Study of activation cross sections of proton induced reactions on natBa and natCe near their threshold energy regions
-
Mohamed Sobhi Abdelshafy
Abstract
Activation cross-sections of the nuclear reactions natBa(p,x)135,132gLa, 135mBa and natCe(p,x)142,139,138mPr, 141,139,137mCe have been measured experimentally at the MGC-20 cyclotron, Cairo, Egypt, from their respective threshold energies up to about 14.7 MeV. Stacked foil irradiation technique and high-resolution gamma-ray spectroscopy were used. A comparison between the experimental and theoretical data derived from the nuclear model codes EMPIRE and TALYS (in the form of the TENDL library) was performed. The agreement in the low-energy region is fairly good. Integral yields of the produced radioisotopes were estimated from the present cross-section data and the results are discussed in terms of their production possibilities.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Qaim, S. M., Hussain, M., Spahn, I., Neumaier, B. Continuing nuclear data research for production of accelerator-based novel radionuclides for medical use: a mini-review. Front. Phys. 2021, 9, 16; https://doi.org/10.3389/fphy.2021.639290.Suche in Google Scholar
2. Qaim, S. M. Medical Radionuclide Production-Science and Technology; De Gruyter: Berlin Boston, 2019.10.1515/9783110604375Suche in Google Scholar
3. Qaim, S. M., Scholten, B., Spahn, I., Neumaier, B. Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use. Radiochim. Acta 2019, 107, 1011; https://doi.org/10.1515/ract-2019-3154.Suche in Google Scholar
4. Hilaire, S., Bauge, E., Huu-Tai, P. C., Dupuis, M., Péru, S., Roig, O., Romain, P., Goriely, S. Potential sources of uncertainties in nuclear reaction modeling. EPJ. Nucl. Sci. Technol. 2018, 4, 1; https://doi.org/10.1051/epjn/2018014.Suche in Google Scholar
5. Al-Abyad, M., Hassan, H. E., Mohamed, G. Y., Saleh, Z. A., Comsan, M. N. H., Azzam, A. Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group. Radiochim. Acta 2022, 110, 675; https://doi.org/10.1515/ract-2021-1118.Suche in Google Scholar
6. Qaim, S. M. Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl. Med. Biol. 2017, 44, 31; https://doi.org/10.1016/j.nucmedbio.2016.08.016.Suche in Google Scholar PubMed
7. Stöcklin, G., Qaim, S. M., Rösch, F. The impact of radioactivity on medicine. Radiochim. Acta 1995, 70, 249; https://doi.org/10.1524/ract.1995.7071.s1.249.Suche in Google Scholar
8. Herzog, H., Rösch, F., Stöcklin, G., Lueders, C., Qaim, S. M., Feinendegen, L. E. Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. J. Nucl. Med. 1993, 34, 2222.Suche in Google Scholar
9. Rösch, F., Herzog, H., Qaim, S. M. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals 2017, 10, 56; https://doi.org/10.3390/ph10020056.Suche in Google Scholar PubMed PubMed Central
10. Qaim, S. M. Theranostic radionuclides: recent advances in production methodologies. J. Radioanal. Nucl. Chem. 2019, 322, 1257; https://doi.org/10.1007/s10967-019-06797-y.Suche in Google Scholar
11. Qaim, S. M., Scholten, B., Neumaier, B. New developments in the production of theranostic pairs. J. Radioanal. Nucl. Chem. 2018, 318, 1493; https://doi.org/10.1007/s10967-018-6238-x.Suche in Google Scholar
12. Velikyan, I. Molecular imaging and radiotherapy: theranostics for personalized patient management. Theranostics 2012, 2, 424; https://doi.org/10.7150/thno.4428.Suche in Google Scholar PubMed PubMed Central
