Observations regarding the synthesis and redox chemistry of heterobimetallic uranyl complexes containing Group 10 metals
-
Emily R. Mikeska
, Natalie M. Lind
, Celine Khalife
and James D. Blakemore
Abstract
Literature reports have demonstrated that Schiff-base-type ligands can serve as robust platforms for the synthesis of heterobimetallic complexes containing transition metals and the uranyl dication (UO2 2+). However, efforts have not advanced to include either synthesis of complexes containing second- or third-row transition metals or measurement of the redox properties of the corresponding heterobimetallic complexes, despite the significance of actinide redox in studies of nuclear fuel reprocessing and separations. Here, metalloligands denoted [Ni], [Pd], and [Pt] that contain the corresponding Group 10 metals have been prepared and a synthetic strategy to access species incorporating the uranyl ion (UO2 2+) has been explored, toward the goal of understanding how the secondary metals could tune uranium-centered redox chemistry. The synthesis and redox characterization of the bimetallic complex [Ni,UO2] was achieved, and factors that appear to govern extension of the chosen synthetic strategy to complexes with Pd and Pt are reported here. Infrared and solid-state structural data from X-ray diffraction analysis of the metalloligands [Pd] and [Pt] show that the metal centers in these complexes adopt the expected square planar geometries, while the structure of the bimetallic [Ni,UO2] reveals that the uranyl moiety influences the coordination environment of Ni(II), including inducement of a puckering of the ligand backbone of the complex in which the phenyl rings fold around the nickel-containing core in an umbrella-shaped fashion. Cyclic voltammetric data collected on the heterobimetallic complexes of both Ni(II) and Pd(II) provide evidence for uranium-centered redox cycling, as well as for the accessibility of other reductions that could be associated with Ni(II) or the organic ligand backbone. Taken together, these results highlight the unique redox behaviors that can be observed in multimetallic systems and design concepts that could be useful for accessing tunable multimetallic complexes containing the uranyl dication.
Acknowledgments
The authors thank Dr. William Brennessel (CENTC Elemental Analysis Facility, University of Rochester funded by NSF CHE-0650456) for assistance with elemental analysis.
-
Research ethics: Not applicable.
-
Author contributions: The authors have have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences through the Early Career Research Program (DE-SC0019169). N.M.L. was supported by NSF REU Program in Chemistry at the University of Kansas (CHE-1950293), and E.R.M., A.C.E., and J.P.K. were supported by a U.S. National Science Foundation Research Traineeship (NRT) at the University of Kansas (DGE-1922649).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Costa Peluzo, B. M. T., Kraka, E. Uranium: The Nuclear Fuel Cycle and Beyond. Int. J. Mol. Sci. 2022, 23, 4655; https://doi.org/10.3390/ijms23094655.Search in Google Scholar PubMed PubMed Central
2(a). Morgensern, A., Apostolidis, C., Carlos-Marquez, R., Mayer, K., Molinet, R. Single-Column Extraction Chromatographic Separation of U, Pu, Np and. Am. Radiochim. Acta 2002, 90, 81.10.1524/ract.2002.90.2_2002.81Search in Google Scholar
