Startseite Retardation of hexavalent uranium in muscovite environment: a batch study
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Retardation of hexavalent uranium in muscovite environment: a batch study

  • Zhuoxin Yin , Duoqiang Pan EMAIL logo , Ping Li , Peng Liu , Hanyu Wu und Wangsuo Wu EMAIL logo
Veröffentlicht/Copyright: 15. Februar 2018

Abstract

The sorption of hexavalent uranium on muscovite as a function of pH, background electrolyte, temperature and humic acid (HA) was investigated in detail using batch experiments. The results showed that the uranium sorpiton on muscovite was kinetic fast, the kinetic process was fitted well by pseudo-second-order kinetic model. The sorption of uranium depended strongly on pH while weakly on background electrolyte concentration, indicating that surface complexation dominated the sorption process. The escalation of temperature and humic acid concentration were favorable to uranium sorption on muscovite. The sorption isotherms at pH 6.0 could be described better by Langmuir model than Freundlich or Dubinin-Radushkevich (D-R) model, thermodynamic data indicated that the uranium sorption process on muscovite was spontaneous and endothermic process. The findings in present work can provide important experimental reference for understanding the environmental behavior of uranium in mica-rich terrains.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (U1730245, 21327801); the Fundamental Research Funds for the Central Universities (lzujbky-2017-96).

References

1. Pan, D., Fan, Q., Li, P., Liu, S., Wu, W.: Sorption of Th(IV) on Na-bentonite: effects of pH, ionic strength, humic substances and temperature. Chem. Eng. J. 172, 898 (2011).10.1016/j.cej.2011.06.080Suche in Google Scholar

2. Jin, Q., Su, L., Montavon, G., Sun, Y., Chen, Z., Guo, Z., Wu, W.: Surface complexation modeling of U(VI) adsorption on granite at ambient/elevated temperature: experimental and XPS study. Chem. Geol. 433, 81 (2016).10.1016/j.chemgeo.2016.04.001Suche in Google Scholar

3. Pan, D., Fan, Q., Fan, F., Tang, Y., Zhang, Y., Wu, W.: Removal of uranium contaminant from aqueous solution by chitosan@attapulgite composite. Sep. Purif. Technol. 177, 86 (2017).10.1016/j.seppur.2016.12.026Suche in Google Scholar

4. Fan, Q. H., Hao, L. M., Wang, C. L., Zheng, Z., Liu, C. L., Wu, W. S.: The adsorption behavior of U(VI) on granite. Environ. Sci. Proc. Impacts 16, 534 (2014).10.1039/c3em00324hSuche in Google Scholar PubMed

5. Pan, D., Fan, F., Wang, Y., Li, P., Hu, P., Fan, Q., Wu, W.: Retention of Eu(III) in muscovite environment: batch and spectroscopic studies. Chem. Eng. J. 330, 559 (2017).10.1016/j.cej.2017.07.184Suche in Google Scholar

6. Czajkowsky, D. M., Shao, Z.: Inhibition of protein adsorption to muscovite mica by monovalent cations. J. Microsc. 211, 1 (2003).10.1046/j.1365-2818.2003.01208.xSuche in Google Scholar PubMed

7. Xu, W., Chen, D., Chu, W., Wu, Z., Marcelli, A., Mottana, A., Soldatov, A., Brigatti, M. F.: Quantitative local structure determination in mica crystals: ab initio simulations of polarization XANES at the potassium K-edge. J. Synchrotron. Radiat. 18, 418 (2011).10.1107/S0909049511002949Suche in Google Scholar PubMed

8. Wang, X., Yu, S., Chen, Z., Zhao, Y., Jin, J., Wang, X.: Microstructures and speciation of radionuclides in natural environment studied by advanced spectroscopy and theoretical calculation. Sci. China Chem. 60, 1149 (2017).10.1007/s11426-017-9039-2Suche in Google Scholar

9. Yu, S., Wang, X., Yang, S., Sheng, G., Alsaedi, A., Hayat, T., Wang, X.: Interaction of radionuclides with natural and manmade materials using XAFS technique. Sci. China Chem. 60, 170 (2017).10.1007/s11426-016-0317-3Suche in Google Scholar

10. Chang, H.-S., Korshin, G. V., Wang, Z., Zachara, J. M.: Adsorption of uranyl on gibbsite: a time-resolved laser-induced fluorescence spectroscopy study. Environ. Sci. Technol. 40, 1244 (2006).10.1021/es051714iSuche in Google Scholar PubMed

11. Arnold, T., Utsunomiya, S., Geipel, G., Ewing, R. C., Baumann, N., Brendler, V.: Adsorbed U(VI) surface species on muscovite identified by laser fluorescence spectroscopy and transmission electron microscopy. Environ. Sci. Technol. 40, 4646 (2006).10.1021/es052507lSuche in Google Scholar PubMed

