Accurate determination of tetravalent uranium reduced by microorganisms via a potentiometric titration procedure
-
Shunzhang Chen
and Ning Liu
Abstract
Although bioreduction induced by microorganisms has been considered to play an important role in the chemical and migration behaviors of uranium in nature, the accurate determination of tetravalent uranium reduced by microorganisms is still difficult to achieve. In this work, potentiometric titration via K2Cr2O7 was used to quantitatively determine the microorganism reduced tetravalent uranium (U(IV)) for the first time. By evaluating the influence of microorganism substance content on the titration of U(IV), the appropriate determination range of U(IV) and biomass was confirmed, and U(IV) induced by bioreduction in three microorganisms was determined. With this method, U(IV) of more than 0.12 mg in microorganisms can be quantitatively measured with an accuracy of 2.2% and a precision of 1.3%, which has been established with the premise that the pretreatment biomass and quantity of U(IV) are in an appropriate range. Compared with the estimated values via the changes in hexavalent uranium (U(VI)) concentration in the bioreduction system, the results obtained by this method can more accurately reflect the quantity of U(IV) in microorganisms. This work can help us to better understand the bioreduction behavior of uranium in the environment.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 21876123
Funding source: Key Research and Development Program of Sichuan Province
Award Identifier / Grant number: 2020YFN0127
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work is supported by the National Natural Science Foundation of China (No. 21876123) and the Key Research and Development Program of Sichuan Province, China (No: 2020YFN0127).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Abdelouas, A., Lutze, W., Nuttall, E. Chemical reactions of uranium in ground water at a mill tailings site. J. Contam. Hydrol. 1998, 34, 343–361; https://doi.org/10.1016/s0169-7722(98)00097-7.Search in Google Scholar
2. Wang, X., Johnson, T. M., Lundstrom, C. C. Isotope fractionation during oxidation of tetravalent uranium by dissolved oxygen. Geochem. Cosmochim. Acta 2015, 150, 160–170; https://doi.org/10.1016/j.gca.2014.12.007.Search in Google Scholar
3. Arnold, T., Ba Umann, N., Krawczyk-Barsch, E., Brockmann, S., Zimmermann, U., Jenk, U., Weiβ, S. Identification of the uranium speciation in an underground acid mine drainage environment. Geochem. Cosmochim. Acta 2011, 75, 2200–2212; https://doi.org/10.1016/j.gca.2011.01.037.Search in Google Scholar
4. Basu, A., Sanford, R. A., Johnson, T. M., Lundstrom, C. C., Loffler, F. E. Uranium isotopic fractionation factors during U(VI) reduction by bacterial isolates. Geochem. Cosmochim. Acta 2014, 136, 100–113; https://doi.org/10.1016/j.gca.2014.02.041.Search in Google Scholar
5. Tu, H., Lan, T., Yuan, G., Zhao, C., Liu, J., Li, F., Yang, J., Liao, J., Yang, Y., Wang, D., Liu, N. The influence of humic substances on uranium biomineralization induced by Bacillus sp. dwc-2. J. Environ. Radioact. 2019, 197, 23–29; https://doi.org/10.1016/j.jenvrad.2018.11.010.Search in Google Scholar PubMed
6. Cheng, Y., Li, F., Liu, N., Lan, T., Yang, Y., Zhang, T., Liao, J., Qing, R. A novel freeze-dried natural microalga powder for highly efficient removal of uranium from wastewater. Chemosphere 2021, 282, 131084; https://doi.org/10.1016/j.chemosphere.2021.131084.Search in Google Scholar PubMed
