Startseite Effect of water chemistry on Eu(III) biosorption by magnetic bioadsorbent
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of water chemistry on Eu(III) biosorption by magnetic bioadsorbent

  • Fengbo Li EMAIL logo , Xiaoyu Li und Pu Cui
Veröffentlicht/Copyright: 9. Februar 2018

Abstract

In this study, magnetic biosorbent was fabricated by chemical co-precipitation of Fe(II) and Fe(III) on the surface Paeclomyces catenlannulatus (P. catenlannulatus) by adding NaOH solution under N2 conditions. The influence of water chemistries (i. e. pH, reaction time, temperature, concentration and ionic strength) on Eu(III) biosorption towards magnetic biosorbent was elucidated by batch technique. The batch experiment showed that Eu(III) biosorption on magnetic biosorbent was independent of ionic strength, suggesting that inner-sphere-surface-complexation predominated Eu(III) biosorption. The biosorption kinetics showed the sorption equilibrium was achieved at reaction time of 24 h, and the maximum biosorption capacity of Eu(III) on magnetic biosorbent calculated by Langmuir model was 69.45 mg/g at pH 3.5 and 298 K. The regeneration experiments showed the slight decrease of biosorption capacity after the fifth recycles. These results suggested that this magnetic biosorbent presented the fast biosorption rate and high biosorption capacity for Eu(III). The results of XPS analysis revealed that various oxygenated function groups (e.g. carboxyl, hydroxyl groups) were responsible for the high effective biosorption of Eu(III). These findings manifested that this magnetic biosorbent could be as a high-effective material for the immobilization and pre-concentration of radionuclides from aqueous solution in environment remediation.

Acknowledgment

Financial supports from project of Education Department of Anhui Province (No. gxyqZD2016305), project of the National Spark Plan (No. 2015GA710008), Public Welfare Research Institutes Basic Research Services (No. CAFYBB 2011001), National University Student Innovation and Entrepreneurship Training Program (No. 201610375037) are acknowledged.

References

1. Sun, Y. B., Zhang, R., Ding, C. C., Wang, X. X., Cheng, W. C., Chen, C. L., Wang, X. K.: Adsorption of U(VI) on sericite in the presence of Bacillus subtilis: a combined batch, EXAFS and modeling techniques. Geochim. Cosmochim. Acta 180, 51 (2016).10.1016/j.gca.2016.02.012Suche in Google Scholar

2. Ding, C. C., Cheng, W. C., Sun, Y. B., Wang, X. K.: Effects of Bacillus subtilis on the reduction of U(VI) by nano-Fe0. Geochim. Cosmochim. Acta 165, 86 (2015).10.1016/j.gca.2015.05.036Suche in Google Scholar

3. Geckeis, H., Lutzenkirchen, J., Polly, R., Rabung, T., Schmidt, M.: Mineral-water interface reactions of actinides. Chem. Rev. 113, 1016 (2013).10.1021/cr300370hSuche in Google Scholar PubMed

4. Sun, Y. B., Wu, Z.-Y., Wang, X. X., Ding, C. C., Cheng, W. C., Yu, S.-H., Wang, X. K.: Macroscopic and microscopic investigation of U(VI) and Eu(III) adsorption on carbonaceous nanofibers. Environ. Sci. Technol. 50, 4459 (2016).10.1021/acs.est.6b00058Suche in Google Scholar PubMed

5. Xie, Y., Helvenston, E. M., Shilller-Nickles, L. C., Powell, B. A.: Surface complexation modeling of Eu(III) and U(VI) interactions with graphene oxide. Environ. Sci. Technol. 50, 1821 (2016).10.1021/acs.est.5b05307Suche in Google Scholar PubMed

6. Sun, Y. B., Chen, C. L., Tan, X. L., Shao, D. D., Li, J. X., Zhao, G. X., Yang, S. B., Wang, Q., Wang, X. K.: Enhanced adsorption of Eu(III) on mesoporous Al2O3/expanded graphite composites investigated by macroscopic and microscopic techniques. Dalton Trans. 41, 13388 (2012).10.1039/c2dt31510fSuche in Google Scholar PubMed

