Startseite Luminescence of uranyl ion complexed with 2,6-pyridine dicarboxylic acid as ligand in acetonitrile medium: observation of co-luminescence
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Luminescence of uranyl ion complexed with 2,6-pyridine dicarboxylic acid as ligand in acetonitrile medium: observation of co-luminescence

  • Siuli Maji EMAIL logo , Satendra Kumar und Kannan Sankaran
Veröffentlicht/Copyright: 7. März 2017

Abstract

Luminescence from UO22+ (uranyl ion) complexed with 2,6-pyridine dicarboxylic acid (PDA) has been studied using acetonitrile (MeCN) as solvent between pH 1.0 and 6.0. The enhancement in luminescence intensity because of sensitization by PDA in the non-aqueous environment provided by the MeCN is found to be one order better than in aqueous medium. The luminescence is further enhanced by about four times following the addition of Y3+; a process known as co-luminescence. This is the first study on co-luminescence of uranyl ion in its PDA complex. Lifetime studies indicate the presence of two species having different micro-environments. Formations of both intra and inter molecular complexes are believed to be responsible for enhancement due to co-luminescence.

References

1. Berthoud, T., Decambox, P., Kirsch, B., Mauchien, P., Moulin C.: Direct uranium trace analysis in plutonium solutions by time-resolved laser-induced spectrofluorometry. Anal. Chem. 60, 1296 (1988).10.1021/ac00164a011Suche in Google Scholar

2. Decambox, P., Mauchien, P., Moulin, C.: Direct and fast determination of uranium in human urine samples by laser-induced time-resolved spectrofluorometry. Appl. Spectrosc. 45, 116 (1991).10.1366/0003702914337768Suche in Google Scholar

3. Brina, R., Miller, A. G.: Direct detection of trace levels of uranium by laser-induced kinetic phosphorimetry. Anal. Chem. 64, 1413 (1992).10.1021/ac00037a020Suche in Google Scholar

4. Moulin, C., Beaucaire, C., Decambox, P., Mauchien, P.: Determination of uranium in solution at the ng 1−1 level by time-resolved laser-induced spectrofluorimetry: application to geological samples. Anal. Chim. Acta 238, 291 (1990).10.1016/S0003-2670(00)80550-4Suche in Google Scholar

5. Moulin, C., Decambox, P., Trecani, L.: Direct and fast uranium determination in zirconium by time-resolved laser-induced fluorescence spectrometry. Anal. Chim. Acta 321, 121 (1996).10.1016/0003-2670(95)00546-3Suche in Google Scholar

6. Rathore, D. P. S.: Advances in technologies for the measurement of uranium in diverse matrices. Talanta 77, 9 (2008).10.1016/j.talanta.2008.06.019Suche in Google Scholar

7. Moriyasu, M.,Yokoyama, Y., Ikeda, S.: Quenching of uranyl luminescence by water molecule. J. Inorg. Nucl. Chem. 39, 2211 (1977).10.1016/0022-1902(77)80397-7Suche in Google Scholar

8. Meinrath, G.: Aquatic Chemistry of Uranium, Vol. 1, Freiberg On-Line Geoscience, Passau, Germany (1998), p. 22.Suche in Google Scholar

9. Meinrath, G., Kato, Y., Yoshida, Z.: Spectroscopic study of the uranyl hydrolysis species (UO2)2 (OH)22+. J. Radio. Nucl. Chem. 174, 299 (1993).10.1007/BF02037917Suche in Google Scholar

10. Moriyasu, M., Yokoyama, Y., Ikeda, S.: Anion coordination to uranyl ion and the luminescence lifetime of the uranyl complex. J. Inorg. Nucl. Chem. 39, 2199 (1977).10.1016/0022-1902(77)80395-3Suche in Google Scholar

11. Maji, S., Kumar, S., Sankaran, K.: Fluorimetric estimation of U(VI) in the presence of a large excess of Th(IV). J. Radio. Nucl. Chem. 302, 1277 (2014).10.1007/s10967-014-3527-xSuche in Google Scholar

