Startseite Synthesis, characterization, and bioevaluation of 99mTc nitrido-oxiracetam as a brain imaging model
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis, characterization, and bioevaluation of 99mTc nitrido-oxiracetam as a brain imaging model

  • M. H. Sanad , S. F. A. Rizvi EMAIL logo und A. B. Farag EMAIL logo
Veröffentlicht/Copyright: 17. Mai 2021

Abstract

In this work, the radiotracer [99mTc]nitrido-oxiracetam complex was labeled in the presence of 99mTc-nitrido as a core. In order to get the highest radiochemical purity, many effective factors have been studied such as temperature of the reaction, time of the reaction, the pH of the reaction mixture, substrate amount, and stability to give high percent more than 99%. Finally, biodistribution studies have been indicated the convenience of [99mTc]nitrido-oxiracetam as a new radiotracer that could be used in brain imaging. Giving a maximum uptake of 10.6% at 30 min post injection.


Corresponding author: A. B. Farag, Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt, E-mail: S. F. A. Rizvi, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, P. R. China,

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: All Authors declare that they have no conflict of interest.

References

1. Filler, A. F. The history, development and impact of computed imaging in neurological diagnosis and neurosurgery: CT, MRI, and DTI. Internet J. Neurosurg. 2010, 7, 5.10.5580/23c6Suche in Google Scholar

2. Sandrone, S., Bacigaluppi, M., Galloni, M. R., Cappa, S. F., Moro, A., Catani, M., Filippi, M., Monti, M. M., Perani, D., Martino, G. Weighing brain activity with the balance: Angelo Mosso’s original manuscripts come to light. Brain 2014, 137, 621; https://doi.org/10.1093/brain/awt091.Suche in Google Scholar

3. Peruzzotti-Jametti, L., Bacigaluppi, M., Sandrone, S., Cambiaghi, M. Emerging subspecialties in Neurology: transcranial stimulation. Neurology 2013, 80, e33; https://doi.org/10.1212/wnl.0b013e3182833d74.Suche in Google Scholar

4. Martino, G., Bacigaluppi, M. Mechanism of action of somatic stem cell treatments: towards the concept of therapeutic plasticity. Cytotherapy 2011, 13, 6; https://doi.org/10.3109/14653249.2011.537055.Suche in Google Scholar

5. Grove, S. J., Jamieson, C., Maclean, J. K., Morrow, J. A., Rankovic, Z. Positive allosteric modulators of the a-amino-3-hydroxy- 5-methyl-4-isoxazolepropionic acidm (ampa) receptor. J. Med. Chem. 2010, 53, 7271; https://doi.org/10.1021/jm1000419.Suche in Google Scholar

6. Gorter, J. A., Petrozzino, J. J., Aronica, E. M., Rosenbaum, D. M., Opitz, T., Bennett, M. V., Connor, J. A., Zukin, R. S. Global ischemia induces down regulation of Glur2 mRNA and increases AMPA receptor-mediated Ca influx in hippocampal CA1 neurons of gerbil. J. Neurosci. 1997, 17, 6179; https://doi.org/10.1523/jneurosci.17-16-06179.1997.Suche in Google Scholar

7. Stensbol, T. B., Madsen, U., Krogsgaard-Larsen, P. The AMPA receptor site: focus on agonists and competitive antagonists. Curr. Pharmaceut. Des. 2002, 8, 857; https://doi.org/10.2174/1381612024607090.Suche in Google Scholar

8. Mondadori, C., Mobius, H. J., Borkowski, J. The GABA receptor antagonist CGP 36,742 and the nootropic oxiracetam facilitate the formation of long-term memory. Behav. Brain Res. 1996, 77, 223; https://doi.org/10.1016/0166-4328(95)00222-7.Suche in Google Scholar

9. Sanad, M. H., Farouk, N., Fouzy, A. S. M. Radiocomplexation and bioevaluation of 99mTc nitrido-piracetam as a model for brain imaging. Radiochim. Acta 2017, 105, 729; https://doi.org/10.1515/ract-2016-2714.Suche in Google Scholar

10. Sanad, M. H., Alhussein, A. I. Preparation and biological evaluation of 99mTc N-histamine as a model for brain imaging: in silico study and preclinical evaluation. Radiochim. Acta 2018, 106, 229; https://doi.org/10.1515/ract-2017-2804.Suche in Google Scholar

