Startseite Incorporation of phytic acid into reed straw-derived hydrochar for highly efficient and selective adsorption of uranium(VI)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Incorporation of phytic acid into reed straw-derived hydrochar for highly efficient and selective adsorption of uranium(VI)

  • Hongtao Xia , Yuting Liu , Yang Wang , Zihao Feng , Qi Ren , Jianqi Lv , Yang Li , Yanjun Du und Yun Wang ORCID logo EMAIL logo
Veröffentlicht/Copyright: 9. Februar 2024

Abstract

An innovative phytic acid modified reed straw-derived hydrochar composite (PA-C-RBC) was prepared by using inexpensive reed straw and non-toxic phytic acid for the removal of uranium(VI) from aqueous environment. Several characterization results showed that PA-C-RBC was rough and porous with a large number of hydroxyl, carboxyl, and phosphate groups. The uranium(VI) adsorption process by PA-C-RBC conformed to pseudo-second-order kinetic and Langmuir models, and the theoretical maximal adsorption capacity could attain 418.78 mg/g at pH 5.0. PA-C-RBC had 72.66 % of selectivity and 6772.99 mL/g of distribution coefficient for U(VI). Due to the strong chelating between the hydroxyl and phosphate groups on PA-C-RBC and U(VI), PA-C-RBC had excellent adsorption selectivity. These finding highlighted a high potential for removing U(VI) from aqueous solutions.


Corresponding author: Yun Wang, School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, Jiangxi, China, E-mail:

Award Identifier / Grant number: 21966005, 22366003

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work was financially supported by the National Natural Science Foundation of China (21966005, 22366003) and Jiangxi Provincial Natural Science Foundation (20224BAB203005, 20232BAB213032).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Gavrilescu, M., Pavel, L. V., Cretescu, I. Characterization and remediation of soils contaminated with uranium. J. Hazard. Mater. 2009, 163, 475–510; https://doi.org/10.1016/j.jhazmat.2008.07.103.Suche in Google Scholar PubMed

2. Barton, D. N. T., Johnson, T., Callow, A., Carey, T., Bibby, S. E., Watson, S., Engelberg, D. L., Sharrad, C. A. A review of contamination of metallic surfaces within aqueous nuclear waste streams. Prog. Nucl. Energy 2023, 159, 104637; https://doi.org/10.1016/j.pnucene.2023.104637.Suche in Google Scholar

3. Xie, Y., Chen, C., Ren, X., Wang, X., Wang, H., Wang, X. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog. Mater. Sci. 2019, 103, 180–234; https://doi.org/10.1016/j.pmatsci.2019.01.005.Suche in Google Scholar

4. Krūmiņš, J., Kļaviņš, M. Investigating the potential of nuclear energy in achieving a carbon-free energy future. Energies 2023, 16, 31; https://doi.org/10.3390/en16093612.Suche in Google Scholar

5. Zhang, X., Gu, P., Liu, Y. Decontamination of radioactive wastewater: state of the art and challenges forward. Chemosphere 2019, 215, 543–553; https://doi.org/10.1016/j.chemosphere.2018.10.029.Suche in Google Scholar PubMed

6. Li, Z., He, Y., Sonne, C., Lam, S. S., Kirkham, M. B., Bolan, N., Rinklebe, J., Chen, X., Peng, W. A strategy for bioremediation of nuclear contaminants in the environment. Environ. Pollut. 2023, 319, 120964; https://doi.org/10.1016/j.envpol.2022.120964.Suche in Google Scholar PubMed

7. Nirmala, N., Shriniti, V., Aasresha, K., Arun, J., Gopinath, K. P., Dawn, S. S., Sheeladevi, A., Priyadharsini, P., Birindhadevi, K., Chi, N. T. L., Pugazhendhi, A. Removal of toxic metals from wastewater environment by graphene-based composites: a review on isotherm and kinetic models, recent trends, challenges and future directions. Sci. Total Environ. 2022, 840, 156564; https://doi.org/10.1016/j.scitotenv.2022.156564.Suche in Google Scholar PubMed

