., et al. (2003). Inhibition of endotoxin response by e5564, a novel Toll-like receptor 4-directed endotoxin antagonist. J. Pharmacol. Exp. Ther. 304, 1093–1102.10.1124/jpet.102.044487Search in Google Scholar

Napoli, I. and Neumann, H. (2009). Microglial clearance function in health and disease. Neuroscience 158, 1030–1038.10.1016/j.neuroscience.2008.06.046Search in Google Scholar

Napoli, I. and Neumann, H. (2010). Protective effects of microglia in multiple sclerosis. Exp. Neurol. 225, 24–28.10.1016/j.expneurol.2009.04.024Search in Google Scholar

Nicodemus, C.F., Wang, L., Lucas, J., Varghese, B., and Berek, J.S. (2010). Toll-like receptor-3 as a target to enhance bioactivity of cancer immunotherapy. Am. J. Obstet. Gynecol. 202, 608.e1–608.e8.10.1016/j.ajog.2009.12.001Search in Google Scholar

Nikbin, B., Bonab, M.M., Khosravi, F., and Talebian, F. (2007). Role of B cells in pathogenesis of multiple sclerosis. Int. Rev. Neurobiol. 79, 13–42.10.1016/S0074-7742(07)79002-5Search in Google Scholar

O’Neill, L.A. (2006). Targeting signal transduction as a strategy to treat inflammatory diseases. Nat. Rev. Drug Discov. 5, 549–563.10.1038/nrd2070Search in Google Scholar

O’Neill, L.A. and Bowie, A.G. (2007). The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7, 353–364.10.1038/nri2079Search in Google Scholar

Ohno, K., Suzumura, A., Sawada, M., and Marunouchi, T. (1990). Production of granulocyte/macrophage colony-stimulating factor by cultured astrocytes. Biochem. Biophys. Res. Commun. 169, 719–724.10.1016/0006-291X(90)90390-9Search in Google Scholar

Okun, E., Griffioen, K.J., Lathia, J.D., Tang, S.C., Mattson, M.P., and Arumugam, T.V. (2009). Toll-like receptors in neurodegeneration. Brain. Res. Rev. 59, 278–292.10.1016/j.brainresrev.2008.09.001Search in Google Scholar PubMed PubMed Central

Oliveira, A.C., Peixoto, J.R., de Arruda, L.B., Campos, M.A., Gazzinelli, R.T., Golenbock, D.T., Akira, S., Previato, J.O., Mendonça-Previato, L., Nobrega, A., et al. (2004). Expression of functional TLR4 confers proinflammatory responsiveness to Trypanosoma cruzi glycoinositolphospholipids and higher resistance to infection with T. cruzi. J. Immunol. 173, 5688–5696.10.4049/jimmunol.173.9.5688Search in Google Scholar PubMed

Olson, J.K. and Miller, S.D. (2004). Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J. Immunol. 173, 3916–3924.10.4049/jimmunol.173.6.3916Search in Google Scholar PubMed

Olson, J.K., Girvin, A.M., and Miller, S.D. (2001). Direct activation of innate and antigen-presenting functions of microglia following infection with Theiler’s virus. J. Virol. 75, 9780–9789.10.1128/JVI.75.20.9780-9789.2001Search in Google Scholar PubMed PubMed Central

Opitz, B., Schröder, N.W., Spreitzer, I., Michelsen, K.S., Kirschning, C.J., Hallatschek, W., Zähringer, U., Hartung, T., Göbel, U.B., and Schumann, R.R. (2001). Toll-like receptor-2 mediates Treponema glycolipid and lipoteichoic acid-induced NF-kappaB translocation. J. Biol. Chem. 276, 22041–22047.10.1074/jbc.M010481200Search in Google Scholar PubMed

Osorio, F. and Reis e Sousa, C. (2011). Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity 34, 651–664.10.1016/j.immuni.2011.05.001Search in Google Scholar PubMed

Ousman, S.S. and Kubes, P. (2012). Immune surveillance in the central nervous system. Nat. Neurosci. 15, 1096–1101.10.1038/nn.3161Search in Google Scholar PubMed PubMed Central

Ozinsky, A., Underhill, D.M., Fontenot, J.D., Hajjar, A.M., Smith, K.D., Wilson, C.B., Schroeder, L., and Aderem, A. (2000). The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl. Acad. Sci. USA 97, 13766–13771.10.1073/pnas.250476497Search in Google Scholar PubMed PubMed Central

