Home Accurate determination of tetravalent uranium reduced by microorganisms via a potentiometric titration procedure
Article
Licensed
Unlicensed Requires Authentication

Accurate determination of tetravalent uranium reduced by microorganisms via a potentiometric titration procedure

  • Shunzhang Chen , Yanxia Cheng , Qian Zeng , Ting Zhu , Feize Li , Tu Lan , Yuanyou Yang , Jijun Yang , Jiali Liao EMAIL logo and Ning Liu
Published/Copyright: September 22, 2022

Abstract

Although bioreduction induced by microorganisms has been considered to play an important role in the chemical and migration behaviors of uranium in nature, the accurate determination of tetravalent uranium reduced by microorganisms is still difficult to achieve. In this work, potentiometric titration via K2Cr2O7 was used to quantitatively determine the microorganism reduced tetravalent uranium (U(IV)) for the first time. By evaluating the influence of microorganism substance content on the titration of U(IV), the appropriate determination range of U(IV) and biomass was confirmed, and U(IV) induced by bioreduction in three microorganisms was determined. With this method, U(IV) of more than 0.12 mg in microorganisms can be quantitatively measured with an accuracy of 2.2% and a precision of 1.3%, which has been established with the premise that the pretreatment biomass and quantity of U(IV) are in an appropriate range. Compared with the estimated values via the changes in hexavalent uranium (U(VI)) concentration in the bioreduction system, the results obtained by this method can more accurately reflect the quantity of U(IV) in microorganisms. This work can help us to better understand the bioreduction behavior of uranium in the environment.


Corresponding author: Jiali Liao, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P.R. China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 21876123

Funding source: Key Research and Development Program of Sichuan Province

Award Identifier / Grant number: 2020YFN0127

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work is supported by the National Natural Science Foundation of China (No. 21876123) and the Key Research and Development Program of Sichuan Province, China (No: 2020YFN0127).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Abdelouas, A., Lutze, W., Nuttall, E. Chemical reactions of uranium in ground water at a mill tailings site. J. Contam. Hydrol. 1998, 34, 343–361; https://doi.org/10.1016/s0169-7722(98)00097-7.Search in Google Scholar

2. Wang, X., Johnson, T. M., Lundstrom, C. C. Isotope fractionation during oxidation of tetravalent uranium by dissolved oxygen. Geochem. Cosmochim. Acta 2015, 150, 160–170; https://doi.org/10.1016/j.gca.2014.12.007.Search in Google Scholar

3. Arnold, T., Ba Umann, N., Krawczyk-Barsch, E., Brockmann, S., Zimmermann, U., Jenk, U., Weiβ, S. Identification of the uranium speciation in an underground acid mine drainage environment. Geochem. Cosmochim. Acta 2011, 75, 2200–2212; https://doi.org/10.1016/j.gca.2011.01.037.Search in Google Scholar

4. Basu, A., Sanford, R. A., Johnson, T. M., Lundstrom, C. C., Loffler, F. E. Uranium isotopic fractionation factors during U(VI) reduction by bacterial isolates. Geochem. Cosmochim. Acta 2014, 136, 100–113; https://doi.org/10.1016/j.gca.2014.02.041.Search in Google Scholar

5. Tu, H., Lan, T., Yuan, G., Zhao, C., Liu, J., Li, F., Yang, J., Liao, J., Yang, Y., Wang, D., Liu, N. The influence of humic substances on uranium biomineralization induced by Bacillus sp. dwc-2. J. Environ. Radioact. 2019, 197, 23–29; https://doi.org/10.1016/j.jenvrad.2018.11.010.Search in Google Scholar PubMed

6. Cheng, Y., Li, F., Liu, N., Lan, T., Yang, Y., Zhang, T., Liao, J., Qing, R. A novel freeze-dried natural microalga powder for highly efficient removal of uranium from wastewater. Chemosphere 2021, 282, 131084; https://doi.org/10.1016/j.chemosphere.2021.131084.Search in Google Scholar PubMed

7. Huang, W., Cheng, W., Nie, X., Dong, F., Ding, C., Liu, M., Li, Z., Hayat, T., Alharbi, N. S. Microscopic and spectroscopic insights into uranium phosphate mineral precipitated by Bacillus mucilaginosus. ACS. Earth Space Chem. 2017, 1, 483–492; https://doi.org/10.1021/acsearthspacechem.7b00060.Search in Google Scholar

8. Sharp, J. O., Lezama-Pacheco, J. S., Schofield, E. J., Junier, P., Ulrich, K. U., Chinni, S., Veeramani, H., Margot-Roquier, C., Webb, S. M., Tebo, B. M. Uranium speciation and stability after reductive immobilization in aquifer sediments. Geochem. Cosmochim. Acta 2011, 75, 6497–6510; https://doi.org/10.1016/j.gca.2011.08.022.Search in Google Scholar