7. Li, M. X., Sun, Y. B., Liu, H. B., Chen, T. H., Hayat, T., Alabadi, N. S., Chen, C. L.: Spectroscopic and modeling investigation of Eu(III)/U(VI) sorption on nanomagnetite from aqueous solutions. ACS Sustainable Chem. Eng. 5, 5493 (2017).10.1021/acssuschemeng.7b00829Suche in Google Scholar

8. Janot, N., Benedetti, M. F., Reiller, P. E.: Colloidal alpha-Al2O3, europium(III) and humic substances interactions: a macroscopic and spectroscopic study. Environ. Sci. Technol. 45, 3224 (2011).10.1021/es102592aSuche in Google Scholar PubMed

9. Fan, Q. H., Tan, X. L., Li, J. X., Wang, X. K., Wu, W. S., Montavon, G.: Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques. Environ. Sci. Technol. 43, 5776 (2009).10.1021/es901241fSuche in Google Scholar PubMed

10. Sun, Y. B., Li, J. X., Wang, X. K.: The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques. Geochim. Cosmochim. Acta 140, 621 (2014).10.1016/j.gca.2014.06.001Suche in Google Scholar

11. Wang, X. X., Sun, Y. B., Alsaedi, A., Hayat, T., Wang, X. K.: Interaction mechanism of Eu(III) with MX-80 bentonite studied by batch, TRLFS and kinetic desorption techniques. Chem. Eng. J. 264, 570 (2015).10.1016/j.cej.2014.11.136Suche in Google Scholar

12. Stumpf, T., Curtius, H., Walther, C., Dardenne, K., Ufer, K., Fanghanel, T.: Incorporation of Eu(III) into hydrotalcite: a TRLFS and EXAFS study. Environ. Sci. Technol. 41, 3186 (2007).10.1021/es0624873Suche in Google Scholar PubMed

13. Schnurr, A., Marsac, R., Rabung, T., Lutzenkirchen, J., Geckeis, H.: Sorption of Cm(III) and Eu(III) onto clay minerals under saline conditions: batch adsorption, laser-fluorescence spectroscopy and modeling. Geochim. Cosmochim. Acta 151, 192 (2015).10.1016/j.gca.2014.11.011Suche in Google Scholar

14. Rabung, T., Pierret, M. C., Bauer, A., Geckeis, H., Bradbury, M. H., Baeyens, B.: Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 1: batch sorption and time-resolved laser fluorescence spectroscopy experiments. Geochim. Cosmochim. Acta 69, 5393 (2005).10.1016/j.gca.2005.06.030Suche in Google Scholar

15. Schlegel, M. L., Pointeau, I., Coreau, N., Reiller, P.: Mechanism of europium retention by calcium silicate hydrates: an EXAFS study. Environ. Sci. Technol. 38, 4423 (2004).10.1021/es0498989Suche in Google Scholar PubMed

16. Sun, Y. B., Wang, Q., Chen, C. L., Tan, X. L., Wang, X. K.: Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ. Sci. Technol. 46, 6020 (2012).10.1021/es300720fSuche in Google Scholar PubMed

17. Pidchenko, I., Kvashnina, K. O., Yokosawa, T., Finck, N., Bahl, S., Schild, D., Polly, R., Bohnert, E., Rossberg, A., Gottlicher, J., Dardenne, K., Rothe, J., Schafer, T., Geckeis, H., Vitova, T.: Uranium redox transformations after U(VI) coprecipitation with magnetite nanoparticles. Environ. Sci. Technol. 51, 2217 (2017).10.1021/acs.est.6b04035Suche in Google Scholar PubMed

18. Liang, L., Guan, X., Shi, Z., Li, J., Wu, Y., Tratnyek, P. G.: Coupled effects of aging and weak magnetic fields on sequestration of selenite by zero-valent iron. Environ. Sci. Technol. 48, 6326 (2014).10.1021/es500958bSuche in Google Scholar PubMed

19. Singer, D. M., Chatman, S. M., Ilton, E. S., Rosso, K. M., Banfield, J. F., Waychunas, G. A.: Identification of simultaneous U(VI) sorption complexes and U(IV) nanoprecipitates on the magnetite (111) surface. Environ. Sci. Technol. 46, 3811 (2012).10.1021/es203877xSuche in Google Scholar PubMed