Pais, T.F., Figueiredo, C., Peixoto, R., Braz, M.H., and Chatterjee, S. (2008). Necrotic neurons enhance microglial neurotoxicity through induction of glutaminase by a MyD88-dependent pathway. J. Neuroinflammation 5, 43.10.1186/1742-2094-5-43Search in Google Scholar PubMed PubMed Central

Pan, L.N., Zhu, W., Li, C., Xu, X.L., Guo, L.J., and Lu, Q. (2012). Toll-like receptor 3 agonist poly I:C protects against simulated cerebral ischemia in vitro and in vivo. Acta Pharmacol. Sin. 33, 1246–1253.10.1038/aps.2012.122Search in Google Scholar PubMed PubMed Central

Panter, G., Kuznik, A., and Jerala, R. (2009). Therapeutic applications of nucleic acids as ligands for Toll-like receptors. Curr. Opin. Mol. Ther. 11, 133–145.Search in Google Scholar

Parajuli, B., Sonobe, Y., Kawanokuchi, J., Doi, Y., Noda, M., Takeuchi, H., Mizuno, T., and Suzumura, A. (2012). GM-CSF increases LPS-induced production of proinflammatory mediators via upregulation of TLR4 and CD14 in murine microglia. J. Neuroinflammation 9, 268.10.1186/1742-2094-9-268Search in Google Scholar

Park, J.S., Svetkauskaite, D., He, Q., Kim, J.Y., Strassheim, D., Ishizaka, A., and Abraham, E. (2004). Involvement of Toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J. Biol. Chem. 279, 7370–7377.10.1074/jbc.M306793200Search in Google Scholar

Park, J.S., Gamboni-Robertson, F., He, Q., Svetkauskaite, D., Kim, J.Y., Strassheim, D., Sohn, J.W., Yamada, S., Maruyama, I., Banerjee. A., et al. (2006). High mobility group box 1 protein interacts with multiple Toll-like receptors. Am. J. Physiol. Cell Physiol. 290, C917–C924.10.1152/ajpcell.00401.2005Search in Google Scholar

Pawar, R.D., Ramanjaneyulu, A., Kulkarni, O.P., Lech, M., Segerer, S., and Anders, H.J. (2007). Inhibition of Toll-like receptor-7 (TLR-7) or TLR-7 plus TLR-9 attenuates glomerulonephritis and lung injury in experimental lupus. J. Am. Soc. Nephrol. 18, 1721–1731.10.1681/ASN.2006101162Search in Google Scholar

Peri, F. and Piazza, M. (2012). Therapeutic targeting of innate immunity with Toll-like receptor 4 (TLR4) antagonists. Biotechnol. Adv. 30, 251–260.10.1016/j.biotechadv.2011.05.014Search in Google Scholar

Perron, H., Geny, C., Laurent, A., Mouriquand, C., Pellat, J., Perret, J., and Seigneurin, J.M. (1989). Leptomeningeal cell line from multiple sclerosis with reverse transcriptase activity and viral particles. Res. Virol. 140, 551–561.10.1016/S0923-2516(89)80141-4Search in Google Scholar

Perron, H., Lalande, B., Gratacap, B., Laurent, A., Genoulaz, O., Geny, C., Mallaret, M., Schuller, E., Stoebner, P., and Seigneurin, J.M. (1991). Isolation of retrovirus from patients with multiple sclerosis. Lancet 337, 862–863.10.1016/0140-6736(91)92579-QSearch in Google Scholar

Perron, H., Garson, J.A., Bedin, F., Beseme, F., Paranhos-Baccala, G., Komurian-Pradel, F., Mallet, F., Tuke, P.W., Voisset, C., Blond, J.L., et al. (1997). Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. The Collaborative Research Group on Multiple Sclerosis. Proc. Natl. Acad. Sci. USA 94, 7583–7588.10.1073/pnas.94.14.7583Search in Google Scholar

Perry, V.H., Anthony, D.C., Bolton, S.J., and Brown H.C. (1997). The blood-brain barrier and the inflammatory response. Mol. Med. Today 3, 335–341.10.1016/S1357-4310(97)01077-0Search in Google Scholar

Pisegna, S., Pirozzi, G., Piccoli, M., Frati, L., Santoni, A., and Palmieri, G. (2004). p38 MAPK activation controls the TLR3-mediated up-regulation of cytotoxicity and cytokine production in human NK cells. Blood 104, 4157–4164.10.1182/blood-2004-05-1860Search in Google Scholar PubMed

Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., et al. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088.10.1126/science.282.5396.2085Search in Google Scholar