13. Aluicio-Sarduy, E., Thiele, N. A., Martin, K. E., Vaughn, B. A., Devaraj, J., Olson, A. P., Barnhart, T. E., Wilson, J. J., Boros, E., Engle, J. W. Establishing radiolanthanum chemistry for targeted nuclear medicine applications. Chem. Eur. J. 2020, 26, 1238; https://doi.org/10.1002/chem.202080663.Suche in Google Scholar
14. Fonslet, J., Lee, B. Q., Tran, T. A., Siragusa, M., Jensen, M., Kibédi, T., Stuchbery, A. E., Severin, G. W. 135La as an Auger-electron emitter for targeted internal radiotherapy. Phys. Med. Biol. 2018, 63, 015026; https://doi.org/10.1088/1361-6560/aa9b44.Suche in Google Scholar PubMed
15. Aluicio-Sarduy, E., Hernandez, R., Olson, A. P., Barnhart, T. E., Cai, W., Ellison, P. A., Engle, J. W. Production and in vivo PET/CT imaging of the theranostic pair 132/135La. Sci. Rep. 2019, 9, 10658; https://doi.org/10.1038/s41598-019-47137-0.Suche in Google Scholar PubMed PubMed Central
16. Bakht, M. K., Sadeghi, M. Internal radiotherapy techniques using radiolanthanide praseodymium-142: a review of production routes, brachytherapy, unsealed source therapy. Ann. Nucl. Med. 2011, 25, 529; https://doi.org/10.1007/s12149-011-0505-z.Suche in Google Scholar PubMed
17. Neves, M., Kling, A., Oliveira, A. Radionuclides used for therapy and suggestion for new candidates. J. Radioanal. Nucl. Chem. 2005, 266, 377; https://doi.org/10.1007/s10967-005-0920-5.Suche in Google Scholar
18. Steyn, G. F., Vermeulen, C., Nortier, F. M., Szelecsényi, F., Kovács, Z., Qaim, S. M. Production of no-carrier-added 139Pr via precursor decay in the proton bombardment of natPr. Nucl. Instrum. Methods B 2006, 252, 149; https://doi.org/10.1016/j.nimb.2006.08.012.Suche in Google Scholar
19. Nelson, B. J. B., Ferguson, S., Wuest, M., Wilson, J., Duke, M. J. M., Richter, S., Jans, H. S., Andersson, J. D., Juengling, F., Wuest, F. First in vivo and phantom imaging of cyclotron produced 133La as a theranostic radionuclide for 225Ac and 135La. J. Nucl. Med. 2022, 63, 584; https://doi.org/10.2967/jnumed.121.262459.Suche in Google Scholar PubMed PubMed Central
20. Nelson, B. J. B., Wilson, J., Andersson, J. D., Wuest, F. High yield cyclotron production of a novel 133/135La theranostic pair for nuclear medicine. Sci. Rep. 2020, 10, 22203; https://doi.org/10.1038/s41598-020-79198-x.Suche in Google Scholar PubMed PubMed Central
21. Bakht, M. K., Sadeghi, M., Tenreiro, C. A novel technique for simultaneous diagnosis and radioprotection by radioactive cerium oxide nanoparticles: study of cyclotron production of Ce-137m. J. Radioanal. Nucl. Chem. 2012, 292, 53; https://doi.org/10.1007/s10967-011-1483-2.Suche in Google Scholar
22. Zielhuis, S. W., Seppenwoolde, J. H., Mateus, V. A., Bakker, C. J., Krijger, G. C., Storm, G., Zonnenberg, B. A., van het Schip, A. D., Koning, G. A., Nijsen, J. F. Lanthanide-loaded liposomes for multimodality imaging and therapy. Cancer Biother. Radiopharm. 2006, 21, 520; https://doi.org/10.1089/cbr.2006.21.520.Suche in Google Scholar
23. Du Raan, H., Du Toit, P. D., van Aswegen, A., Lötter, M. G., Herbst, C. P., van der Walt, T. N., Otto, A. C. Implementation of a Tc-99m and Ce-139 scanning line source for attenuation correction in SPECT using a dual opposing detector scintillation camera. Med. Phys. 2000, 27, 1523; https://doi.org/10.1118/1.599018.Suche in Google Scholar
24. Prescher, K., Peiffer, F., Stueck, R., Michel, R., Bodemann, R., Rao, M. N., Mathew, K. J. Thin-target cross sections of proton-induced reactions on barium and solar cosmic ray production rates of xenon-isotopes in lunar surface materials. Nucl. Instrum. Meth .B 1991, 53, 105 https://doi.org/10.1016/0168-583x(91)95645-t.Suche in Google Scholar