12. Perry, L. M., Winefordner, J. D.: Energy transfer between 1,3-dimethylxanthine and europium(III) in aqueous solution. Anal. Chim. Acta 237, 273 (1990).10.1016/S0003-2670(00)83929-XSuche in Google Scholar

13. Morin, M., Bador, R., Dechaud, H.: Detection of europium(III) and samarium(III) by chelation and laser-excited time-resolved fluorimetry. Anal. Chim. Acta 219, 67 (1989).10.1016/S0003-2670(00)80334-7Suche in Google Scholar

14. Panigrahi, B. S., Peter, S., Viswanathan, K. S., Mathews, C. K.: Fluorescence enhancement of Tb3+ in Tb-aromatic acid complexes: correlation of synergistic enhancement with the structure of the ligand. Spectrochim. Acta A 51, 2289 (1995).10.1016/0584-8539(95)01464-0Suche in Google Scholar

15. Taketatsu, T.: Spectrophotofluorimetric determination of terbium, europium and samarium with pivaloyltrifluoroacetone and tri-n-octylphosphine oxide in micellar solution of nona-oxyethylene dodecyl ether. Talanta 29, 397 (1982).10.1016/0039-9140(82)80175-6Suche in Google Scholar

16. Luo, Y.-M., Li, J., Xiao, L.-X., Tang, R.-R., Tang, X.-C.: Synthesis, characterization and fluorescence properties of Eu(III) and Tb(III) complexes with novel mono-substituted β-diketone ligands and 1,10-phenanthroline. Spectrochim. Acta A 72, 703 (2009).10.1016/j.saa.2008.10.059Suche in Google Scholar PubMed

17. Azab, H. A., Duerkop, A., Saad, E. M., Awad, F. K., Abd El Aal, R. M., Kamel, R. M.: A novel luminescent terbium-3-carboxycoumarin probe for time-resolved fluorescence sensing of pesticides methomyl, aldicarb and prometryne. Spectrochim. Acta A 97, 915 (2012).10.1016/j.saa.2012.07.079Suche in Google Scholar PubMed

18. Binsheng, Y., Hoegy, F., Mislin, G. L. A., Mesini, P. J., Schalk, I. J.: Terbium, a fluorescent probe for investigation of siderophore pyochelin interactions with its outer membrane transporter FptA. J. Inorg. Biochem. 105, 1293 (2011).10.1016/j.jinorgbio.2011.03.016Suche in Google Scholar PubMed

19. Charbonniere, L. J., Ziessel, R., Montalti, M., Prodi, L., Zaccheroni, N., Boehme, C., Wipff, G.: Luminescent lanthanide complexes of a Bis-bipyridine-phosphine-oxide ligand as tools for anion detection. J. Am. Chem. Soc. 124, 7779 (2002).10.1021/ja0200847Suche in Google Scholar PubMed

20. An, B.-L., Gong, M.-L., Cheah, K.-W., Zhang, J.-M., Li, K.-F.: Synthesis and bright luminescence of lanthanide (Eu(III), Tb(III)) complexes sensitized with a novel organic ligand. Chem. Phys. Lett. 385, 345 (2004).10.1016/j.cplett.2003.12.093Suche in Google Scholar

21. Essawy, A. A.: Highly selective antenna effect in polystyrene membrane immobilized 2-pyridone sensitizer: novel spectrofluorimetric method for assessment of nano scale terbium (III). Sensor. Actuator. 196, 640 (2014).10.1016/j.snb.2014.02.060Suche in Google Scholar

22. Juan, P., Xiaotian, G., Jianbo, Y., Yanhui, Z., Ying, Z., Yunyou, W., Bo, S.: Synthesis and fluorescence studies on novel complexes of Tb(III) and Eu(III) with 4-(9H-carbazol-9-yl) benzoic acid. J. Alloys Compd. 426, 363 (2006).10.1016/j.jallcom.2006.02.030Suche in Google Scholar

23. Shiraishi, Y., Furubayashi, Y., Nishimura, G., Hirai, T.: Sensitized luminescence of Eu and Tb macrocyclic complexes bearing benzophenone antennae. J. Lumin. 26, 68 (2007).10.1016/j.jlumin.2006.05.007Suche in Google Scholar

24. Zhang, L., Zheng, X., Ahmad, W., