Startseite New reference materials for trace-levels of actinide elements in plutonium
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

New reference materials for trace-levels of actinide elements in plutonium

  • Richard M. Essex EMAIL logo , Lav Tandon , Amy Gaffney , Cole R. Hexel , Debbie A. Bostick , Lisa M. Colletti , Diana L. Decker , Casey C. Finstad , Joe M. Giaquinto , Elmer Lujan , John D. Partridge , Benjamin D. Roach , John Rolinson , Kyle Samperton , Alice K. Slemmons , Khalil J. Spencer , Floyd E. Stanley , Lisa E. Townsend , Kerri C. Treinen , Ross W. Williams , Christopher G. Worley und Ning Xu
Veröffentlicht/Copyright: 12. November 2021

Abstract

Two plutonium oxides were prepared as unique reference materials for measurement of actinide elements present as trace constituents. Each reference material unit is approximately 200 mg of PuO2 powder in a quartz glass bottle. Characterized attributes of the oxides included mass fractions of plutonium, americium, neptunium, and uranium. Isotope-amount ratios were also determined for plutonium and uranium, but neptunium and americium were observed to be monoisotopic 237Np and 241Am. Measurements for characterization and verification of the attributes show that plutonium and trace actinides are homogeneous with the exception of limited heterogeneity for uranium, primarily observed for the 238U isotope. Model purification ages calculated from measured americium and uranium attribute values are consistent with material histories and indicate that these impurities are predominantly due to the decay of plutonium isotopes.


Corresponding author: Richard M. Essex, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8462, Gaithersburg, MD 20899, USA, E-mail:

Acknowledgements

Funding for the production, characterization, and verification work at LANL, LLNL and ORNL and project coordination activities at NIST was provided by the United States Department of Homeland Security.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. IAEA. Incidents of nuclear and other radioactive material out of regulatory control: 2020 Fact Sheet. 2020. https://www.iaea.org/sites/default/files/20/02/itdb-factsheet-2020.pdf.Suche in Google Scholar

2. IAEA: Nuclear Forensics in Support of Investigations. IAEA Nuclear Security Series No. 2-G (Rev. 1) (2015).Suche in Google Scholar

3. Kristo, M. J., Tumey, S. J. The state of nuclear forensics. Nucl. Instrum. Methods Phys. Res. B 2013, 294, 656.10.1016/j.nimb.2012.07.047Suche in Google Scholar

4. Keegan, E., Kristo, M. J., Toole, K., Kips, R., Young, E. Nuclear forensics: scientific analysis supporting law enforcement and nuclear security investigations. Anal. Chem. 2016, 88, 1498.10.1021/acs.analchem.5b02915Suche in Google Scholar PubMed

5. Moody, K. J. Determination of Plutonium Metal Origins; Lawrence Livermore National Laboratory: Livermore, CA, 1995. UCRL-ID-120253.10.2172/93981Suche in Google Scholar

6. Wallenius, M., Peerani, P., Koch, L. Origin determination of plutonium material in nuclear forensics. J. Radioanal. Nucl. Chem. 2000, 246, 317.10.1023/A:1006774524272Suche in Google Scholar

7. Wallenius, M., Mayer, K. Age determination of plutonium material in nuclear forensics by thermal ionization mass spectrometry. Fresenius’ J. Anal. Chem. 2000, 366, 234.10.1007/s002160050046Suche in Google Scholar PubMed

8. Nygren, U., Ramebäck, H., Nilsson, C. Age determination of plutonium using inductively coupled plasma mass spectrometry. J. Radioanal. Nucl. Chem. 2007, 272, 45.10.1007/s10967-006-6780-9Suche in Google Scholar

9. Wallenius, M., Lutzenkirchen, K., Mayer, K., Ray, I., de las Heras, L. A., Betti, M., Cromboom, O., Hild, M., Lynch, B., Nicholl, A., Ottmar, H., Rasmussen, G., Schubert, A., Tamborini, G., Thiele, H., Wagner, W., Walker, C., Zuleger, E. Nuclear forensic investigations with a focus on plutonium. J. Alloys Compd. 2007, 444–445, 57.10.1016/j.jallcom.2006.10.161Suche in Google Scholar