(b) Graser, C.-H., Lal Banik, N., Bender, K. A., Lagos, M., Marquardt, C. M., Marsac, R., Montoya, V., Geckis, H. Sensitive Redox Speciation of Iron, Neptunium, and Plutonium by Capillary Electrophoresis Hyphenated to Inductively Coupled Plasma Sector Field Mass Spectrometry. Anal. Chem. 2015, 87, 9786; https://doi.org/10.1021/acs.analchem.5b02051.Search in Google Scholar PubMed
(c) McCan, K., Sinkov, S. I., Lumetta, G. J., Shafer, J. C. Organic and Aqueous Redox Speciation of Cu(III) Periodate Oxidized Transuranium Actinides. Ind. Eng. Chem. Res. 2018, 57, 1277; https://doi.org/10.1021/acs.iecr.7b04158.Search in Google Scholar
(d) Agarwal, R., Sharma, M. K. Selective Electrochemical Separation and Recovery of Uranium from Mixture of Uranium(VI) and Lanthanide(III) Ions in Aqueous Medium. Inorg. Chem. 2018, 57, 10984; https://doi.org/10.1021/acs.inorgchem.8b01603.Search in Google Scholar PubMed
(e) Kumar, S. S., Srivastava, A., Rao, A., Chatterjee, S., Gamre, S. Selective Separation of Neptunium on Microporous Bifunctional Anion Exchange Resin Aided by Redox Speciation. Hydrometallurgy 2021, 203, 105642; https://doi.org/10.1016/j.hydromet.2021.105642.Search in Google Scholar
3(a). Sadergaski, L. R., Stoxen, W., Hixon, A. E. Uranyl Peroxide Nanocluster (U60) Persistence and Sorption in the Presence of Hematite. Environ. Sci. Technol. 2018, 52, 3304; https://doi.org/10.1021/acs.est.7b06510.Search in Google Scholar PubMed
(b) Hua, Y., Wang, W., Hu, N., Gu, T., Ling, L., Zhang, W. Enrichment of Uranium from Wastewater with Nanoscale Zero-Valent Iron (nZVI). Environ. Sci.: Nano 2021, 8, 666; https://doi.org/10.1039/d0en01029d.Search in Google Scholar
(c) You, W., Peng, W., Tian, Z., Zheng, M. Uranium Bioremediation with U(VI)-Reducing Bacteria. Sci. Total Environ. 2021, 798, 149107; https://doi.org/10.1016/j.scitotenv.2021.149107.Search in Google Scholar PubMed
4. Neidig, M. L., Clark, D. L., Martin, R. L. Covalency in f-Element Complexes. Coord. Chem. Rev. 2013, 257, 394; https://doi.org/10.1016/j.ccr.2012.04.029.Search in Google Scholar
5(a). Saha, B., Venatesan, K. A., Ntarajan, R., Antony, M. P., Rao, P. R. V. Studies on the Extraction of Uranium by N-Octanoyl-N-Phenylhydrozamic Acid. Radiochim. Acta 2002, 90, 455; https://doi.org/10.1524/ract.2002.90.8_2002.455.Search in Google Scholar
(b) Beer, P. D., Brindley, G. D., Fox, O. D., Grieve, A., Ogden, M. I., Szemes, F., Drew, M. G. B. Acid-Amide Calixarene Ligands for Uranyl and Lanthanide Ions: Synthesis, Structure Coordination and Extraction Studies. J. Chem. Soc. Dalton Trans. 2002, 3101. https://doi.org/10.1039/b202442j Search in Google Scholar
(c) Bharara, M. S., Strawbridge, K., Vilsef, J. Z., Bray, T. H., Gorden, A. E. V. Novel Dinuclear Uranyl Complexes with Asymmetric Schiff Base Ligands: Synthesis, Structural Characterization, Reactivity, and Extraction Studies. Inorg. Chem. 2007, 46, 8309; https://doi.org/10.1021/ic7010315.Search in Google Scholar PubMed
6(a). Sarsfield, M. J., Helliwell, M. Extending the Chemistry of the Uranyl Ion: Lewis Acid Coordination to a U=O Oxygen. J. Am. Chem. Soc. 2004, 126, 1036; https://doi.org/10.1021/ja039101y.Search in Google Scholar PubMed
(b) Hayton, T. W., Wu, G. Exploring the Effects of Reduction or Lewis Acid Coordination on the U=O Bond of the Uranyl Moiety. Inorg. Chem. 2009, 48, 3065; https://doi.org/10.1021/ic802360y.Search in Google Scholar PubMed