Ponomarev, E.D., Shriver, L.P., Maresz, K., Pedras-Vasconcelos, J., Verthelyi, D., and Dittel, B.N. (2007). GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J. Immunol. 178, 39–48.10.4049/jimmunol.178.1.39Search in Google Scholar

Prinz, M., Garbe, F., Schmidt, H., Mildner, A., Gutcher, I., Wolter, K., Piesche, M., Schroers, R., Weiss, E., Kirschning, C.J., et al. (2006). Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J. Clin. Invest. 116, 456.10.1172/JCI26078Search in Google Scholar

Przetak, M., Chow, J., Cheng, H., Rose, J., Hawkins, L.D., and Ishizaka, S.T. (2003). Novel synthetic LPS receptor agonists boost systemic and mucosal antibody responses in mice. Vaccine 21, 961–970.10.1016/S0264-410X(02)00737-5Search in Google Scholar

Racke, M.K., Hu, W., and Lovett-Racke, A.E. (2005). PTX cruiser: driving autoimmunity via TLR4. Trends Immunol. 26, 289–291.10.1016/j.it.2005.03.012Search in Google Scholar PubMed

Raivich, G. and Banati, R. (2004). Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Res. Brain. Res. Rev. 46, 261–281.10.1016/j.brainresrev.2004.06.006Search in Google Scholar PubMed

Rasmussen, S., Wang, Y., Kivisäkk, P., Bronson, R.T., Meyer, M., Imitola, J., and Khoury, S.J. (2007). Persistent activation of microglia is associated with neuronal dysfunction of callosal projecting pathways and multiple sclerosis-like lesions in relapsing – remitting experimental autoimmune encephalomyelitis. Brain 130, 2816–2829.10.1093/brain/awm219Search in Google Scholar PubMed

Rasmussen, S.B., Reinert, L.S., and Paludan, S.R. (2009). Innate recognition of intracellular pathogens: detection and activation of the first line of defense. APMIS 117, 323–337.10.1111/j.1600-0463.2009.02456.xSearch in Google Scholar PubMed

Rassa, J.C., Meyers, J.L., Zhang, Y., Kudaravalli, R., and Ross, S.R. (2002). Murine retroviruses activate B cells via interaction with Toll-like receptor 4. Proc. Natl. Acad. Sci. USA 99, 2281–2286.10.1073/pnas.042355399Search in Google Scholar PubMed PubMed Central

Rezaei, N. (2006). Therapeutic targeting of pattern-recognition receptors. Int. Immunopharmacol. 6, 863–869.10.1016/j.intimp.2006.02.005Search in Google Scholar PubMed

Robinson, R.A., DeVita, V.T., Levy, H.B., Baron, S., Hubbard, S.P., and Levine, A.S. (1976). A phase I–II trial of multiple-dose polyriboinosic-polyribocytidylic acid in patients with leukemia or solid tumors. J. Natl. Cancer Inst. 57, 599–602.10.1093/jnci/57.3.599Search in Google Scholar

Rodríguez, D., Keller, A.C., Faquim-Mauro, E.L., de Macedo, M.S., Cunha, F.Q., Lefort, J., Vargaftig, B.B., and Russo, M. (2003). Bacterial lipopolysaccharide signaling through Toll-like receptor 4 suppresses asthma-like responses via nitric oxide synthase 2 activity. J. Immunol. 171, 1001–1008.10.4049/jimmunol.171.2.1001Search in Google Scholar

Roelofs, M.F., Boelens, W.C., Joosten, L.A., Abdollahi-Roodsaz, S., Geurts, J., Wunderink, L.U., Schreurs, B.W., van den Berg, W.B., and Radstake, T.R. (2006). Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. J. Immunol. 176, 7021–7027.10.4049/jimmunol.176.11.7021Search in Google Scholar

Rolland, A., Jouvin-Marche, E., Viret, C., Faure, M., Perron, H., and Marche, P.N. (2006). The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses. J. Immunol. 176, 7636–7644.10.4049/jimmunol.176.12.7636Search in Google Scholar

Ruse, M. and Knaus, U.G. (2006). New players in TLR-mediated innate immunity: PI3K and small Rho GTPases. Immunol. Res. 34, 33–48.10.1385/IR:34:1:33Search in Google Scholar

Sabroe, I. and Whyte, M.K. (2007). Toll-like receptor (TLR)-based networks regulate neutrophilic inflammation in respiratory disease. Biochem. Soc. Trans. 35, 1492–1495.10.1042/BST0351492Search in Google Scholar PubMed