11. Amin, A. M., Sanad, M. H., Abd-Elhaliem, S. M. Radiochemical and biological characterization of 99mTc-piracetam for brain imaging. Radiochemistry 2013, 55, 624; https://doi.org/10.1134/s1066362213060118.Suche in Google Scholar

12. Sanad, M. H., Farag, A. B., Dina, H, S. Radioiodination and bioevaluation of rolipram as a tracer for brain imaging: in silico study, molecular modeling and gamma scintigraphy. J. Label. Compd. Radiopharm. 2018, 61, 501; https://doi.org/10.1002/jlcr.3614.Suche in Google Scholar

13. Sanad, M. H., Saleh, G. M., Marzook, F. A. Radioiodination and biological evaluation of nizatidine as a new highly selective radiotracer for peptic ulcer disorder detection. J. Label. Compd. Radiopharm. 2017, 60, 600.10.1002/jlcr.3541Suche in Google Scholar PubMed

14. Sanad, M. H., Salama, D. H., Marzook, F. A. Radioiodinated famotidine as a new highly selective radiotracer for peptic ulcer disorder detection, diagnostic nuclear imaging and biodistribution. Radiochim. Acta 2017, 105, 389.10.1515/ract-2016-2683Suche in Google Scholar

15. Sanad, M. H., Sallam, K. M., Dina, H. S. 99mTc-Oxiracetam as a potential agent for diagnostic imaging of brain: labeling, characterization, and biological evaluation. Radiochemistry 2018, 60, 58; https://doi.org/10.1134/s1066362218010101.Suche in Google Scholar

16. Zhang, J., Wang, X., Jin, C. Synthesis and biodistribution of the 99mTc (CO)3-DEDT complex as a potential new radiopharmaceutical for brain imaging. J. Radioanal. Nucl. Chem. 2007, 272, 91; https://doi.org/10.1007/s10967-006-6794-3.Suche in Google Scholar

17. Satpati, D., Bapat, K., Mukherjee, A., Banerjee, S., Kothari, K., Venkatesh, M. Preparation and bioevaluation of 99mTc-carbonyl complex of 5-hydroxy tryptamine derivative. Appl. Radiat. Isot. 2006, 64, 888; https://doi.org/10.1016/j.apradiso.2006.03.003.Suche in Google Scholar

18. Erfani, M., Hassanzadeh, L., Ebrahimi, S. E. S., Shafiei, M. Synthesis and biological evaluation of 99mTc (CO)3-OH-PP-CS2 for brain receptor imaging Iran. J. Nucl. Med. 2012, 20, 25.Suche in Google Scholar

19. Borai, E. H., Sanad, M. H., Fouzy, A. S. M. Optimized chromatographic separation and biological evaluation of 99mTc-clarithromycin for infective inflammation diagnosis. Radiochemistry 2016, 58, 84.10.1134/S1066362216010136Suche in Google Scholar

20. Walovitch, R. C., Hill, T. C., Garrity, S. T., Cheesman, E. H., Burgess, B. A., O’Leary, D. H., Watson, A. D., Ganey, M. V., Morgan, R. A., Williams, S. J. Characterization of technetium-99m-L,L-ECD for brain perfusion imaging, part 1: pharmacology of technetium-99m ECD in nonhuman primates. J. Nucl. Med. 1989, 30, 1892.Suche in Google Scholar

21. Zhang, J. B., Wang, X. B., Tian, C. J. Synthesis of a bis-(N-butyldithiocarbamato)- nitrido 99mTc complex: a potential new brain imaging agent. J. Radioanal. Nucl. Chem. 2007, 273, 15; https://doi.org/10.1007/s10967-007-0703-2.Suche in Google Scholar

22. Zhang, J. B., Wang, X. B., Tian, C. J. Synthesis and biodistribution of 99mTcN (PDTC)2 as a potential brain imaging agent. J. Radioanal. Nucl. Chem. 2004, 262, 505; https://doi.org/10.1023/b:jrnc.0000046787.02935.e2.10.1023/B:JRNC.0000046787.02935.e2Suche in Google Scholar

23. Zhang, J. B., Luo, G., Wang, X. B. Synthesis and biodistribution of a novel 99mTc nitrido dithiocarbamate complex containing ether group as a potential myocardial and brain imaging agent. J. Radioanal. Nucl. Chem. 2009, 279, 783; https://doi.org/10.1007/s10967-008-7383-4.Suche in Google Scholar