(c) Bell, N. L., Shaw, B., Arnold, P. L., Love, J. B. Uranyl to Uranium(IV) Conversion through Manipulation of Axial and Equatorial Ligands. J. Am. Chem. Soc. 2018, 140, 3378; https://doi.org/10.1021/jacs.7b13474.Search in Google Scholar PubMed
7(a). Arnold, P. L., Patel, D., Wilson, C., Love, J. B. Reduction and Selective Oxo Group Silylation of the Uranyl Dication. Nature 2008, 451, 315; https://doi.org/10.1038/nature06467.Search in Google Scholar PubMed
(b) Schnaars, D. D., Qu, G., Hayton, T. W. Reduction of Pentavalent Uranyl to U(IV) Facilitated by Oxo Functionalization. J. Am. Chem. Soc. 2009, 131, 17532; https://doi.org/10.1021/ja906880d.Search in Google Scholar PubMed
(c) Schnaars, D. D., Wu, G., Hayton, T. W. Borane-Mediated Silylation of a Metal-Oxo Ligand. Inorg. Chem. 2011, 50, 4695; https://doi.org/10.1021/ic2008649.Search in Google Scholar PubMed
(d) Cowie, B. E., Nichol, G. S., Love, J. B., Arnold, P. L. Double Uranium Oxo Cations Derived from Uranyl by Borane or Silane Reduction. Chem. Commun. 2018, 54, 3839; https://doi.org/10.1039/c8cc00341f.Search in Google Scholar PubMed PubMed Central
8(a). Arnold, P. L., Love, J. B., Patel, D. Pentavalent Uranyl Complexes. Coord. Chem. Rev. 2009, 253, 1973; https://doi.org/10.1016/j.ccr.2009.03.014.Search in Google Scholar
(b) Fortier, S., Hayton, T. W. Oxo Ligand Functionalization in the Uranyl Ion (UO22+). Coord. Chem. Rev. 2010, 254, 197; https://doi.org/10.1016/j.ccr.2009.06.003.Search in Google Scholar
9(a). Nocton, G., Horeglad, P., Vetere, V., Pécaut, J., Dubois, L., Maldivi, P., Edelstein, N. M., Mazzanti, M. Synthesis, Structure, and Bonding of Stable Complexes of Pentavalent Uranyl. J. Am. Chem. Soc. 2010, 132, 495; https://doi.org/10.1021/ja9037164.Search in Google Scholar PubMed
(b) Pankhurst, J. R., Bell, N. L., Zegke, M., Platts, L. N., Lamfsus, C. A., Maron, L., Natrajan, L. S., Sproules, S., Arnold, P. L., Love, J. B. Inner-sphere vs. Outer-Sphere Reduction of Uranyl Supported by a Redox-Active, Donor-Expanded Dipyrrin. Chem. Sci. 2017, 8, 108; https://doi.org/10.1039/c6sc02912d.Search in Google Scholar PubMed PubMed Central
(c) Ghosh, T. K., Mahapatra, P., Drew, M. G. B., Franconetti, A., Frontera, A., Ghosh, A. The Effect of Guest Metal Ions on the Reduction Potentials of Uranyl(VI) Complexes: Experimental and Theoretical Investigations. Chem. Eur. J. 2019, 26, 1612; https://doi.org/10.1002/chem.201904253.Search in Google Scholar PubMed
(d) Ghosh, T. K., Maity, S., Ghosh, S., Gomila, R. M., Frontera, A., Ghosh, A. Role of Redox-Inactive Metal Ions in Modulating the Reduction Potential of Uranyl Schiff Base Complexes: Detailed Experimental and Theoretical Studies. Inorg. Chem. 2022, 61, 7130; https://doi.org/10.1021/acs.inorgchem.2c00645.Search in Google Scholar PubMed
10. Kumar, A., Lionetti, D., Day, V. W., Blakemore, J. D. Redox-Inactive Metal Cations Modulate the Reduction Potential of the Uranyl Ion in Macrocyclic Complexes. J. Am. Chem. Soc. 2020, 142, 3032; https://doi.org/10.1021/jacs.9b11903.Search in Google Scholar PubMed
11. Dopp, C. M., Golwankar, R. R., Kelsey, S. R., Douglas, J. T., Erickson, A. N., Oliver, A. G., Day, C. S., Day, V. W., Blakemore, J. D. Vanadyl as a Spectroscopic Probe of Tunable Ligand Donor Strength in Bimetallic Complexes. Inorg. Chem. 2023, 62, 9827; https://doi.org/10.1021/acs.inorgchem.3c00724.Search in Google Scholar PubMed