8. Wang, Y., Shield, K. M., Abergel, R. J. Hydrophilic chelators for aqueous reprocessing of spent nuclear fuel. Separ. Purif. Rev. 2023, 1–19; https://doi.org/10.1080/15422119.2023.2182220.Suche in Google Scholar

9. Georgiou, E., Raptopoulos, G., Anastopoulos, I., Giannakoudakis, D. A., Arkas, M., Paraskevopoulou, P., Pashalidis, I. Uranium removal from aqueous solutions by aerogel-based adsorbents – a critical review. Nanomaterials 2023, 13, 20; https://doi.org/10.3390/nano13020363.Suche in Google Scholar PubMed PubMed Central

10. Boyarintsev, A. V., Stepanov, S. I., Kostikova, G. V., Zhilov, V. I., Safiulina, A. M., Tsivadze, A. Y. Separation and purification of elements from alkaline and carbonate nuclear waste solutions. Nucl. Eng. Technol. 2023, 55, 391–407; https://doi.org/10.1016/j.net.2022.09.030.Suche in Google Scholar

11. Kumar, V., Singh, V., Kim, K.-H., Kwon, E. E., Younis, S. A. Metal-organic frameworks for photocatalytic detoxification of chromium and uranium in water. Coord. Chem. Rev. 2021, 447, 214148; https://doi.org/10.1016/j.ccr.2021.214148.Suche in Google Scholar

12. Wang, J., Zhuang, S. Removal of cesium ions from aqueous solutions using various separation technologies. Rev. Environ. Sci. Bio/Technol. 2019, 18, 231–269; https://doi.org/10.1007/s11157-019-09499-9.Suche in Google Scholar

13. Shi, S., Qian, Y., Mei, P., Yuan, Y., Jia, N., Dong, M., Fan, J., Guo, Z., Wang, N. Robust flexible poly(amidoxime) porous network membranes for highly efficient uranium extraction from seawater. Nano Energy 2020, 71, 104629; https://doi.org/10.1016/j.nanoen.2020.104629.Suche in Google Scholar

14. Wang, X., Yu, S., Wu, Y., Pang, H., Yu, S., Chen, Z., Hou, J., Alsaedi, A., Hayat, T., Wang, S. The synergistic elimination of uranium(VI) species from aqueous solution using bi-functional nanocomposite of carbon sphere and layered double hydroxide. Chem. Eng. J. 2018, 342, 321–330; https://doi.org/10.1016/j.cej.2018.02.102.Suche in Google Scholar

15. Ma, H., Shen, M., Tong, Y., Wang, X. Radioactive wastewater treatment technologies: a review. Molecules 2023, 28, 24; https://doi.org/10.3390/molecules28041935.Suche in Google Scholar PubMed PubMed Central

16. Hu, B., Ai, Y., Jin, J., Hayat, T., Alsaedi, A., Zhuang, L., Wang, X. Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials. Biochar 2020, 2, 47–64; https://doi.org/10.1007/s42773-020-00044-4.Suche in Google Scholar

17. Hu, H., Jiang, B., Wu, H., Zhang, J., Chen, X. Bamboo (Acidosasa edulis) shoot shell biochar: its potential isolation and mechanism to perrhenate as a chemical surrogate for pertechnetate. J. Environ. Radioact. 2016, 165, 39–46; https://doi.org/10.1016/j.jenvrad.2016.09.004.Suche in Google Scholar PubMed

18. Li, K., Xiong, T., Liao, J., Lei, Y., Zhang, Y., Zhu, W. Design of MXene/graphene oxide nanocomposites with micro-wrinkle structure for efficient separating of uranium(VI) from wastewater. Chem. Eng. J. 2022, 433, 134449; https://doi.org/10.1016/j.cej.2021.134449.Suche in Google Scholar