24. Mohini, G., Subhajit, G., Tapas, D., Haladhar, D. S. S. B. Preparation and bioevaluation of [99mTc ≡ N]2+ labeled tetrameric complex of E c(RGDfK)2 as a radiotracer for imaging avb3 integrins in tumors. J. Radioanal. Nucl. Chem. 2016, 309, 923.Suche in Google Scholar

25. Ardhani, D. L., Andi, T. P., Tini, P., Evi, U., Mochammad, Y., Gunawan, I. HPLC determination of piracetam in tablets; validation of the method. J. Liq. Chromatogr. Relat. Technol. 2007, 28, 1407.10.1081/JLC-200054893Suche in Google Scholar

26. Mingxia, Z., Hongyu, N., Man, F., Shilei, L., Jin, C., Chuanmin, Q. Novel [99mTc ≡ N]2 labeled EGFR inhibitors as potential radiotracers for single photon emission computed tomography (SPECT) tumor imaging. Molecules 2014, 19, 5508.10.3390/molecules19055508Suche in Google Scholar PubMed PubMed Central

27. Syed, Q. S., Mohammad, R. K., Syed, M. A. Radiosynthesis of 99mTc (CO)3-clinafloxacin dithiocarbamate and its biological evaluation as a potential staphylococcus aureus infection radiotracer. Nucl. Med. Mol. Imag. 2011, 45, 248.10.1007/s13139-011-0106-8Suche in Google Scholar PubMed PubMed Central

28. Xiang, L., Aiqin, W., Qianqian, X., Yu, F., Jianping, L., Huabei, Z., Huaying, B. Synthesis and biological evaluation of fatty acids containing 99mTc-oxo and 99mTc-nitrido for myocardial metabolism imaging. J. Radioanal. Nucl. Chem. 2016, 307, 1438.10.1007/s10967-015-4232-0Suche in Google Scholar

29. Adrion, D., Alessandra, B., Licia, U. Technetium -99m Nitrido-radiopharmaceuticals with un precedented biological properties. Braz. Arch. Biol. Technol. 2002, 45, 135.10.1590/S1516-89132002000500019Suche in Google Scholar

30. Alessandra, B., Licia, U., Cristina, B., Adriano, D., Nicola, S., Elena, M., Giovanni, D. D., Guido, Z., Fiorenzo, R., Melchiore, G. Synthesis and biologic evaluation of monocationic asymmetric 99mTc-nitride heterocomplexes showing high heart uptake and improved imaging properties. J. Nucl. Med. 2003, 44, 806.Suche in Google Scholar

31. Sanad, M. H., Challan, S. B. Radioiodination and biological evaluation of rabeprazole as a peptic ulcer localization radiotracer. Radiochemistry 2017, 59, 307; https://doi.org/10.1134/s1066362217030158.Suche in Google Scholar

32. Sanad, M. H. Labeling of omeprazole with technetium-99m for diagnosis of stomach. Radiochemistry 2013, 55, 605; https://doi.org/10.1134/s1066362213060076.Suche in Google Scholar

33. Sanad, M. H., Talaat, H. M. Radiodiagnosis of peptic ulcer with technetium-99m-labeled esomeprazole. Radiochemistry 2017, 59, 396; https://doi.org/10.1134/s1066362217040129.Suche in Google Scholar

34. Sanad, M. H., Ibrahim, I. T. Radiodiagnosis of peptic ulcer with technetium-99m labeled rabeprazole. Radiochemistry 2015, 57, 425.10.1134/S1066362215040165Suche in Google Scholar

35. Motaleb, M. A., Adli, A. S. A, El-Tawoosy, M., Sanad, M. H., AbdAllah, M. An easy and effective method for synthesis and radiolabelling of risedronate as a model for bone imaging. J. Label Compd. Radiopharm. 2016, 59, 157.10.1002/jlcr.3384Suche in Google Scholar PubMed

36. El-Kawy, O., Sanad, M. H., Marzook, F. 99mTc-Mesalamine as potential agent for diagnosis and monitoring of ulcerative colitis: labelling, characterisation and biological evaluation. J. Radioanal. Nucl. Chem. 2016, 308, 279.10.1007/s10967-015-4338-4Suche in Google Scholar

37. Sanad, M. H., Amin, A. M. Optimization of labeling conditions and bioevalution of 99mTc-meloxicam for inflammation imaging. Radiochemistry 2013, 55, 521.10.1134/S1066362213050123Suche in Google Scholar

Received: 2020-12-27
Accepted: 2021-04-26
Published Online: 2021-05-17
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-0003/html
Button zum nach oben scrollen