Sadovnick, A.D. (2012). Genetic background of multiple sclerosis. Autoimmun. Rev. 11, 163–166.10.1016/j.autrev.2011.05.007Search in Google Scholar PubMed

Schnare, M., Barton, G.M., Holt, A.C., Takeda, K., Akira, S., and Medzhitov, R. (2001). Toll-like receptors control activation of adaptive immune responses. Nat. Immunol. 2, 947–950.10.1038/ni712Search in Google Scholar PubMed

Schumann, R.R., Lamping, N., and Hoess, A. (1997). Interchangeable endotoxin-binding domains in proteins with opposite lipopolysaccharide-dependent activities. J. Immunol. 159, 5599–5605.10.4049/jimmunol.159.11.5599Search in Google Scholar

Schwandner, R., Dziarski, R., Wesche, H., Rothe, M., and Kirschning, C.J. (1999). Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J. Biol. Chem. 274, 17406–17409.10.1074/jbc.274.25.17406Search in Google Scholar PubMed

Shacka, J.J. and Roth, K.A. (2007). Cathepsin D deficiency and NCL/Batten disease: there’s more to death than apoptosis. Autophagy 3, 474–476.10.4161/auto.4341Search in Google Scholar PubMed

Shingai, M., Azuma, M., Ebihara, T., Sasai, M., Funami, K., Ayata, M., Ogura, H., Tsutsumi, H., Matsumoto, M., and Seya, T. (2008). Soluble G protein of respiratory syncytial virus inhibits Toll-like receptor 3/4-mediated IFN-beta induction. Int. Immunol. 20, 1169–1180.10.1093/intimm/dxn074Search in Google Scholar PubMed

Sloane, J.A., Batt, C., Ma, Y., Harris, Z.M., Trapp, B., and Vartanian, T. (2010). Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc. Natl. Acad. Sci. USA 107, 11555–11560.10.1073/pnas.1006496107Search in Google Scholar PubMed PubMed Central

Smiley, S.T., King, J.A., and Hancock, W.W. (2001). Fibrinogen stimulates macrophage chemokine secretion through Toll-like receptor 4. J. Immunol. 167, 2887–2894.10.4049/jimmunol.167.5.2887Search in Google Scholar PubMed

Song, K.W., Talamas, F.X., Suttmann, R.T., Olson, P.S., Barnett, J.W., Lee, S.W., Thompson, K.D., Jin, S., Hekmat-Nejad, M., Cai, T.Z., et al., (2009). The kinase activities of interleukin-1 receptor associated kinase (IRAK)-1 and 4 are redundant in the control of inflammatory cytokine expression in human cells. Mol. Immunol. 46, 1458–1466.10.1016/j.molimm.2008.12.012Search in Google Scholar PubMed

Soulika, A.M., Lee, E., McCauley, E., Miers, L., Bannerman, P., and Pleasure, D. (2009). Initiation and progression of axonopathy in experimental autoimmune encephalomyelitis. J. Neurosci. 29, 14965–14979.10.1523/JNEUROSCI.3794-09.2009Search in Google Scholar PubMed PubMed Central

Spiller, S., Elson, G., Ferstl, R., Dreher, S., Mueller, T., Freudenberg, M., Daubeuf, B., Wagner, H., and Kirschning, C.J. (2008). TLR4-induced IFN-gamma production increases TLR2 sensitivity and drives Gram-negative sepsis in mice. J. Exp. Med. 205, 1747–1754.10.1084/jem.20071990Search in Google Scholar PubMed PubMed Central

Stevens, M.F., Schwalbe, C.H., Patel, N., Gate, E.N., and Bryant, P.K. (1995). Structural studies on bioactive compounds. Part 26. Hydrogen bonding in the crystal structure of the N-methylformamide solvate of the immunomodulatory agent 2-amino-5-bromo-6-phenylpyrimidin-4-one (bropirimine): implications for the design of novel anti-tumour strategies. Anticancer Drug Des. 10, 203–213.Search in Google Scholar

Strayer, D.R., Carter, W.A., Brodsky, I., Cheney, P., Peterson, D., Salvato, P., Thompson, C., Loveless, M., Shapiro, D.E., Elsasser, W., et al. (1994). A controlled clinical trial with a specifically configured RNA drug, poly(I).poly(C12U), in chronic fatigue syndrome. Clin. Infect. Dis. 18, S88–S95.Search in Google Scholar