25. Michel, R., Bodemann, R., Busemann, H., Daunke, R., Gloris, M., Lange, H. J., Klug, B., Krins, A., Leya, I., Lüpke, M., Neumann, S., Reinhardt, H., Schnatz-Büttgen, M., Herpers, U., Schiekel, Th., Sudbrock, F., Holmqvist, B., Condé, H., Malmborg, P., Suter, M., Dittrich-Hannen, B., Kubik, P. W., Synal, H. A., Filges, D. Cross sections for the production of residual nuclides by low- and medium-energy protons from the target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au. Nucl. Instrum. Methods B 1997, 129, 153; https://doi.org/10.1016/s0168-583x(97)00213-9.Suche in Google Scholar
26. Tárkányi, F., Ditrói, F., Kiraly, B., Takács, S., Hermanne, A., Yamazaki, H., Baba, M., Mohammadi, A., Ignatyuk, A. V. Study of activation cross sections of proton induced reactions on barium: production of 131Ba→131Cs. Appl. Radiat. Isot. 2010, 68, 1869; https://doi.org/10.1016/j.apradiso.2010.03.010.Suche in Google Scholar
27. Tárkányi, F., Hermanne, A., Ditrói, F., Takács, S., Spahn, I., Spellerberg, S. Activation cross-section measurement of proton induced reactions on cerium. Nucl. Instrum. Methods B 2017, 412, 46; https://doi.org/10.1016/j.nimb.2017.09.008.Suche in Google Scholar
28. Verdieck, E. V., Miller, J. M. Radiative capture and neutron emission in La139+α and Ce142+p. Phys. Rev. 1967, 153, 1253; https://doi.org/10.1103/physrev.153.1253.Suche in Google Scholar
29. Furukawa, M. Excitation functions for proton-induced reactions of 140Ce and 142Ce up to Ep = 15 MeV. Nucl. Phys. A 1967, 90, 253; https://doi.org/10.1016/0375-9474(67)90232-1.Suche in Google Scholar
30. Blosser, H. G., Handley, T. H. Survey of (p,n) reactions at 12 MeV. Phys. Rev. 1955, 100, 1340; https://doi.org/10.1103/physrev.100.1340.Suche in Google Scholar
31. Zeisler, S. K., Becker, D. W. A pellet method for the measurement of excitation functions: cross-sections for 140Ce(p,2n)139Pr and 140Ce(p,3n)138mPr. Nucl. Instrum. Methods B 2000, 160, 216; https://doi.org/10.1016/s0168-583x(99)00588-1.Suche in Google Scholar
32. Rösch, F., Qaim, S. M., Stocklin, G. Nuclear data relevant to the production of the positron emitting radioisotope 86Y via the 86Sr(p, n) and natRb(3He, xn)-processes. Radiochim. Acta 1993, 61, 1; https://doi.org/10.1524/ract.1993.61.1.1.Suche in Google Scholar
33. Hassan, H. E., Qaim, S. M., Shubin, Yu., Azzam, A., Morsy, M., Coenen, H. H. Experimental studies and nuclear model calculations on proton-induced reactions on natSe, 76Se and 77Se with particular reference to the production of the medically interesting radionuclides 76Br and 77Br. Appl. Radiat. Isot. 2004, 60, 899; https://doi.org/10.1016/j.apradiso.2004.02.001.Suche in Google Scholar PubMed
34. Hamed, A. S., Ali, I. A., El Ghazaly, M., Hassan, H. E., Al-Abyad, M. Multifunctional radioactive ZnO/NiFe2O4 nanocomposite for theranostic applications. Eur. Phys. J. Plus 2021, 136, 1118; https://doi.org/10.1140/epjp/s13360-021-02066-8.Suche in Google Scholar
35. Tárkányi, F., Takács, S., Gul, K., Hermanne, A., Mustafa, M. G., Nortier, M., Oblozinsky, P., Qaim, S. M., Scholten, B., Shubin, Yu. N., Youxiang, Z. Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions. IAEA-TECDOC 2001, 1211, 49.Suche in Google Scholar
36. Andersen, H. H., Ziegler, J. F. Hydrogen Stopping Powers and Ranges in All Elements. The Stopping and Ranges of Ions in Matter; Pergamon Press, 1977.Suche in Google Scholar