20. Haavik, C., Stolen, S., Fjellvag, H., Hanfland, M., Hausermann, D.: Equation of state of magnetite and its high-pressure modification: thermodynamics of the Fe-O system at high pressure. Am. Mineral. 85, 514 (2000).10.2138/am-2000-0413Suche in Google Scholar

21. Li, Y., Sheng, G. D., Sheng, J.: Magnetite decorated graphene oxide for the highly efficient immobilization of Eu(III) from aqueous solution. J. Mol. Liq. 199, 474 (2014).10.1016/j.molliq.2014.08.009Suche in Google Scholar

22. Guo, Z. Q., Li, Y., Pan, S. H., Xu, J. Z.: Fabrication of Fe3O4@cyclodextrin magnetic composite for the high-efficient removal of Eu(III). J. Mol. Liq. 206, 272 (2015).10.1016/j.molliq.2015.02.034Suche in Google Scholar

23. Li, X. Y., Li, F. B., Fang, L. J.: Effect of Paecilomyces cateniannulatus on the adsorption of nickel onto graphene oxide. Korean J. Chem. Eng. 32, 2449 (2015).10.1007/s11814-015-0097-8Suche in Google Scholar

24. Xu, B., Zhu, Y. K., Liu, H. B., Jin, Z. X., Chen, T. H.: The kinetic and thermodynamic adsorption of Eu(III) on synthetic maghemite. J. Mol. Liq. 221, 171 (2016).10.1016/j.molliq.2016.05.055Suche in Google Scholar

25. Li, F. B., Gao, Z. M., Li, X. Y., Fang, L. J.: The adsorption of U(VI) and Hg(II) on Paecilomyces catenlannulatus proteases. J. Radioanal. Nucl. Chem. 298, 2043 (2013).10.1007/s10967-013-2658-9Suche in Google Scholar

26. Li, F. B., Gao, Z. M., Li, X. Y., Fang, L. J.: The effect of Paecilomyces catenlannulatus on removal of U(VI) by illite. J. Environ. Radioact. 137, 31 (2014).10.1016/j.jenvrad.2014.06.014Suche in Google Scholar PubMed

27. Yang, S. B., Ding, C. C., Cheng, W. C., Jin, Z. X., Sun, Y. B.: Effect of microbes on Ni(II) diffusion onto sepiolite. J. Mol. Liq. 204, 170 (2015).10.1016/j.molliq.2015.01.035Suche in Google Scholar

28. Jin, Z. X., Wang, X. X., Sun, Y. B., Ai, Y. J., Wang, X. K.: Adsorption of 4-n-nonylphenol and bisphenol-A on magnetic reduced graphene oxides: a combined experimental and theoretical studies. Environ. Sci. Technol. 49, 9168 (2015).10.1021/acs.est.5b02022Suche in Google Scholar PubMed

29. Ding, C. C., Cheng, W. C., Sun, Y. B., Wang, X. K.: Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides. J. Hazard. Mater. 295, 127 (2015).10.1016/j.jhazmat.2015.04.032Suche in Google Scholar PubMed

30. Sun, Y. B., Shao, D. D., Chen, C. L., Yang, S. B., Wang, X. K.: Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environ. Sci. Technol. 47, 9904 (2013).10.1021/es401174nSuche in Google Scholar PubMed

31. Lagergren, S.: Zur theorie der sogenannten adsorption geloster stoffe. Pseudo-second order model for sorption processes. Handlingar 24, 1 (1898).Suche in Google Scholar

32. Ho, Y. S., McKay, G.: Pseudo-second order model for sorption processes. Proc. Biochem. 34, 451 (1999).10.1016/S0032-9592(98)00112-5Suche in Google Scholar

33. Sun, Y. B., Yang, S. B., Chen, Y., Ding, C. C., Cheng, W. C., Wang, X. K.: Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ. Sci. Technol. 49, 4255 (2015).10.1021/es505590jSuche in Google Scholar