Stromnes, I.M. and Goverman, J.M. (2006a). Active induction of experimental allergic encephalomyelitis. Nat. Protoc. 1, 1810–1819.10.1038/nprot.2006.285Search in Google Scholar PubMed

Stromnes, I.M. and Goverman, J.M. (2006b). Passive induction of experimental allergic encephalomyelitis. Nat. Protoc. 1, 1952–1960.10.1038/nprot.2006.284Search in Google Scholar PubMed

Sugiyama, T., Hoshino, K., Saito, M., Yano, T., Sasaki, I., Yamazaki, C., Akira, S., and Kaisho, T. (2008). Immunoadjuvant effects of polyadenylic:polyuridylic acids through TLR3 and TLR7. Int. Immunol. 20, 1–9.10.1093/intimm/dxm112Search in Google Scholar PubMed

Suhadolnik, R.J., Reichenbach, N.L., Hitzges, P., Adelson, M.E., Peterson, D.L., Cheney, P., Salvato, P., Thompson, C., Loveless, M., Müller, W.E., et al. (1994). Changes in the 2-5A synthetase/RNase L antiviral pathway in a controlled clinical trial with poly(I)-poly(C12U) in chronic fatigue syndrome. In Vivo 8, 599–604.Search in Google Scholar

Sun, S., Rao, N.L., Venable, J., Thurmond, R., and Karlsson, L. (2007). TLR7/9 antagonists as therapeutics for immune-mediated inflammatory disorders. Inflamm. Allergy Drug Targets 6, 223–235.10.2174/187152807783334300Search in Google Scholar PubMed

Sutmuller, R., Garritsen, A., and Adema, G.J. (2007). Regulatory T cells and Toll-like receptors: regulating the regulators. Ann. Rheum. Dis. 66, iii91–iii95.10.1136/ard.2007.078535Search in Google Scholar PubMed PubMed Central

Suzuki, N., Suzuki, S., Millar, D.G., Unno, M., Hara, H., Calzascia, T., Yamasaki, S., Yokosuka, T., Chen, N.J., Elford, A.R., et al. (2006). A critical role for the innate immune signaling molecule IRAK-4 in T cell activation. Science 311, 1927–1932.10.1126/science.1124256Search in Google Scholar PubMed

t Hart, B.A., Gran, B., and Weissert, R. (2011). EAE: imperfect but useful models of multiple sclerosis. Trends Mol. Med. 17, 119–125.10.1016/j.molmed.2010.11.006Search in Google Scholar PubMed

Takashima, K., Matsunaga, N., Yoshimatsu, M., Hazeki, K., Kaisho, T., Uekata, M., Hazeki, O., Akira, S., Iizawa, Y., and Ii, M. (2009). Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model. Br. J. Pharmacol. 157, 1250–1262.10.1111/j.1476-5381.2009.00297.xSearch in Google Scholar PubMed PubMed Central

Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu. Rev. Immunol. 21, 335–376.10.1146/annurev.immunol.21.120601.141126Search in Google Scholar PubMed

Takeuchi, O., Kawai, T., Mühlradt, P.F., Morr, M., Radolf, J.D., Zychlinsky, A., Takeda, K., and Akira, S. (2001). Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13, 933–940.10.1093/intimm/13.7.933Search in Google Scholar PubMed

Takeuchi, O., Sato, S., Horiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R.L., and Akira, S. (2002). Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169, 10–14.10.4049/jimmunol.169.1.10Search in Google Scholar PubMed

Tang, S.C., Arumugam, T.V., Xu, X., Cheng, A., Mughal, M.R., Jo, D.G., Lathia, J.D., Siler, D.A., Chigurupati, S., Ouyang, X., et al. (2007). Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc. Natl. Acad. Sci. USA 104, 13798–13803.10.1073/pnas.0702553104Search in Google Scholar PubMed PubMed Central

Termeer, C., Benedix, F., Sleeman, J., Fieber, C., Voith, U., Ahrens, T., Miyake, K., Freudenberg, M., Galanos, C., and Simon, J.C. (2002). Oligosaccharides of Hyaluronan activate dendritic cells via Toll-like receptor 4. J. Exp. Med. 195, 99–111.10.1084/jem.20001858Search in Google Scholar PubMed PubMed Central

Toshchakov, V., Jones, B.W., Perera, P.Y., Thomas, K., Cody, M.J., Zhang, S., Williams, B.R., Major, J., Hamilton, T.A., Fenton, M.J., et al. (2002). TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat. Immunol. 3, 392–398.10.1038/ni774Search in Google Scholar PubMed