12. Casellato, U., Guerriero, P., Tamburini, S., Vigato, P. A., Benelli, C. Mononuclear, Homo- and Heteropolynuclear Complexes with Acyclic Compartmental Schiff Bases. Inorg. Chim. Acta 1993, 207, 39; https://doi.org/10.1016/s0020-1693(00)91454-3.Search in Google Scholar
13. Salmon, L., Thuéry, P., Ephritikhine, M. Crystal Structure of Hetero(Bi- and Tetra-)Metallic Complexes of Compartmental Schiff Bases Uniting Uranyl and Transition Metal (Ni2+, Cu2+) Ions. Polyhedron 2003, 22, 2683; https://doi.org/10.1016/s0277-5387(03)00366-8.Search in Google Scholar
14. Faizova, R., White, S., Scopelliti, R., Mazzanti, M. The Effect of Iron Binding on Uranyl(V) Stability. Chem. Sci. 2018, 9, 7520; https://doi.org/10.1039/c8sc02099j.Search in Google Scholar PubMed PubMed Central
15. Berthet, J. C., Lance, M., Nierlich, M., Ephritikhine, M. Simple Preparations of the Anhydrous and Solvent-Free Uranyl and Cerium(IV) Triflates UO2(OTf)2 and Ce(OTf)4 – Crystal structures of UO2(OTf)2(py)3 and [{UO2(py)4}2(μ–O)] [OTf]2. Eur. J. Inorg. Chem. 2000, 9, 1969; https://doi.org/10.1002/1099-0682(200009)2000:9<1969::aid-ejic1969>3.0.co;2-0.10.1002/1099-0682(200009)2000:9<1969::AID-EJIC1969>3.0.CO;2-0Search in Google Scholar
16. Hobday, M. D., Smith, T. D. N,N’-Ethylenebis(salicylideneiminato) Transition Metal Ion Chelates. Coord. Chem. Rev. 1973, 9, 311; https://doi.org/10.1016/s0010-8545(00)82081-0.Search in Google Scholar
17. Calligaris, M., Nardin, G., Randaccio, L. Structural Aspects of Metal Complexes with Some Tetradentate Schiff Bases. Coord. Chem. Rev. 1972, 7, 385; https://doi.org/10.1016/s0010-8545(00)80018-1.Search in Google Scholar
18. Golwankar, R. R., Kumar, A., Day, V. W., Blakemore, J. D. Revealing the Influence of Diverse Secondary Metal Cations on Redox-Active Palladium Complexes. Chem. Eur. J. 2022, 28, e202200344; https://doi.org/10.1002/chem.202200344.Search in Google Scholar
19. Song, Y., Yang, Y., Medforth, C. J., Pereira, E., Singh, A. K., Xu, H., Jiang, Y., Brinker, C. J., van Swol, F., Shelnutt, J. A. Controlled Synthesis of 2-D and 3-D Dendritic Platinum Nanostructures. J. Am. Chem. Soc. 2004, 126, 635; https://doi.org/10.1021/ja037474t.Search in Google Scholar
20. Wang, L., Imura, M., Yamauchi, Y. Tailored Design of Architecturally Controlled Pt Nanoparticles with Huge Surface Areas towards Superior Unsupported Pt Electrocatalysts. ACS Appl. Mater. Interfaces 2021, 4, 2865; https://doi.org/10.1021/am300574e.Search in Google Scholar
21. Liu, Y., Wu, H., Chong, Y., Wamer, W. G., Xia, Q., Cia, L., Nie, Z., Fu, P. P., Yin, J.-J. Platinum Nanoparticles: Efficient and Stable Catechol Oxidase Mimetics. ACS Appl. Mater. Interfaces 2015, 7, 19709; https://doi.org/10.1021/acsami.5b05180.Search in Google Scholar
22(a). Shimazaki, Y., Yajima, T., Tani, F., Karasawa, S., Fukui, K., Naruta, Y., Yamauchi, O. Syntheses and Electronic Structures of One-Electron-Oxidized Group 10 Metal(II)-(Disalicylidene)diamine Complexes (Metal = Ni, Pd, Pt). J. Am. Chem. Soc. 2007, 129, 2559; https://doi.org/10.1021/ja067022r.Search in Google Scholar
(b) Kurahashi, T., Fujii, H. One-Electron Oxidation of Electronically Diverse Manganeses(III) and Nickel(II) Salen Complexes: Transition from Localized to Delocalized Mixed-Valent Ligand Radicals. J. Am. Chem. Soc. 2011, 133, 8307; https://doi.org/10.1021/ja2016813.Search in Google Scholar