9. Tapia-Rodriguez, A., Luna-Velasco, A., Field, J. A., Sierra-Alvarez, R. Anaerobic bioremediation of hexavalent uranium in groundwater by reductive precipitation with methanogenic granular sludge. Water Res. 2010, 44, 2153–2162; https://doi.org/10.1016/j.watres.2009.12.030.Search in Google Scholar PubMed

10. Lovley, D. R., Phillips, E., Widman, P. K. Reduction of uranium by desulfovibrio desulfuricans. Appl. Environ. Microbiol. 1992, 58, 850–856; https://doi.org/10.1128/aem.58.3.850-856.1992.Search in Google Scholar PubMed PubMed Central

11. Lovley, D. R., Phillips, E. J. P. Bioremediation of uranium contamination with enzymatic uranium reduction. Environ. Sci. Technol. 1992, 26, 2228–2234; https://doi.org/10.1021/es00035a023.Search in Google Scholar

12. Boyanov, M. I., Fletcher, K. E., Man, J. K., Rui, X., O’toughlin, E. J., Loffler, F. E., Kemner, K. M. Solution and microbial controls on the formation of reduced U(IV) species. Environ. Sci. Technol. 2011, 45, 8336–8344; https://doi.org/10.1021/es2014049.Search in Google Scholar

13. Yakshin, V. V., Krokhin, M. N. Determination of small amounts of uranium by redox potentiometric titration. Radiochemistry 2011, 53, 327–331; https://doi.org/10.1134/s1066362211030179.Search in Google Scholar

14. Rammohan, V., Yadav, R. B., Ramamurty, C. K., Syamsundar, S. Determination of the oxygen-to-uranium ratio in uranium dioxide by differential-pulse polarography. Anal. Chim. Acta 1992, 264, 149–152; https://doi.org/10.1016/0003-2670(92)85310-3.Search in Google Scholar

15. Pournaghi-Azar, M. H., Zargharian, R. Adsorptive pulse polarographic determination of uranium(VI) oxinate in chloroform and its use for the analysis of uranium mineral ores. Anal. Chim. Acta 1996, 328, 33–39; https://doi.org/10.1016/0003-2670(96)00064-5.Search in Google Scholar

16. Dharwadkar, S. R., Chandrasekharaiah, M. S. An improved titrimetric method for the determination of uranium: oxygen ratios. Anal. Chim. Acta 1969, 45, 545–546; https://doi.org/10.1016/s0003-2670(01)95588-6.Search in Google Scholar

17. Engelsman, J. J., Knaape, J., Visser, J. Volumetric determination of the U/O ratio in uranium oxides. Talanta 1968, 15, 171–176; https://doi.org/10.1016/0039-9140(68)80219-x.Search in Google Scholar

18. Degueldre, C., Taibi, K. Polarographic behaviour and determination of uranium(VI) in alcoholic solutions from organic extraction phases. Anal. Chim. Acta 1996, 321, 201–207; https://doi.org/10.1016/0003-2670(95)00565-x.Search in Google Scholar

19. Sander, S., Wagner, W., Henze, G. Direct determination of uranium traces by adsorptive stripping voltammetry. Anal. Chim. Acta 1995, 305, 154–158; https://doi.org/10.1016/0003-2670(94)00481-z.Search in Google Scholar

20. Li, X., Ding, C., Liao, J., Du, L., Sun, Q., Yang, J., Yang, Y., Zhang, D., Tang, J., Liu, N. Bioaccumulation characterization of uranium by a novel Streptomyces sporoverrucosus dwc-3. J. Environ. Sci. 2016, 41, 162–171; https://doi.org/10.1016/j.jes.2015.06.007.Search in Google Scholar PubMed

21. Renshaw, J. C., Butchins, L., Livens, F. R., May, I., Charnock, J. M., Lloyd, J. R. Bioreduction of uranium: environmental implications of a pentavalent intermediate. Environ. Sci. Technol. 2005, 39, 5657–5660; https://doi.org/10.1021/es048232b.Search in Google Scholar PubMed

22. Song, J., Han, B., Song, H., Yang, J., Zhang, L., Ning, P., Lin, Z. Nonreductive biomineralization of uranium by Bacillus subtilis ATCC-6633 under aerobic conditions. J. Environ. Radioact. 2019, 208/209, 106027.1–106027.7.10.1016/j.jenvrad.2019.106027Search in Google Scholar PubMed

23. Balasubramanian, R., Levinson, B. T., Rosenzweig, A. C. Secretion of Flavins by three species of methanotrophic bacteria. Appl. Environ. Microbiol. 2010, 76, 7356–7358; https://doi.org/10.1128/aem.00935-10.Search in Google Scholar PubMed PubMed Central

24. Canstein, H. V., Ogawa, J., Shimizu, S., Lloyd, J. R. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 2008, 74, 615–623; https://doi.org/10.1128/aem.01387-07.Search in Google Scholar