Toshchakov, V.U., Basu, S., Fenton, M.J., and Vogel, S.N. (2005). Differential involvement of BB loops of Toll-IL-1 resistance (TIR) domain-containing adapter proteins in TLR4- versus TLR2-mediated signal transduction. J. Immunol. 175, 494–500.10.4049/jimmunol.175.1.494Search in Google Scholar

Toshchakov, V.Y., Fenton, M.J., and Vogel, S.N. (2007). Cutting edge: differential inhibition of TLR signaling pathways by cell-permeable peptides representing BB loops of TLRs. J. Immunol. 178, 2655–2660.10.4049/jimmunol.178.5.2655Search in Google Scholar

Touil, T., Fitzgerald, D., Zhang, G.X., Rostami, A., and Gran, B. (2006). Cutting edge: TLR3 stimulation suppresses experimental autoimmune encephalomyelitis by inducing endogenous IFN-β. J. Immunol. 177, 7505–7509.10.4049/jimmunol.177.11.7505Search in Google Scholar

Town, T., Jeng, D., Alexopoulou, L., Tan, J., and Flavell, R.A. (2006). Microglia recognize double-stranded RNA via TLR3. J. Immunol. 176, 3804–3812.10.4049/jimmunol.176.6.3804Search in Google Scholar

Trapp, B.D. and Nave, K.A. (2008). Multiple sclerosis: an immune or neurodegenerative disorder? Annu. Rev. Neurosci. 31, 247–269.10.1146/annurev.neuro.30.051606.094313Search in Google Scholar

Trapp, B.D. and Stys, P.K. (2009). Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol. 8, 280–291.10.1016/S1474-4422(09)70043-2Search in Google Scholar

Travis, S., Yap, L.M., Hawkey, C., Warren, B., Lazarov, M., Fong, T., Tesi, R.J.; RDP Investigators Study Group. (2005). RDP58 is a novel and potentially effective oral therapy for ulcerative colitis. Inflamm. Bowel Dis. 11, 713–719.10.1097/01.MIB.0000172807.26748.16Search in Google Scholar

Trieu, A., Roberts, T.L., Dunn, J.A., Sweet, M.J., and Stacey, K.J. (2006). DNA motifs suppressing TLR9 responses. Crit. Rev. Immunol. 26, 527–544.10.1615/CritRevImmunol.v26.i6.50Search in Google Scholar PubMed

Tullman, M.J. (2013). A review of current and emerging therapeutic strategies in multiple sclerosis. Am. J. Manag. Care 19, S21–S27.Search in Google Scholar

Ulevitch, R.J. (2004). Therapeutics targeting the innate immune system. Nat. Rev. Immunol. 4, 512–520.10.1038/nri1396Search in Google Scholar PubMed

Underhill, D.M., Ozinsky, A., Hajjar, A.M., Stevens, A., Wilson, C.B., Bassetti, M., and Aderem, A. (1999). The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature. 401, 811–815.10.1038/44605Search in Google Scholar PubMed

Ungaro, R., Fukata, M., Hsu, D., Hernandez, Y., Breglio, K., Chen, A., Xu, R., Sotolongo, J., Espana, C., Zaias, J., et al. (2009). A novel Toll-like receptor 4 antagonist antibody ameliorates inflammation but impairs mucosal healing in murine colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G1167–G1179.10.1152/ajpgi.90496.2008Search in Google Scholar PubMed PubMed Central

Vabulas, R.M., Ahmad-Nejad, P., da Costa, C., Miethke, T., Kirschning, C.J., Häcker, H., and Wagner, H. (2001). Endocytosed HSP60s use Toll-like receptor 2 (TLR2) and TLR4 to activate the Toll/interleukin-1 receptor signaling pathway in innate immune cells. J. Biol. Chem. 276, 31332–31339.10.1074/jbc.M103217200Search in Google Scholar PubMed

Vabulas, R.M., Ahmad-Nejad, P., Ghose, S., Kirschning, C.J., Issels, R.D., and Wagner, H. (2002a). HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J. Biol. Chem. 277, 15107–15112.10.1074/jbc.M111204200Search in Google Scholar PubMed

Vabulas, R.M., Braedel, S., Hilf, N., Singh-Jasuja, H., Herter, S., Ahmad-Nejad, P., Kirschning, C.J., Da Costa, C., Rammensee, H.G., Wagner, H., et al. (2002b). The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J. Biol. Chem. 277, 20847–20853.10.1074/jbc.M200425200Search in Google Scholar PubMed