(c) Lyons, C. T., Stack, T. D. P. Recent Advances in Phenoxyl Radical Complexes of Salen-Type Ligands as Mixed-Valent Galactose Oxidase Models. Coord. Chem. Rev. 2013, 257, 528; https://doi.org/10.1016/j.ccr.2012.06.003.Search in Google Scholar PubMed PubMed Central
23. Mikeska, E. R., Ervin, A. C., Zhang, K., Benitez, G. M., Powell, S. M. R., Oliver, A. G., Day, V. W., Caricato, M., Comadoll, C. G., Blakemore, J. D. Evidence for Uranium(VI/V) Redox Supported by 2,2′-Bipyridyl-6,6′-2 Dicarboxylate. Inorg. Chem. 2023, 62, 16131; https://doi.org/10.1021/acs.inorgchem.3c02397.Search in Google Scholar PubMed
24. The case of [Pt] necessitated a different uranyl-containing metalation reagent, as installation of UO22+ in the tetradentate site provided by [Pt] is unlikely to be facilitated by a precursor containing counteranions that can undergo protonolysis. An attempt at synthesis of [Pt,UO2] by addition of 1 equiv. of UO2(OTf)2 to [Pt] in d3-MeCN was carried out; the 1H NMR of the reaction mixture (see SI, Figure S23) is suggestive of formation of a heterobimetallic adduct. However, further purification and isolation of the desired product were impeded by the apparent instability of the adduct; removal of d3-MeCN in vacuo followed by exposure of the resulting solid to tetrahydrofuran resulted in a marked color change and decomposition.Search in Google Scholar
25. Yang, L., Powell, D. R., Houser, R. P. Structural Variation in Copper(I) Complexes with Pyridylmethylamide Ligands: Structural Analysis with a New Four-Coordinate Geometry Index, τ4. Dalton Trans. 2007, 955; https://doi.org/10.1039/b617136b.Search in Google Scholar PubMed
26. Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. 1976, A32, 751; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar
27. Jeffery, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, NY, 1997; p. 12.Search in Google Scholar
28. Desiraju, G. R. The C–H⋯O Hydrogen Bond in Crystals: What Is It? Acc. Chem. Res. 1991, 24, 290; https://doi.org/10.1021/ar00010a002.Search in Google Scholar
29. Cowie, B. E., Purkis, J. M., Austin, J., Love, J. B., Arnold, P. L. Thermal and Photochemical Reduction and Functionalization Chemistry of the Uranyl Dication [UVIO2]2+. Chem. Rev. 2019, 119, 10595; https://doi.org/10.1021/acs.chemrev.9b00048.Search in Google Scholar PubMed
30. Isse, A. A., Gennaro, A., Vianello, E. A Study of the Electrochemical Reduction Mechanism of Ni(salophen) in DMF. Electrochim. Acta 1992, 37, 113; https://doi.org/10.1016/0013-4686(92)80019-i.Search in Google Scholar
31. Mikeska, E. R., Blakemore, J. D. Evidence for Reactivity of Decamethylcobaltocene with Dichloromethane. Organometallics 2023, 42, 1444; https://doi.org/10.1021/acs.organomet.3c00176.Search in Google Scholar
32. Golwankar, R. R., Makoz, M. Z., Cajiao, N., Neidig, M. L., Oliver, A. G., Day, C. S., Day, V. W., Glezakou, V.-A., Blakemore, J. D. Electrochemical Activation and Functionalization of the Uranyl Ion. ChemRxiv 2023; https://doi.org/10.26434/chemrxiv-2023-gnbpd.Search in Google Scholar
33. Golwankar, R. R., Curry, T. D.II, Paranjothi, C. J., Blakemore, J. D. Molecular Influences on the Quantification of Lewis Acidity with Phosphine Oxide Probes. Inorg. Chem. 2023, 62, 9765; https://doi.org/10.1021/acs.inorgchem.3c00084.Search in Google Scholar PubMed
