Startseite Adsorption of uranium from its aqueous solutions using activated cellulose and silica grafted cellulose
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Adsorption of uranium from its aqueous solutions using activated cellulose and silica grafted cellulose

  • Mohamed N. Kouraim , Mohammed S. Hagag EMAIL logo und Amr H. Ali
Veröffentlicht/Copyright: 23. August 2019

Abstract

The present work provides a thorough description of the preparation of two cellulose anion exchange resins. In addition, the application of the prepared resins for treatment the uranium-contaminated wastewater. In the preparation, the first resin was cellulose reacted with 0.3 M HNO3 to produce Activated Cellulose (AC), while the second was AC treated with sodium metasilicate and phosphoric acid to yield Silica Grafted Cellulose (SGC). The efficiency of the two prepared resins for uranium adsorption from aqueous solution was testifying on a batch scale. In solutions of pH ranging from 4 to 7, results showed a high exchange rate and uptaking capacity up to 105 mg/g. However, the addition of NO3, Fe3+ and Th4+ ions to the target media has an adverse impact on the uranium sorption for AC adsorbent. Otherwise, the addition of uranyl sulfate complexes could ameliorate Fe3+ and Th4+ adsorbed into the SGC.

References

1. Haque, N., Norgate, T.: The greenhouse gas footprint of in-situ leaching of uranium, gold and copper in australia. J. Clean. Prod. 84, 382 (2014).10.1016/j.jclepro.2013.09.033Suche in Google Scholar

2. Liu, B., Peng, T., Sun, H., Yue, H.: Release behavior of uranium in uranium mill tailings under environmental conditions. J. Environ. Radioactiv. 171, 160 (2017).10.1016/j.jenvrad.2017.02.016Suche in Google Scholar PubMed

3. Hore-Lacy, I.: Uranium for Nuclear Power Resources, Mining and Transformation to Fuel. World Nuclear Association, London, United Kingdom (2016).10.1016/B978-0-08-100307-7.00001-6Suche in Google Scholar

4. Attallah, M. F., Metwally, S. S., Moussa, S. I., Soliman, M. A.: Environmental impact assessment of phosphate fertilizers and phosphogypsum waste: elemental and radiological effects. Microchem. J. 146, 789 (2019).10.1016/j.microc.2019.02.001Suche in Google Scholar

5. Letman, M. M., Drage, J., Ryan, A., Lake, C., Jamieson, R.: Development of a leaching procedure to assess the risk of uranium leaching due to construction and demolition waste disposal. Waste Manag. 78, 144 (2018).10.1016/j.wasman.2018.05.038Suche in Google Scholar PubMed

6. Kogel, J. E., Trivedi, N. C., Barker, J. M., Krukowski, S. T.: Industrial Minerals & Rocks: Commodities, Markets, and Uses, 7th edition (2006), Society for Mining, Metallurgy, and Exploration Inc. (SME), Littleton, CO, USA.Suche in Google Scholar

7. Ismagilov, Z. R., Kuntsevich, S. V., Kuznetsov, V. V., Shikina, N. V., Kerzhentsev, M. A., Rogov, V. A., Ushakov, V. A.: Characterization of new catalysts based on uranium oxides. Kinet. Catal. 48, 511 (2007).10.1134/S0023158407040076Suche in Google Scholar

8. Ali, A. H., Eliwa, A. A., Hagag, M. S.: Upgrading of the crude yellowcake to a highly purified form using tris(2-ethylhexyl) phosphate in presence of EDTA or CDTA. J. Environ. Chem. Eng. 6(1), 119 (2018).10.1016/j.jece.2017.11.072Suche in Google Scholar

9. Oh, J., Warwick, P. E., Croudace, I. W., Lee, S.: Evaluation of three electrodeposition procedures for uranium, plutonium and americium. Appl. Radiat. Isotopes 87, 233 (2014).10.1016/j.apradiso.2013.11.048Suche in Google Scholar PubMed

10. Cheng, Y., He, P., Dong, F., Nie, X., Ding, C., Wang, S., Zhang, Y., Liu, H., Zhou, S.: Polyamine and amidoxime groups modified bifunctional polyacrylonitrile- based ion exchange fibers for highly efficient extraction of U(VI) from real uranium mine water. Chem. Eng. J. 367, 198 (2019).10.1016/j.cej.2019.02.149Suche in Google Scholar

11. Youssef, W. M., Hagag, M. S., Ali, A. H.: Synthesis, characterization and application of composite derived from rice husk ash with aluminium oxide for sorption of uranium. Adsorpt. Sci. Technol. 36(5–6), 1274 (2018).10.1177/0263617418768920Suche in Google Scholar