7. Huang, W., Cheng, W., Nie, X., Dong, F., Ding, C., Liu, M., Li, Z., Hayat, T., Alharbi, N. S. Microscopic and spectroscopic insights into uranium phosphate mineral precipitated by Bacillus mucilaginosus. ACS. Earth Space Chem. 2017, 1, 483–492; https://doi.org/10.1021/acsearthspacechem.7b00060.Search in Google Scholar
8. Sharp, J. O., Lezama-Pacheco, J. S., Schofield, E. J., Junier, P., Ulrich, K. U., Chinni, S., Veeramani, H., Margot-Roquier, C., Webb, S. M., Tebo, B. M. Uranium speciation and stability after reductive immobilization in aquifer sediments. Geochem. Cosmochim. Acta 2011, 75, 6497–6510; https://doi.org/10.1016/j.gca.2011.08.022.Search in Google Scholar
9. Tapia-Rodriguez, A., Luna-Velasco, A., Field, J. A., Sierra-Alvarez, R. Anaerobic bioremediation of hexavalent uranium in groundwater by reductive precipitation with methanogenic granular sludge. Water Res. 2010, 44, 2153–2162; https://doi.org/10.1016/j.watres.2009.12.030.Search in Google Scholar PubMed
10. Lovley, D. R., Phillips, E., Widman, P. K. Reduction of uranium by desulfovibrio desulfuricans. Appl. Environ. Microbiol. 1992, 58, 850–856; https://doi.org/10.1128/aem.58.3.850-856.1992.Search in Google Scholar PubMed PubMed Central
11. Lovley, D. R., Phillips, E. J. P. Bioremediation of uranium contamination with enzymatic uranium reduction. Environ. Sci. Technol. 1992, 26, 2228–2234; https://doi.org/10.1021/es00035a023.Search in Google Scholar
12. Boyanov, M. I., Fletcher, K. E., Man, J. K., Rui, X., O’toughlin, E. J., Loffler, F. E., Kemner, K. M. Solution and microbial controls on the formation of reduced U(IV) species. Environ. Sci. Technol. 2011, 45, 8336–8344; https://doi.org/10.1021/es2014049.Search in Google Scholar
13. Yakshin, V. V., Krokhin, M. N. Determination of small amounts of uranium by redox potentiometric titration. Radiochemistry 2011, 53, 327–331; https://doi.org/10.1134/s1066362211030179.Search in Google Scholar
14. Rammohan, V., Yadav, R. B., Ramamurty, C. K., Syamsundar, S. Determination of the oxygen-to-uranium ratio in uranium dioxide by differential-pulse polarography. Anal. Chim. Acta 1992, 264, 149–152; https://doi.org/10.1016/0003-2670(92)85310-3.Search in Google Scholar
15. Pournaghi-Azar, M. H., Zargharian, R. Adsorptive pulse polarographic determination of uranium(VI) oxinate in chloroform and its use for the analysis of uranium mineral ores. Anal. Chim. Acta 1996, 328, 33–39; https://doi.org/10.1016/0003-2670(96)00064-5.Search in Google Scholar
16. Dharwadkar, S. R., Chandrasekharaiah, M. S. An improved titrimetric method for the determination of uranium: oxygen ratios. Anal. Chim. Acta 1969, 45, 545–546; https://doi.org/10.1016/s0003-2670(01)95588-6.Search in Google Scholar
17. Engelsman, J. J., Knaape, J., Visser, J. Volumetric determination of the U/O ratio in uranium oxides. Talanta 1968, 15, 171–176; https://doi.org/10.1016/0039-9140(68)80219-x.Search in Google Scholar
18. Degueldre, C., Taibi, K. Polarographic behaviour and determination of uranium(VI) in alcoholic solutions from organic extraction phases. Anal. Chim. Acta 1996, 321, 201–207; https://doi.org/10.1016/0003-2670(95)00565-x.Search in Google Scholar
19. Sander, S., Wagner, W., Henze, G. Direct determination of uranium traces by adsorptive stripping voltammetry. Anal. Chim. Acta 1995, 305, 154–158; https://doi.org/10.1016/0003-2670(94)00481-z.Search in Google Scholar