Vaishnaw, A.K., Gollob, J., Gamba-Vitalo, C., Hutabarat, R., Sah, D., Meyers, R., de Fougerolles, T., and Maraganore, J. (2010). A status report on RNAi therapeutics. Silence 1, 14.10.1186/1758-907X-1-14Search in Google Scholar PubMed PubMed Central

Van Bockstaele, F., Holz, J.B., and Revets, H. (2009). The development of nanobodies for therapeutic applications. Curr. Opin. Investig. Drugs (London, England: 2000) 10, 1212–1224.Search in Google Scholar

Van Tassell, B.W., Seropian, I.M., Toldo, S., Salloum, F.N., Smithson, L., Varma, A., Hoke, N.N., Gelwix, C., Chau, V., and Abbate, A. (2010). Pharmacologic inhibition of myeloid differentiation factor 88 (MyD88) prevents left ventricular dilation and hypertrophy after experimental acute myocardial infarction in the mouse. J. Cardiovasc. Pharmacol. 55, 385–390.10.1097/FJC.0b013e3181d3da24Search in Google Scholar PubMed

Visser, L., Jan de Heer, H., Boven, L.A., van Riel, D., van Meurs, M., Melief, M.J., Zähringer, U., van Strijp, J., Lambrecht, B.N., Nieuwenhuis, E.E., et al. (2005). Proinflammatory bacterial peptidoglycan as a cofactor for the development of central nervous system autoimmune disease. J. Immunol. 174, 808–816.10.4049/jimmunol.174.2.808Search in Google Scholar PubMed

Visser, L., Melief, M.J., van Riel, D., van Meurs, M., Sick, E.A., Inamura, S., Bajramovic, J.J., Amor, S., Hintzen, R.Q., Boven, L.A., et al. (2006). Phagocytes containing a disease-promoting Toll-like receptor/Nod ligand are present in the brain during demyelinating disease in primates. Am. J. Pathol. 169, 1671–1685.10.2353/ajpath.2006.060143Search in Google Scholar PubMed PubMed Central

Vogel, S.N., Fitzgerald, K.A., and Fenton, M.J. (2003). TLRs: differential adapter utilization by Toll-like receptors mediates TLR-specific patterns of gene expression. Mol. Interv. 3, 466–477.10.1124/mi.3.8.466Search in Google Scholar PubMed

Vollmer, J., Tluk, S., Schmitz, C., Hamm, S., Jurk, M., Forsbach, A., Akira, S., Kelly, K.M., Reeves, W.H., Bauer, S., et al. (2005). Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J. Exp. Med. 202, 1575–1585.10.1084/jem.20051696Search in Google Scholar PubMed PubMed Central

Waldner, H., Collins, M., and Kuchroo, V.K. (2004). Activation of antigen-presenting cells by microbial products breaks self tolerance and induces autoimmune disease. J. Clin. Invest. 113, 990–997.10.1172/JCI19388Search in Google Scholar PubMed PubMed Central

Wang, R., Town, T., Gokarn, V., Flavell, R.A., and Chandawarkar, R.Y. (2006). HSP70 enhances macrophage phagocytosis by interaction with lipid raft-associated TLR-7 and upregulating p38 MAPK and PI3K pathways. J. Surg. Res. 136, 58–69.10.1016/j.jss.2006.06.003Search in Google Scholar PubMed

Warger, T., Hilf, N., Rechtsteiner, G., Haselmayer, P., Carrick, D.M., Jonuleit, H., von Landenberg, P., Rammensee, H.G., Nicchitta, C.V., Radsak, M.P., et al. (2006). Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses. J. Biol. Chem. 281, 22545–22553.10.1074/jbc.M502900200Search in Google Scholar PubMed

Weiner, H.L. (2004). Multiple sclerosis is an inflammatory T-cell-mediated autoimmune disease. Arch. Neurol. 61, 1613–1615.10.1001/archneur.61.10.1613Search in Google Scholar PubMed

Weiner, H.L. (2008). A shift from adaptive to innate immunity: a potential mechanism of disease progression in multiple sclerosis. J. Neurol. 255, 3–11.10.1007/s00415-008-1002-8Search in Google Scholar PubMed

Weiner, H.L. (2009). The challenge of multiple sclerosis: how do we cure a chronic heterogeneous disease? Ann. Neurol. 65, 239–248.10.1002/ana.21640Search in Google Scholar PubMed

Werts, C., Tapping, R.I., Mathison, J.C., Chuang, T.H., Kravchenko, V., Saint Girons, I., Haake, D.A., Godowski, P.J., Hayashi, F., Ozinsky, A., et al. (2001). Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat. Immunol. 2, 346–352.10.1038/86354Search in Google Scholar PubMed