19. Guilhen, S. N., Rovani, S., Araujo, L. G., Tenorio, J. A. S., Masek, O. Uranium removal from aqueous solution using macauba endocarp-derived biochar: effect of physical activation. Environ. Pollut. 2021, 272, 116022; https://doi.org/10.1016/j.envpol.2020.116022.Suche in Google Scholar PubMed

20. Dong, L., Yang, J., Mou, Y., Sheng, G., Wang, L., Linghu, W., Asiri, A. M., Alamry, K. A. Effect of various environmental factors on the adsorption of U(VI) onto biochar derived from rice straw. J. Radioanal. Nucl. Chem. 2017, 314, 377–386; https://doi.org/10.1007/s10967-017-5414-8.Suche in Google Scholar

21. Xu, Z., Xing, Y., Ren, A., Ma, D., Li, Y., Hu, S. Study on adsorption properties of water hyacinth-derived biochar for uranium(VI). J. Radioanal. Nucl. Chem. 2020, 324, 1317–1327; https://doi.org/10.1007/s10967-020-07160-2.Suche in Google Scholar

22. Liu, Y., Wang, Y., Xia, H., Wang, Q., Chen, X., Lv, J., Li, Y., Zhao, J., Liu, Y., Yuan, D. Low-cost reed straw-derived biochar prepared by hydrothermal carbonization for the removal of uranium(VI) from aqueous solution. J. Radioanal. Nucl. Chem. 2022, 331, 3915–3925; https://doi.org/10.1007/s10967-022-08421-y.Suche in Google Scholar

23. Lingamdinne, L. P., Choi, J. S., Angaru, G. K. R., Karri, R. R., Yang, J. K., Chang, Y. Y., Koduru, J. R. Magnetic-watermelon rinds biochar for uranium-contaminated water treatment using an electromagnetic semi-batch column with removal mechanistic investigations. Chemosphere 2022, 286, 131776; https://doi.org/10.1016/j.chemosphere.2021.131776.Suche in Google Scholar PubMed

24. Wang, H., Pei, Y., Wang, Y., Hong, C., Lei, B., Luo, C., Feng, S., Liu, Y. Comparison of radon adsorption properties under dynamic radon exhalation condition and characteristics of three biochar. J. Radioanal. Nucl. Chem. 2023, 332, 2285–2292; https://doi.org/10.1007/s10967-023-08834-3.Suche in Google Scholar

25. Huynh, L. T. N., Pham, T. N., Nguyen, T. H., Le, V. H., Nguyen, T. T., Nguyen, T. D. K., Tran, T. N., Ho, P. A. V., Co, T. T., Nguyen, T. T. T., Vo, T. K. A., Nguyen, T. H., Vu, T. T., Luong, V. M., Uyama, H., Pham, G. V., Hoang, T., Tran, D. L. Coconut shell-derived activated carbon and carbon nanotubes composite: a promising candidate for capacitive deionization electrode. Synth. Met. 2020, 265, 116415; https://doi.org/10.1016/j.synthmet.2020.116415.Suche in Google Scholar

26. Zhou, Y., Xiao, J., Hu, R., Wang, T., Shao, X., Chen, G., Chen, L., Tian, X. Engineered phosphorous-functionalized biochar with enhanced porosity using phytic acid-assisted ball milling for efficient and selective uptake of aquatic uranium. J. Mol. Liq. 2020, 303, 112659; https://doi.org/10.1016/j.molliq.2020.112659.Suche in Google Scholar

27. Chen, X., Xia, H., Lv, J., Liu, Y., Li, Y., Xu, L., Xie, C., Wang, Y. Magnetic hydrothermal biochar for efficient enrichment of uranium(VI) by embedding Fe3O4 nanoparticles on bamboo materials from “one-can” strategy. Colloids Surf., A 2023, 658, 130748; https://doi.org/10.1016/j.colsurfa.2022.130748.Suche in Google Scholar