12. KaynarEmail, U. H., Çınar, S., Kaynar, S. C., Ayvacıklı, M., Aydemir, T.: Modelling and optimization of uranium (VI) ions adsorption onto Nano-ZnO/chitosan bio-composite beads with Response Surface Methodology (RSM). J. Polym. Environ. 26, 2300 (2018).10.1007/s10924-017-1125-zSuche in Google Scholar

13. Sahoo, J. K., Kumar, A., Rout, L., Rath, J., Dash, P., Sahoo, H.: An investigation of heavy metal adsorption by hexa-dentate ligand-modified magnetic nanocomposites. Sep. Sci. Technol. 53(6), 863 (2018).10.1080/01496395.2017.1406950Suche in Google Scholar

14. Simsek, E. B., Duranoglu, D., Beker, U.: Heavy metal adsorption by magnetic hybrid-sorbent: an experimental and theoretical approach. Sep. Sci. Technol. 47(9), 1334 (2012).10.1080/01496395.2012.672845Suche in Google Scholar

15. Lo, K. S. L., Yang, W. F., Lin, Y. C.: Effects of organic matter on the specific adsorption of heavy metals by soil. Toxicol. Environ. Chem. 34(3–4), 139 (1992).10.1080/02772249209357787Suche in Google Scholar

16. Li, Z., Yu, B., Cong, H., Zhang, X., Peng, Q.: EDTA-modified DR/SiO2 adsorbent: preparation, characterization, and application in heavy metal adsorption. Integr. Ferroelectr. 169(1), 1 (2016).10.1080/10584587.2016.1162127Suche in Google Scholar

17. Hoang, A. T., Bui, X. L., Pham, X. D.: A novel investigation of oil and heavy metal adsorption capacity from as-fabricated adsorbent based on agricultural by-product and porous polymer. Energ. Source Part A 40(8), 929 (2018).10.1080/15567036.2018.1466008Suche in Google Scholar

18. Chen, Y., Tang, G., Jimmy Yu, Q. J., Zhang, T., Chen, Y., Gu, T.: Biosorption properties of hexavalent chromium on to biomass of tobacco-leaf residues. Environ. Technol. 30, 1003 (2009).10.1080/09593330903019268Suche in Google Scholar

19. Yang, J., Volesky, B.: Biosorption of uranium on sargassum biomass. Water Res. 33(15), 3357 (1999).10.1016/S0043-1354(99)00043-3Suche in Google Scholar

20. Saini, A. S., Melo, J. S.: Biosorption of uranium by melanin: kinetic, equilibrium and thermodynamic studies. Bioresour. Technol. 149, 155 (2013).10.1016/j.biortech.2013.09.034Suche in Google Scholar PubMed

21. Gok, C., Aytas, S.: Chapter 16: Biosorption of uranium and thorium by biopolymers. In: M. Fanun (Ed.), The Role of Colloidal Systems in Environmental Protection (2014), Elsevier, Amsterdam, The Netherlands, p. 363.10.1016/B978-0-444-63283-8.00016-8Suche in Google Scholar

22. Erkaya, I. A., Arica, M. Y., Akbulut, A., Bayramoglu, G.: Biosorption of uranium(VI) by free and entrapped chlamydomonas reinhardtii: kinetic, equilibrium and thermodynamic studies. J. Radioanal. Nucl. Chem. 229(3), 1993 (2014).10.1007/s10967-014-2964-xSuche in Google Scholar

23. Yousef, L. A., Morsy, A. M. A., Hagag, M. S.: Uranium ions adsorption from acid leach liquor using acid cured phosphate rock: kinetic, equilibrium, and thermodynamic studies. Sep. Sci. Technol. under press (2019), https://doi.org/10.1080/01496395.2019.1574305.10.1080/01496395.2019.1574305Suche in Google Scholar

24. Wu, L., Lin, X., Zhou, X., Luo, X.: Removal of uranium and fluorine from wastewater by double-functional microsphere adsorbent of SA/CMC loaded with calcium and aluminum. Appl. Surf. Sci. 384, 466 (2016).10.1016/j.apsusc.2016.05.056Suche in Google Scholar

25. Li, Q., Liu, Y., Cao, X., Pang, C., Wang, Y., Zhang, Z., Liu, Y., Hua, M.: Biosorption characteristics of uranium(VI) from aqueous solution by pummelo peel. J. Radioanal. Nucl. Chem. 293(1), 67 (2012).10.1007/s10967-012-1720-3Suche in Google Scholar