10. Schwantes, J. M., Douglas, M., Bonde, S. E., Briggs, J. D., Farmer, O. T., Greenwood, L. R., Lepel, E. A., Orton, C. R., Wacker, J. F., Luksic, A. T. Nuclear archeology in a bottle: evidence of pre-Trinity U.S. weapons activities from a waste burial site. Anal. Chem. 2009, 81, 1297.10.1021/ac802286aSuche in Google Scholar PubMed

11. Byerly, B., Stanley, F. E., Spencer, K. J., Colletti, L. M., Garduno, K., Kuhn, K. J., Lujan, E. J. W., Alexander, M., Porterfield, D. R., Rim, J. H., Schappert, M. F., Thomas, M. R., Townsend, L. E., Xu, N., Tandon, L. Forensic investigation of plutonium metal: a case study of CRM 126. J. Radioanal. Nucl. Chem. 2016, 310, 623.10.1007/s10967-016-4919-xSuche in Google Scholar

12. Leggitt, H., Inn, K., Goldberg, S., Essex, R. M., LaMont, S., Chase, S. Nuclear forensics—metrological basis for legal defensibility. J. Radioanal. Nucl. Chem. 2009, 282, 997.10.1007/s10967-009-0293-2Suche in Google Scholar

13. Fitzgerald, R., Inn, K. G. W., Horgan, C. How old is it?—241Pu/241Am nuclear forensic chronology reference materials. J. Radioanal. Nucl. Chem. 2016, 307, 2521.10.1007/s10967-015-4565-8Suche in Google Scholar

14. Essex, R. M., Williams, R. W., Treinen, K. C., Hubert, A., Humphrey, M. A., Inglis, J. D., Kinman, W. S., Maassen, J., Penkin, M. V., Steiner, R. E. A highly-enriched 244Pu reference material for nuclear safeguards and nuclear forensics measurements. J. Radioanal. Nucl. Chem. 2020, 324, 257.10.1007/s10967-020-07075-ySuche in Google Scholar

15. Inn, K. G. W., Johnson, C. M.Jr., Oldham, W., Jerome, S., Tandon, L., Schaaff, T., Jones, R., Mackney, D., MacKill, P., Palmer, B., Smith, D., LaMont, S., Griggs, J. The urgent requirement for new radioanalytical certified reference materials for nuclear safeguards, forensics, and consequence management. J. Radioanal. Nucl. Chem. 2013, 296, 5.10.1007/s10967-012-1972-ySuche in Google Scholar

16. Inn, K. G. W., LaMont, S., Jerome, S., Essex, R., Johnson, C. M.Jr, Morrison, J., Frechou, C., Branger, T., Dion, H. Roadmap for radioanalytical reference and performance evaluation materials for current and emerging issues. J. Radioanal. Nucl. Chem. 2016, 307, 2529.10.1007/s10967-016-4694-8Suche in Google Scholar

17. Mathew, K., Kayzar-Boggs, T., Varga, Z., Gaffney, A., Denton, J., Fulwyler, J., Garduno, K., Gaunt, A., Inglis, J., Keller, R., Kinman, W., Labotka, D., Lujan, E., Maassen, J., Mastren, T., May, I., Mayer, K., Nicholl, A., Ottenfeld, C., Parsons-Davis, T., Porterfield, D., Rim, J., Rolison, J., Stanley, F., Steiner, R., Tandon, L., Thomas, M., Torres, R., Treinen, K., Wallenius, M., Wende, A., Williams, R. W., Wimpenny, J. Intercomparison of the radio-chronometric ages of plutonium-certified reference materials with distinct isotopic compositions. Anal. Chem. 2019, 91, 11643.10.1021/acs.analchem.9b02156Suche in Google Scholar

18. New Brunswick Laboratory. CRM 126-A Plutonium Metal Assay and Isotopic Standard; NBL Program Office: Oak Ridge, TN, 2003.Suche in Google Scholar

19. Moseley, J. D., Wing, R. O. Properties of Plutonium Dioxide. RFP-503; Dow Chemical Company, Rock Flats, CO, 1965.10.2172/4613823Suche in Google Scholar