28. Oatway, L., Vasanthan, T., Helm, J. H. Phytic acid. Food Rev. Int. 2007, 17, 419–431; https://doi.org/10.1081/fri-100108531.Suche in Google Scholar

29. Sun, Y., Yuan, N., Ge, Y., Ye, T., Yang, Z., Zou, L., Ma, W., Lu, L. Adsorption behavior and mechanism of U(VI) onto phytic acid-modified biochar/MoS2 heterojunction materials. Sep. Purif. Technol. 2022, 294, 121158; https://doi.org/10.1016/j.seppur.2022.121158.Suche in Google Scholar

30. Lei, H., Pan, N., Wang, X., Zou, H. Facile synthesis of phytic acid impregnated polyaniline for enhanced U(VI) adsorption. J. Chem. Eng. Data 2018, 63, 3989–3997; https://doi.org/10.1021/acs.jced.8b00688.Suche in Google Scholar

31. Xia, H., Ren, Q., Lv, J., Wang, Y., Feng, Z., Li, Y., Wang, C., Liu, Y., Wang, Y. Hydrothermal fabrication of phytic acid decorated chitosan-graphene oxide composites for efficient and selective adsorption of uranium(VI). J. Environ. Chem. Eng. 2023, 11, 110760; https://doi.org/10.1016/j.jece.2023.110760.Suche in Google Scholar

32. Wang, Y., Hu, X., Liu, Y., Li, Y., Lan, T., Wang, C., Liu, Y., Yuan, D., Cao, X., He, H., Zhou, L., Liu, Z., Chew, J. W. Assembly of three-dimensional ultralight poly(amidoxime)/graphene oxide nanoribbons aerogel for efficient removal of uranium(VI) from water samples. Sci. Total Environ. 2021, 765, 142686; https://doi.org/10.1016/j.scitotenv.2020.142686.Suche in Google Scholar PubMed

33. Li, M., Li, W., Liu, S. Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose. Carbohydr. Res. 2011, 346, 999–1004; https://doi.org/10.1016/j.carres.2011.03.020.Suche in Google Scholar PubMed

34. Ahmed, W., Mehmood, S., Qaswar, M., Ali, S., Khan, Z. H., Ying, H., Chen, D.-Y., Núñez-Delgado, A. Oxidized biochar obtained from rice straw as adsorbent to remove uranium(VI) from aqueous solutions. J. Environ. Chem. Eng. 2021, 9, 105104; https://doi.org/10.1016/j.jece.2021.105104.Suche in Google Scholar

35. Hu, R., Xiao, J., Wang, T., Chen, G., Chen, L., Tian, X. Engineering of phosphate-functionalized biochars with highly developed surface area and porosity for efficient and selective extraction of uranium. Chem. Eng. J. 2020, 379, 122388; https://doi.org/10.1016/j.cej.2019.122388.Suche in Google Scholar

36. Zhong, J., Wang, E., Sun, Y., Yin, N., Tian, S., Ying, W., Li, W., Zhang, W. Fabrication of phytic acid/urea co-modified bamboo biochar and its application as green flame retardant for polylactic acid resins. Polymers 2023, 15, 16; https://doi.org/10.3390/polym15020360.Suche in Google Scholar PubMed PubMed Central

37. Cheng, C., Zhang, J., Mu, Y., Gao, J., Feng, Y., Liu, H., Guo, Z., Zhang, C. Preparation and evaluation of activated carbon with different polycondensed phosphorus oxyacids (H3PO4, H4P2O7, H6P4O13 and C6H18O24P6) activation employing mushroom roots as precursor. J. Anal. Appl. Pyrol. 2014, 108, 41–46; https://doi.org/10.1016/j.jaap.2014.05.019.Suche in Google Scholar