12. Sun, Y., Li, J., Wang, X.: The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques. Geochim. Cosmochim. Acta 140, 621 (2014).10.1016/j.gca.2014.06.001Suche in Google Scholar

13. Sun, Y., Yang, S., Chen, Y., Ding, C., Cheng, W., Wang, X.: Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ. Sci. Technol. 49, 4255 (2015).10.1021/es505590jSuche in Google Scholar PubMed

14. Zhang, Y., Zhao, H., Fan, Q., Zheng, X., Li, P., Liu, S., Wu, W.: Sorption of U(VI) onto a decarbonated calcareous soil. J. Radioanal. Nucl. Chem. 288, 395 (2011).10.1007/s10967-010-0948-zSuche in Google Scholar

15. Fan, Q. H., Xu, J. Z., Niu, Z. W., Li, P., Wu, W. S.: Investigation of Cs(I) uptake on Beishan soil combined batch and EDS techniques. Appl. Radiat. Isot. 70, 13 (2012).10.1016/j.apradiso.2011.07.004Suche in Google Scholar PubMed

16. Yang, J. S., Lee, J. Y., Park, Y. T., Baek, K., Choi, J.: Adsorption of As(III), As(V), Cd(II), Cu(II), and Pb(II) from aqueous solutions by natural muscovite. Sep. Sci. Technol. 45, 814 (2010).10.1080/01496391003609023Suche in Google Scholar

17. Oelkers, E. H., Schott, J., Gauthie, J.-M., Herrero-Roncal, T.: An experimental study of the dissolution mechanism and rates of muscovite. Geochim. Cosmochim. Acta 72, 4948 (2008).10.1016/j.gca.2008.01.040Suche in Google Scholar

18. Sun, Y., Wu, Z., Wang, X., Ding, C., Cheng, W., Yu, S., Wang, X.: Macroscopic and microscopic investigation of U(VI) and Eu(III) adsorption on carbonaceous nanofibers. Environ. Sci. Technol. 50, 4459 (2016).10.1021/acs.est.6b00058Suche in Google Scholar PubMed

19. Yu, S., Wang, J., Song, S., Sun, K., Li, J., Wang, X., Chen, Z., Wang, X.: One-pot synthesis of graphene oxide and Ni-Al layered double hydroxides nanocomposites for the efficient removal of U(VI) from wastewater. Sci. China Chem. 60, 415 (2017).10.1007/s11426-016-0420-8Suche in Google Scholar

20. Li, P., Yin, Z., Lin, J., Du, Y., Fan, Q., Wu, W.: Immobilization of U(VI) on iron oxy-hydroxides under various physicochemical conditions. Environ. Sci. Proc. Impacts 16, 2278 (2014).10.1039/C4EM00301BSuche in Google Scholar

21. Wang, P., Yin, L., Wang, J., Wang, X.: Superior immobilization of U(VI) and 243Am(III) on polyethyleneimine modified lamellar carbon nitride composite from water environment. Chem. Eng. J. 326, 863 (2017).10.1016/j.cej.2017.06.034Suche in Google Scholar

22. Wang, Z., Zachara, J. M., Yantasee, W., Gassman, P., Liu, C., Joly, A.: Cryogenic laser induced fluorescence characterization of U in hanford vadose zome pore waters. Environ. Sci. Technol. 38, 5591 (2004).10.1021/es049512uSuche in Google Scholar PubMed

23. Chakraborty, S., Wolthers, M., Chatterjee, D., Charlet, L.: Adsorption of arsenite and arsenate onto muscovite and biotite mica. J. Colloid Interface Sci. 309, 392 (2007).10.1016/j.jcis.2006.10.014Suche in Google Scholar PubMed

24. Erdem, E., Karapinar, N., Donat, R.: The removal of heavy metal cations by natural zeolites. J. Colloid. Interf. Sci. 280, 309 (2004).10.1016/j.jcis.2004.08.028Suche in Google Scholar PubMed

25. Genc-Fuhrman, H., Tjell, J. C., McConchie, D.: Adsorption of arsenic from water using activated neutralized red mud. Environ. Sci. Technol. 38, 2428 (2004).10.1021/es035207hSuche in Google Scholar PubMed

26. Pan, D., Fan, Q., Ding, K., Li, P., Lu, Y., Yu, T., Xu, J., Wu, W.: The sorption mechanisms of Th(IV) on attapulgite. Sci. China Chem. 54, 1138 (2011).10.1007/s11426-011-4279-xSuche in Google Scholar

Received: 2017-10-16
Accepted: 2017-12-15
Published Online: 2018-2-15
Published in Print: 2018-7-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2017-2888/html
Button zum nach oben scrollen