Wolf, N.A., Amouzegar, T.K., and Swanborg, R.H. (2007). Synergistic interaction between Toll-like receptor agonists is required for induction of experimental autoimmune encephalomyelitis in Lewis rats. J. Neuroimmunol. 185, 115–122.10.1016/j.jneuroim.2007.02.001Search in Google Scholar PubMed PubMed Central

Wu, G.F. and Alvarez, E. (2011). The immunopathophysiology of multiple sclerosis. Neurol. Clin. 29, 257–278.10.1016/j.ncl.2010.12.009Search in Google Scholar PubMed PubMed Central

Wyllie, D.H., Kiss-Toth, E., Visintin, A., Smith, S.C., Boussouf, S., Segal, D.M., Duff, G.W., and Dower, S.K. (2000). Evidence for an accessory protein function for Toll-like receptor 1 in anti-bacterial responses. J. Immunol. 165, 7125–7132.10.4049/jimmunol.165.12.7125Search in Google Scholar PubMed

Xu, J., Wagoner, G., Douglas, J.C., and Drew, P.D. (2013). beta-Lapachone ameliorization of experimental autoimmune encephalomyelitis. J. Neuroimmunol. 254, 46–54.10.1016/j.jneuroim.2012.09.004Search in Google Scholar PubMed PubMed Central

Yarovinsky, F., Zhang, D., Andersen, J.F., Bannenberg, G.L., Serhan, C.N., Hayden, M.S., Hieny, S., Sutterwala, F.S., Flavell, R.A., Ghosh, S., et al. (2005). TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308, 1626–1629.10.1126/science.1109893Search in Google Scholar PubMed

Yoshimoto, T. and Nakanishi, K. (2006). Roles of IL-18 in basophils and mast cells. Allergol. Int. 55, 105–113.10.2332/allergolint.55.105Search in Google Scholar PubMed

Youn, H.S., Lee, J.K., Choi, Y.J., Saitoh, S.I., Miyake, K., Hwang, D.H., and Lee, J.Y., (2008). Cinnamaldehyde suppresses Toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization. Biochem. Pharmacol. 75, 494–502.10.1016/j.bcp.2007.08.033Search in Google Scholar PubMed

Youn, H.S., Kim, Y.S., Park, Z.Y., Kim, S.Y., Choi, N.Y., Joung, S.M., Seo, J.A., Lim, K.M., Kwak, M.K., Hwang, D.H., et al. (2010). Sulforaphane suppresses oligomerization of TLR4 in a thiol-dependent manner. J. Immunol. 184, 411–419.10.4049/jimmunol.0803988Search in Google Scholar PubMed

Zekki, H., Feinstein, D.L., and Rivest, S. (2006). The clinical course of experimental autoimmune encephalomyelitis is associated with a profound and sustained transcriptional activation of the genes encoding Toll-like receptor 2 and CD14 in the mouse CNS. Brain Pathol. 12, 308–319.10.1111/j.1750-3639.2002.tb00445.xSearch in Google Scholar PubMed PubMed Central

Zelcer, N., Khanlou, N., Clare, R., Jiang, Q., Reed-Geaghan, E.G., Landreth, G.E., Vinters, H.V., and Tontonoz, P. (2007). Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver x receptors. Proc. Natl. Acad. Sci. USA 104, 10601–10606.10.1073/pnas.0701096104Search in Google Scholar PubMed PubMed Central

Zhang, X., Jin, J., Tang, Y., Speer, D., Sujkowska, D., and Markovic-Plese, S. (2009). IFN-β1a inhibits the secretion of Th17-polarizing cytokines in human dendritic cells via TLR7 up-regulation. J. Immunol. 182, 3928–3936.10.4049/jimmunol.0802226Search in Google Scholar PubMed

Zhou, H., Yu, M., Fukuda, K., Im, J., Yao, P., Cui, W., Bulek, K., Zepp, J., Wan, Y., Kim, T.W., et al. (2013). IRAK-M mediates Toll-like receptor/IL-1R-induced NF-κB activation and cytokine production. EMBO J. 32, 583–596.10.1038/emboj.2013.2Search in Google Scholar PubMed PubMed Central

Received: 2014-3-29
Accepted: 2014-5-8
Published Online: 2014-6-7
Published in Print: 2014-10-1

©2014 by De Gruyter

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2014-0026/html
Scroll to top button