25. Hufton, J., Harding, J., Smith, T. J., Romero-Gonzalez, M. E. The importance of the bacterial cell wall in uranium (VI) biosorption. Phys. Chem. Chem. Phys. 2021, 23, 1566–1576; https://doi.org/10.1039/d0cp04067c.Search in Google Scholar PubMed

26. Krawczyk-Barsch, E., Lütke, L., Moll, H., Bok, F., Steudtner, R., Rossberg, A. A spectroscopic study on U(VI) biomineralization in cultivated Pseudomonas fluorescens biofilms isolated from granitic aquifers. Environ. Sci. Pollut. Res. 2015, 22, 4555–4565; https://doi.org/10.1007/s11356-014-3671-4.Search in Google Scholar PubMed

27. Li, X., Ding, C., Liao, J., Du, L., Sun, Q., Yang, J., Yang, Y., Zhang, D., Tang, J., Liu, N. Microbial reduction of uranium (VI) by Bacillus sp. dwc-2: a macroscopic and spectroscopic study. J. Environ. Sci. 2017, 53, 9–15; https://doi.org/10.1016/j.jes.2016.01.030.Search in Google Scholar PubMed

28. Molinas, M., Faizova, R., Brown, A., Galanzew, J., Bernier-Latmani, R. Biological reduction of a U(V)-Organic ligand complex. Environ. Sci. Technol. 2021, 55, 4753–4761; https://doi.org/10.1021/acs.est.0c06633.Search in Google Scholar PubMed PubMed Central

29. Wang, W., Feng, Y., Tang, X., Li, H., Du, Z., Yi, A., Zhang, X. Enhanced U(VI) bioreduction by alginate-immobilized uranium-reducing bacteria in the presence of carbon nanotubes and anthraquinone-2, 6-disulfonate. J. Environ. Sci. 2015, 31, 68–73; https://doi.org/10.1016/j.jes.2014.11.005.Search in Google Scholar PubMed

30. Townsend, L. T., Kuippers, G., Lloyd, J. R., Natrajan, L. S., Boothman, C., Mosselmans, J. F. W., Shaw, S., Morris, K. Biogenic sulfidation of U(VI) and ferrihydrite mediated by sulfate-reducing bacteria at elevated pH. Environ. Sci. Technol. 2021, 5, 3075–3086; https://doi.org/10.1021/acsearthspacechem.1c00126.Search in Google Scholar PubMed PubMed Central

31. Mtimunye, P. J., Chirwa, E. Characterization of the biochemical-pathway of uranium (VI) reduction in facultative anaerobic bacteria. Chemosphere 2014, 113, 22–29; https://doi.org/10.1016/j.chemosphere.2014.03.105.Search in Google Scholar

32. Gu, B., Yan, H., Zhou, P., Watson, D. B., Park, M., Istok, J. Natural humics impact uranium bioreduction and oxidation. Environ. Sci. Technol. 2005, 39, 5268; https://doi.org/10.1021/es050350r.Search in Google Scholar

33. Ling, S., Fein, J. B. Uranium reduction by Shewanella oneidensis MR-1 as a function of NaHCO3 concentration: surface complexation control of reduction kinetics. Environ. Sci. Technol. 2014, 48, 3768–3775; https://doi.org/10.1021/es5003692.Search in Google Scholar

34. Colella, M., Lumpkin, G. R., Zhang, Z., Buck, E. C., Smith, K. L. Determination of the uranium valence state in the brannerite structure using EELS, XPS, and EDX. Phys. Chem. Miner. 2005, 32, 52–64; https://doi.org/10.1007/s00269-004-0444-5.Search in Google Scholar

35. Hitchen, A., Zechanowitsch, G. Titrimetric determination of uranium in low-grade ores by the ferrous ion-phosphoric acid reduction method. Talanta 1980, 27, 383–389; https://doi.org/10.1016/0039-9140(80)80220-7.Search in Google Scholar

36. Cristiano, B. F. G., Delgado, J. U., Silva, J. W. S. D., Barros, P. D. D., de Araújo, R. M. S., Lopes, R. T. Semi-automated potentiometric titration method for uranium characterization. Appl. Radiat. Isot. 2012, 70, 1373–1375; https://doi.org/10.1016/j.apradiso.2011.11.025.Search in Google Scholar

37. Kolb, M., Bahadir, M., Teichgraeber, B. Determination of chemical oxygen demand (COD) using an alternative wet chemical method free of mercury and dichromate. Water Res. 2017, 122, 645–654; https://doi.org/10.1016/j.watres.2017.06.034.Search in Google Scholar

38. Rao, G. G., Sagi, S. R. A new reductimetric reagent: iron II in a strong phosphoric acid medium: titration of uranium II with iron II at room temperature. Talanta 1962, 9, 715–722; https://doi.org/10.1016/0039-9140(62)80156-8.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2022-0037).


Received: 2022-03-20
Accepted: 2022-07-30
Published Online: 2022-09-22
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2022-0037/html
Scroll to top button