34. Song, W. C., Yang, T. T., Wang, X. X., Sun, Y. B., Ai, Y. J., Sheng, G. D., Hayat, T., Wang, X. K.: Experimental and theoretical evidence for competitive interactions of tetracycline and sulfamethazine with reduced graphene oxides. Environ. Sci. Nano 3, 1318 (2016).10.1039/C6EN00306KSuche in Google Scholar

35. Ma, M. H., Gao, H. Y., Sun, Y. B., Huang, M. S.: The adsorption and desorption of Ni(II) on Al substituted goethite. J. Mol. Liq. 201, 30 (2015).10.1016/j.molliq.2014.11.024Suche in Google Scholar

36. Huang, J. Y., Wu, Z. W., Chen, L. W., Sun, Y. B.: The sorption of Cd(II) and U(VI) on sepiolite: a combined experimental and modeling studies. J. Mol. Liq. 209, 706 (2015).10.1016/j.molliq.2015.05.047Suche in Google Scholar

37. Sun, Y. B., Wang, X. X., Ai, Y. J., Yu, Z. M., Huang, W., Chen, C. L., Hayat, T., Alsaedi, A., Wang, X. K.: Interaction of sulfonated graphene oxide with U(VI) studied by spectroscopic analysis and theoretical calculations. Chem. Eng. J. 310, 292 (2017).10.1016/j.cej.2016.10.122Suche in Google Scholar

38. Cheng, W. C., Ding, C. C., Sun, Y. B., Wang, M. L.: The sequestration of U(VI) on functional beta-cyclodextrin-attapulgite nanorods. J. Radioanal. Nucl. Chem. 302, 385 (2014).10.1007/s10967-014-3180-4Suche in Google Scholar

39. Rizkalla, E. N., Choppin, G. R.: Hydration and hydrolysis of lanthanides. In: K. A. Jr. Gshneidner and L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 15, Elsevier, New York, Ch. 103. (1991).10.1016/S0168-1273(05)80009-1Suche in Google Scholar

40. Cheng, W. C., Ding, C. C., Wu, Q. Y., Sun, Y. B., Shi, W. Q., Hayat, T., Alsaedi, A., Chai, Z. F., Wang, X. K.: Mutual effect of U(VI) and Sr(II) on graphene oxides: evidence from EXAFS and theoretical calculations. Environ. Sci. Nano 4, (2017).10.1039/C7EN00114BSuche in Google Scholar

41. Sun, Y. B., Wang, X. X., Song, W. C., Lu, S. H., Chen, C. L., Wang, X. K.: Mechanistic insights into the decontamination of Th(IV) on graphene oxide-based composites by EXAFS and modeling techniques. Environ. Sci. Nano 4, 222 (2017).10.1039/C6EN00470ASuche in Google Scholar

42. Liu, H. B., Li, M. X., Chen, T. H., Chen, C. L., Alharbi, N. S., Hayat, T., Sun, Y. B.: New synthesis of nZVI/C composites as an efficient adsorbents for the uptake of U(VI) from aqueous solutions. Environ. Sci. Technol. 51, 9227 (2017).10.1021/acs.est.7b02431Suche in Google Scholar PubMed

43. Sun, Y. B., Lu, S. H., Wang, X. X., Xu, C., Li, J. X., Chen, C. L., Chen, J., Hayat, T., Alsaedi, A., Alharbi, N. S., Wang, X. K.: Plasam-facilitated synthesis of amidoxime/carbon nanofiber hybrids for effective enrichment of 238U(VI) and 241Am(III). Environ. Sci. Technol. 51, 12274 (2017).10.1021/acs.est.7b02745Suche in Google Scholar PubMed

44. Langmuir, I.: The adsorption of gases on plane surface of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361 (1918).10.1021/ja02242a004Suche in Google Scholar

45. Freundlich, H. M. F.: Uber die adsorption in lasungen. J. Phys. Chem. 57, 385 (1906).10.1515/zpch-1907-5723Suche in Google Scholar

Received: 2018-1-10
Accepted: 2018-1-15
Published Online: 2018-2-9
Published in Print: 2018-7-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-2927/html
Button zum nach oben scrollen