20. ASTM. C1165 – 17. Standard Test Method for Determining Plutonium by Controlled-Potential Coulometry in H2SO4 at a Platinum Working Electrode; ASTM International: West Conshohocken, PA, 2017.Suche in Google Scholar

21. Byerly, B., Kuhn, K., Colletti, L., Foster, L., Keller, R., Lujan, E., Martinez, A., Porterfield, D., Schwartz, D., Spencer, K., Stanley, F., Thomas, M., Townsend, L., Xu, N., Tandon, L. Chemical investigation of three plutonium–beryllium neutron sources. J. Radioanal. Nucl. Chem. 2017, 312, 95.10.1007/s10967-017-5192-3Suche in Google Scholar

22. Callis, E. L., Abernathy, R. M. High-precision isotopic analyses of uranium and plutonium by total sample volatilization and signal integration. Int. J. Mass Spectrom. Ion Process. 1991, 103, 93.10.1016/0168-1176(91)80081-WSuche in Google Scholar

23. Reid, A. Simulating decay chains using spreadsheets. Phys. Educ. 2012, 48, 18. https://iopscience.iop.org/article/10.1088/0031-9120/47/1/F08/pdf (accessed Dec, 2019).10.1088/0031-9120/47/1/F08Suche in Google Scholar

24. BIPM. Monographie BIPM-5, table of radionuclides. Vol. 5–A. 2010. http://www.nucleide.org/DDEP_WG/DDEPdata.htm (accessed Mar 25, 2020).Suche in Google Scholar

25. BIPM. Monographie BIPM-5, table of radionuclides. Vol. 6–A. 2011. http://www.nucleide.org/DDEP_WG/DDEPdata.htm (accessed Mar 25, 2020).Suche in Google Scholar

26. BIPM. Monographie BIPM-5, table of radionuclides. Vol. 4–A. 2005. http://www.nucleide.org/DDEP_WG/DDEPdata.htm (accessed Mar 25, 2020).Suche in Google Scholar

27. BIPM. Monographie BIPM-5, table of radionuclides. Vol. 3–A. 2006. http://www.nucleide.org/DDEP_WG/DDEPdata.htm (accessed Mar 25, 2020).Suche in Google Scholar

28. Wang, M., Audi, G., Wapstra, A. H., Kondev, F. G., MacCormick, M., Xu, X., Pfeiffer, B. The AME2012 atomic mass evaluation (II). Table, graphs, and references. Chin. Phys. C 2012, 36, 1603.10.1088/1674-1137/36/12/003Suche in Google Scholar

29. Joint Committee for Guides in Metrology: Evaluation of measurement data – guide to the expression of uncertainty in measurement. JCGM 100, 2008 (E/F), 2008.Suche in Google Scholar

30. Taylor, B. N., Kuyatt, C. E. Guideline for Evaluating and Expressing the Uncertainty of NIST Measurement Results; National Institute of Standards and Technology: Gaithersburg, MD, 1994. Technical Note 1297.10.6028/NIST.TN.1297Suche in Google Scholar

31. Thompson, M., Ellison, S. L. R. Dark uncertainty. Accred Qual. Assur. 2011, 16, 483.10.1007/s00769-011-0803-0Suche in Google Scholar

32. Sturm, M., Richter, S., Aregbe, Y., Wellum, R., Mialle, S., Mayer, K., Prohaska, T. Evaluation of chronometers in plutonium age determination for nuclear forensics: what if the ‘Pu/U clocks’ do not match? J. Radioanal. Nucl. Chem. 2014, 302, 399.10.1007/s10967-014-3294-8Suche in Google Scholar

33. International Organization for Standardization: Reference materials – guidance for characterization and assessment of homogeneity and stability. ISO GUIDE 35:2017(E). 2017.Suche in Google Scholar

34. International Organization for Standardization: General requirements for the competence of reference material producers, ISO 17034:2016 (E). 2016.Suche in Google Scholar

35. Joint Committee for Guides in Metrology: International vocabulary of metrology –basic and general concepts and terms (VIM), JCGM 200. 2012.Suche in Google Scholar

Received: 2021-08-24
Accepted: 2021-10-29
Published Online: 2021-11-12
Published in Print: 2022-01-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1095/pdf
Button zum nach oben scrollen