26. Zoui, W., Zhao, L., Zhu, L.: Adsorption of uranium(VI) by grapefruit peel in a fixed-bed column: experiments and prediction of breakthrough curves. J. Radioanal. Nucl. Chem. 295(1), 717 (2013).10.1007/s10967-012-1950-4Suche in Google Scholar

27. Xie, Y., Chen, C., Ren, X., Wang, X., Wang, H., Wang, X.: Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog. Mater. Sci. 103, 180 (2019).10.1016/j.pmatsci.2019.01.005Suche in Google Scholar

28. Ilangovan, M., Guna, V., Olivera, S., Ravi, A., Muralidhara, H. B., Santosh, M. S., Reddy, N.: Highly porous carbon from a natural cellulose fiber as high efficiency sorbent for lead in waste water. Bioresour. Technol. 245A, 296 (2017).10.1016/j.biortech.2017.08.141Suche in Google Scholar PubMed

29. Voronova, M. I., Kuznetsov, D. A., Zakharov, A. G.: Sorption of phenol on cellulose from binary aqueous-organic mixtures. Russ. J. Appl. Chem. 81(11), 1924 (2008).10.1134/S1070427208110104Suche in Google Scholar

30. Marczenko, Z.: Spectrophotometric Determination of Elements. Ellis Horwood Ltd., Halsted Press, New York (1976), p. 580.Suche in Google Scholar

31. Xin Guo, X., Yiqiang Wu, Y.: Characterizing molecular structure of water adsorbed by cellulose nanofiber film using in situ micro-FTIR spectroscopy. J. Wood Chem. Technol. 37(5), 383 (2017).10.1080/02773813.2017.1306078Suche in Google Scholar

32. Čejka, J.: Infrared spectroscopy and thermal analysis of the uranyl minerals (Chapter 12). In: P. C. Burns, R. Finch (Eds.), Uranium: Mineralogy, Geochemistry, and the Environment (1999), Vol. 38, The Mineralogical Society of America, Washington DC, p. 561.10.1515/9781501509193-017Suche in Google Scholar

33. Kouraim, M. N., Farag, N. M., Sadeak, S. A., Gado, M. A.: Extraction of uranium using impregnated hydrophobic water hyacinth roots. Int. J. Chem. Stud. 2(4), 10 (2014).Suche in Google Scholar

34. Simonin, J.: On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 300, 254 (2016).10.1016/j.cej.2016.04.079Suche in Google Scholar

35. Hokkanen, S., Bhatnagar, A., Sillanpaa, A.: A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 91, 156 (2016).10.1016/j.watres.2016.01.008Suche in Google Scholar PubMed

36. Ali, M. M., Husseina, A. E. M., Youseif, W. M.: Application of solvent-in-pulp technique for uranium extraction from mineralization granite. Arab J. Nucl. Sci. Appl. 50(3), 217 (2017).Suche in Google Scholar

37. Gawad, E. A.: Uranium removal from nitrate solution by cation exchange resin (Amberlite IR 120), adsorption and kinetic characteristics. Nuc. Sci. Sci. J. 8, 213 (2019).10.21608/nssj.2019.30142Suche in Google Scholar

38. Red, A. T., Zhang, D., Lu, X.: Rapid and selective uranium adsorption by glycine functionalized europium hydroxide. Colloids Surf. A 556, 299 (2018).10.1016/j.colsurfa.2018.08.039Suche in Google Scholar

39. Mertz, J. L., Fard, Z. H., Malliakas, C. D., Manos, M. J., Kanatzidis, M. G.: Selective removal of Cs+, Sr2+, and Ni2+ by K2xMgxSn3−xS6 (x=0.5−1) (KMS-2) relevant to nuclear waste remediation. Chem. Mater. 25, 2116 (2013).10.1021/cm400699rSuche in Google Scholar

40. Kouraim, M. N., Sheta, M. E., Abd Elaal, M. M.: Investigation of uranium sorption from acidic sulfate solution using organosilicate compound and Amberlite IRA 402. Eur. J. Chem. 5(3), 446 (2014).10.5155/eurjchem.5.3.446-450.1026Suche in Google Scholar

41. Sadeek, S. A., Farag, N. M., Kouraim, M. N., Gado, M. A.: Chemical studies on uranium biosorption by using non-living water hyacinth roots. Int. J. Adv. Res. 2(3), 409 (2014).Suche in Google Scholar

Received: 2019-03-28
Accepted: 2019-07-26
Published Online: 2019-08-23
Published in Print: 2020-03-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2019-3149/html
Button zum nach oben scrollen