37. Ziegler, J. F., Ziegler, M. D., Biersack, J. P. SRIM 2013 code. http://www.srim.org/.Suche in Google Scholar
38. Canberra, Genie 2000 Spectroscopy Software Operations User’s Manual, V3.4; Canberra Industries. Inc.: Meriden, CT, 2015.Suche in Google Scholar
39. NuDat 3.0 database. Data source: NNDC, Brookhaven National Laboratory, based on ENSDF and the nuclear Wallet Cards. https://www.nndc.bnl.gov/nudat3/.Suche in Google Scholar
40. Livechart of Nuclides. IAEA decay data retrieval code. https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html.Suche in Google Scholar
41. Duchemin, C., Guertin, A., Haddad, F., Michel, N., Métivier, V. 232Th(d,4n)230Pa cross-section measurements at ARRONAX facility for the production of 230U. Nucl. Med. Biol. 2014, 41, 19; https://doi.org/10.1016/j.nucmedbio.2013.12.011.Suche in Google Scholar PubMed
42. Pritychenko, B., Sonzogni, A. Q-Calc, Q-Value Calculator; NNDC, Brookhaven National Laboratory: Upton, NY, USA, 2022. http://www.nndc.bnl.gov/qcalc/.Suche in Google Scholar
43. Herman, M., Capote, R., Carlson, B. V., Oblozinsky, P., Sin, M., Trkov, A., Wienke, H., Zerkin, V. EMPIRE: nuclear reaction model code system for data evaluation. Nucl. Data Sheets 2007, 108, 2655; https://doi.org/10.1016/j.nds.2007.11.003.Suche in Google Scholar
44. Capote, R., Herman, M., Obložinský, P., Young, P. G., Goriely, S., Belgya, T., Ignatyuk, A. V., Koning, A. J., Hilaire, S., Plujko, V. A., Avrigeanu, M., Bersillon, O., Chadwick, M. B., Fukahori, T., Ge, Z., Han, Y., Kailas, S., Kopecky, J., Maslov, V. M., Reffo, G., Sin, M., Soukhovitskii, E. Sh., Talou, P. RIPL – reference input parameter library for calculation of nuclear reactions and nuclear data evaluations. Nucl. Data Sheets 2009, 110, 3107; https://doi.org/10.1016/j.nds.2009.10.004.Suche in Google Scholar
45. Koning, A. J., Rochman, D., Sublet, J., Dzysiuk, N., Fleming, M., van der Marck, S. TENDL: complete nuclear data library for innovative nuclear science and technology. Nucl. Data Sheets 2019, 155, 1; https://doi.org/10.1016/j.nds.2019.01.002.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Contribution to “Diamond Jubilee of RCA”
- Chemical thermodynamics of ternary M-An(VI)-CO3 system (M = Mg, Ca, Sr, and Ba)
- Original Papers
- Study of activation cross sections of proton induced reactions on natBa and natCe near their threshold energy regions
- Accurate determination of tetravalent uranium reduced by microorganisms via a potentiometric titration procedure
- Effect of gamma rays on Zn/Cu doped strontium borate glass system for dosimetric applications
- Determination of biological radioprotective characteristics of some natural organic compounds for radiation shielding applications
- Bi2O3–PbO–CdO–B2O3 glasses: competent candidates for radiation shielding
Artikel in diesem Heft
- Frontmatter
- Contribution to “Diamond Jubilee of RCA”
- Chemical thermodynamics of ternary M-An(VI)-CO3 system (M = Mg, Ca, Sr, and Ba)
- Original Papers
- Study of activation cross sections of proton induced reactions on natBa and natCe near their threshold energy regions
- Accurate determination of tetravalent uranium reduced by microorganisms via a potentiometric titration procedure
- Effect of gamma rays on Zn/Cu doped strontium borate glass system for dosimetric applications
- Determination of biological radioprotective characteristics of some natural organic compounds for radiation shielding applications
- Bi2O3–PbO–CdO–B2O3 glasses: competent candidates for radiation shielding