20. Li, X., Ding, C., Liao, J., Du, L., Sun, Q., Yang, J., Yang, Y., Zhang, D., Tang, J., Liu, N. Bioaccumulation characterization of uranium by a novel Streptomyces sporoverrucosus dwc-3. J. Environ. Sci. 2016, 41, 162–171; https://doi.org/10.1016/j.jes.2015.06.007.Search in Google Scholar PubMed
21. Renshaw, J. C., Butchins, L., Livens, F. R., May, I., Charnock, J. M., Lloyd, J. R. Bioreduction of uranium: environmental implications of a pentavalent intermediate. Environ. Sci. Technol. 2005, 39, 5657–5660; https://doi.org/10.1021/es048232b.Search in Google Scholar PubMed
22. Song, J., Han, B., Song, H., Yang, J., Zhang, L., Ning, P., Lin, Z. Nonreductive biomineralization of uranium by Bacillus subtilis ATCC-6633 under aerobic conditions. J. Environ. Radioact. 2019, 208/209, 106027.1–106027.7.10.1016/j.jenvrad.2019.106027Search in Google Scholar PubMed
23. Balasubramanian, R., Levinson, B. T., Rosenzweig, A. C. Secretion of Flavins by three species of methanotrophic bacteria. Appl. Environ. Microbiol. 2010, 76, 7356–7358; https://doi.org/10.1128/aem.00935-10.Search in Google Scholar PubMed PubMed Central
24. Canstein, H. V., Ogawa, J., Shimizu, S., Lloyd, J. R. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 2008, 74, 615–623; https://doi.org/10.1128/aem.01387-07.Search in Google Scholar
25. Hufton, J., Harding, J., Smith, T. J., Romero-Gonzalez, M. E. The importance of the bacterial cell wall in uranium (VI) biosorption. Phys. Chem. Chem. Phys. 2021, 23, 1566–1576; https://doi.org/10.1039/d0cp04067c.Search in Google Scholar PubMed
26. Krawczyk-Barsch, E., Lütke, L., Moll, H., Bok, F., Steudtner, R., Rossberg, A. A spectroscopic study on U(VI) biomineralization in cultivated Pseudomonas fluorescens biofilms isolated from granitic aquifers. Environ. Sci. Pollut. Res. 2015, 22, 4555–4565; https://doi.org/10.1007/s11356-014-3671-4.Search in Google Scholar PubMed
27. Li, X., Ding, C., Liao, J., Du, L., Sun, Q., Yang, J., Yang, Y., Zhang, D., Tang, J., Liu, N. Microbial reduction of uranium (VI) by Bacillus sp. dwc-2: a macroscopic and spectroscopic study. J. Environ. Sci. 2017, 53, 9–15; https://doi.org/10.1016/j.jes.2016.01.030.Search in Google Scholar PubMed
28. Molinas, M., Faizova, R., Brown, A., Galanzew, J., Bernier-Latmani, R. Biological reduction of a U(V)-Organic ligand complex. Environ. Sci. Technol. 2021, 55, 4753–4761; https://doi.org/10.1021/acs.est.0c06633.Search in Google Scholar PubMed PubMed Central
29. Wang, W., Feng, Y., Tang, X., Li, H., Du, Z., Yi, A., Zhang, X. Enhanced U(VI) bioreduction by alginate-immobilized uranium-reducing bacteria in the presence of carbon nanotubes and anthraquinone-2, 6-disulfonate. J. Environ. Sci. 2015, 31, 68–73; https://doi.org/10.1016/j.jes.2014.11.005.Search in Google Scholar PubMed
30. Townsend, L. T., Kuippers, G., Lloyd, J. R., Natrajan, L. S., Boothman, C., Mosselmans, J. F. W., Shaw, S., Morris, K. Biogenic sulfidation of U(VI) and ferrihydrite mediated by sulfate-reducing bacteria at elevated pH. Environ. Sci. Technol. 2021, 5, 3075–3086; https://doi.org/10.1021/acsearthspacechem.1c00126.Search in Google Scholar PubMed PubMed Central
31. Mtimunye, P. J., Chirwa, E. Characterization of the biochemical-pathway of uranium (VI) reduction in facultative anaerobic bacteria. Chemosphere 2014, 113, 22–29; https://doi.org/10.1016/j.chemosphere.2014.03.105.Search in Google Scholar