34. Bermejo, M. R., Fernández, M. I., Gómez-Fórneas, E., González-Noya, A., Maneiro, M., Pedrido, R., Rodríguez, M. J. Self-Assembly of Dimeric MnIII–Schiff-Base Complexes Tuned by Perchlorate Anions. Eur. J. Inorg. Chem. 2007, 2007, 3789.10.1002/ejic.200700199Search in Google Scholar
35. Fulmer, G. R., Miller, A. J., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bervaw, E., Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176; https://doi.org/10.1021/om100106e.Search in Google Scholar
36. APEX-4. Bruker Analytical X-Ray; Systems Inc.: Madison, WI, USA, 2022.Search in Google Scholar
37. Saint Ver. 8.40A; Bruker Analytical X-ray Systems Inc.: Madison, WI, USA, 2022.Search in Google Scholar
38. Krause, L., Herbst-Irmer, R., Sheldrick, G. M., Stalke, D. Comparison of Silver and Molybdenum Microfocus X-Ray Sources for Single-Crystal Structure Determination. J. Appl. Cryst. 2015, 48, 3; https://doi.org/10.1107/s1600576714022985.Search in Google Scholar
39. Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A 2015, A71, 3; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar
40. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C 2017, 71, 3; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar
41. Hübschle, C. B., Sheldrick, G. M., Dittrich, B. ShelXle: A Qt Graphical User Interface for SHELXL. J. Appl. Cryst. 2011, 44, 1281; https://doi.org/10.1107/s0021889811043202.Search in Google Scholar PubMed PubMed Central
42. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/dx-2023-0237).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Activation cross sections for the formation of 51Cr and 52,54Mn in interactions of deuterons with iron
- Observations regarding the synthesis and redox chemistry of heterobimetallic uranyl complexes containing Group 10 metals
- Incorporation of phytic acid into reed straw-derived hydrochar for highly efficient and selective adsorption of uranium(VI)
- Alpha-hydroxyisobutyric acid-assisted solid-liquid chromatography for the separation of lutetium-177 from neutron-irradiated natural ytterbium
- Measurements of 222Rn exhalation rates, effective 226Ra contents, and radiological risks from geological samples of Kopili Fault Zone and gneissic complex of Shillong Plateau, India
- Characterization of glass composite material by pressureless sintering of soil and its application to uranium contaminated soil as a waste form
- CaO-enhanced polyester for safety: experimental study on fabrication, characterization, and gamma-ray attenuation
Articles in the same Issue
- Frontmatter
- Original Papers
- Activation cross sections for the formation of 51Cr and 52,54Mn in interactions of deuterons with iron
- Observations regarding the synthesis and redox chemistry of heterobimetallic uranyl complexes containing Group 10 metals
- Incorporation of phytic acid into reed straw-derived hydrochar for highly efficient and selective adsorption of uranium(VI)
- Alpha-hydroxyisobutyric acid-assisted solid-liquid chromatography for the separation of lutetium-177 from neutron-irradiated natural ytterbium
- Measurements of 222Rn exhalation rates, effective 226Ra contents, and radiological risks from geological samples of Kopili Fault Zone and gneissic complex of Shillong Plateau, India
- Characterization of glass composite material by pressureless sintering of soil and its application to uranium contaminated soil as a waste form
- CaO-enhanced polyester for safety: experimental study on fabrication, characterization, and gamma-ray attenuation