38. Li, L., Ma, R., Wen, T., Gu, P., Zhang, S., Zheng, M., Wu, X., Zhang, X., Hayat, T., Wang, X. Functionalization of carbon nanomaterials by means of phytic acid for uranium enrichment. Sci. Total Environ. 2019, 694, 133697; https://doi.org/10.1016/j.scitotenv.2019.133697.Suche in Google Scholar PubMed

39. Kim, J. U., Kim, B., Shahbaz, H. M., Lee, S. H., Park, D., Park, J. Encapsulation of probiotic Lactobacillus acidophilus by ionic gelation with electrostatic extrusion for enhancement of survival under simulated gastric conditions and during refrigerated storage. Int. J. Food Sci. Technol. 2016, 52, 519–530; https://doi.org/10.1111/ijfs.13308.Suche in Google Scholar

40. Cai, Y., Wu, C., Liu, Z., Zhang, L., Chen, L., Wang, J., Wang, X., Yang, S., Wang, S. Fabrication of a phosphorylated graphene oxide–chitosan composite for highly effective and selective capture of U(VI). Environ. Sci.: Nano 2017, 4, 1876–1886; https://doi.org/10.1039/c7en00412e.Suche in Google Scholar

41. Cai, Y., Zhang, Y., Lv, Z., Zhang, S., Gao, F., Fang, M., Kong, M., Liu, P., Tan, X., Hu, B., Wang, X. Highly efficient uranium extraction by a piezo catalytic reduction-oxidation process. Appl. Catal., B Environ. 2022, 310, 121343; https://doi.org/10.1016/j.apcatb.2022.121343.Suche in Google Scholar

42. Sun, Y., Kang, Y., Zhong, W., Liu, Y., Dai, Y. A simple phosphorylation modification of hydrothermally cross-linked chitosan for selective and efficient removal of U(VI). J. Solid State Chem. 2020, 292, 121731; https://doi.org/10.1016/j.jssc.2020.121731.Suche in Google Scholar

43. Li, N., Yin, M., Tsang, D. C. W., Yang, S., Liu, J., Li, X., Song, G., Wang, J. Mechanisms of U(VI) removal by biochar derived from Ficus microcarpa aerial root: a comparison between raw and modified biochar. Sci. Total Environ. 2019, 697, 134115; https://doi.org/10.1016/j.scitotenv.2019.134115.Suche in Google Scholar PubMed

44. Pu, Y., Qiang, T., Li, G., Ruan, X., Ren, L. Efficient adsorption of low-concentration uranium from aqueous solutions by biomass composite aerogel. Ecotoxicol. Environ. Saf. 2023, 259, 115053; https://doi.org/10.1016/j.ecoenv.2023.115053.Suche in Google Scholar PubMed

45. Paschalidou, P., Pashalidis, I., Manariotis, I. D., Karapanagioti, H. K. Hyper sorption capacity of raw and oxidized biochars from various feedstocks for U(VI). J. Environ. Chem. Eng. 2020, 8, 103932; https://doi.org/10.1016/j.jece.2020.103932.Suche in Google Scholar

46. Wang, Y., Liu, Y., Hu, X., Li, Y., Tu, H., Wang, C., Liu, Y., Yuan, D. Rational structure design for enhanced uranium(VI) capture and beyond: from carbon nanotubes to graphene oxide nanoribbons. J. Mol. Liq. 2021, 323, 114639; https://doi.org/10.1016/j.molliq.2020.114639.Suche in Google Scholar

47. Han, L., Zhang, E., Yang, Y., Sun, K., Fang, L. Highly efficient U(VI) removal by chemically modified hydrochar and pyrochar derived from animal manure. J. Clean. Prod. 2020, 264, 121542; https://doi.org/10.1016/j.jclepro.2020.121542.Suche in Google Scholar

Received: 2023-11-13
Accepted: 2024-01-25
Published Online: 2024-02-09
Published in Print: 2024-03-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0250/html
Button zum nach oben scrollen