32. Gu, B., Yan, H., Zhou, P., Watson, D. B., Park, M., Istok, J. Natural humics impact uranium bioreduction and oxidation. Environ. Sci. Technol. 2005, 39, 5268; https://doi.org/10.1021/es050350r.Search in Google Scholar
33. Ling, S., Fein, J. B. Uranium reduction by Shewanella oneidensis MR-1 as a function of NaHCO3 concentration: surface complexation control of reduction kinetics. Environ. Sci. Technol. 2014, 48, 3768–3775; https://doi.org/10.1021/es5003692.Search in Google Scholar
34. Colella, M., Lumpkin, G. R., Zhang, Z., Buck, E. C., Smith, K. L. Determination of the uranium valence state in the brannerite structure using EELS, XPS, and EDX. Phys. Chem. Miner. 2005, 32, 52–64; https://doi.org/10.1007/s00269-004-0444-5.Search in Google Scholar
35. Hitchen, A., Zechanowitsch, G. Titrimetric determination of uranium in low-grade ores by the ferrous ion-phosphoric acid reduction method. Talanta 1980, 27, 383–389; https://doi.org/10.1016/0039-9140(80)80220-7.Search in Google Scholar
36. Cristiano, B. F. G., Delgado, J. U., Silva, J. W. S. D., Barros, P. D. D., de Araújo, R. M. S., Lopes, R. T. Semi-automated potentiometric titration method for uranium characterization. Appl. Radiat. Isot. 2012, 70, 1373–1375; https://doi.org/10.1016/j.apradiso.2011.11.025.Search in Google Scholar
37. Kolb, M., Bahadir, M., Teichgraeber, B. Determination of chemical oxygen demand (COD) using an alternative wet chemical method free of mercury and dichromate. Water Res. 2017, 122, 645–654; https://doi.org/10.1016/j.watres.2017.06.034.Search in Google Scholar
38. Rao, G. G., Sagi, S. R. A new reductimetric reagent: iron II in a strong phosphoric acid medium: titration of uranium II with iron II at room temperature. Talanta 1962, 9, 715–722; https://doi.org/10.1016/0039-9140(62)80156-8.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2022-0037).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Contribution to “Diamond Jubilee of RCA”
- Chemical thermodynamics of ternary M-An(VI)-CO3 system (M = Mg, Ca, Sr, and Ba)
- Original Papers
- Study of activation cross sections of proton induced reactions on natBa and natCe near their threshold energy regions
- Accurate determination of tetravalent uranium reduced by microorganisms via a potentiometric titration procedure
- Effect of gamma rays on Zn/Cu doped strontium borate glass system for dosimetric applications
- Determination of biological radioprotective characteristics of some natural organic compounds for radiation shielding applications
- Bi2O3–PbO–CdO–B2O3 glasses: competent candidates for radiation shielding
Articles in the same Issue
- Frontmatter
- Contribution to “Diamond Jubilee of RCA”
- Chemical thermodynamics of ternary M-An(VI)-CO3 system (M = Mg, Ca, Sr, and Ba)
- Original Papers
- Study of activation cross sections of proton induced reactions on natBa and natCe near their threshold energy regions
- Accurate determination of tetravalent uranium reduced by microorganisms via a potentiometric titration procedure
- Effect of gamma rays on Zn/Cu doped strontium borate glass system for dosimetric applications
- Determination of biological radioprotective characteristics of some natural organic compounds for radiation shielding applications
- Bi2O3–PbO–CdO–B2O3 glasses: competent candidates for radiation shielding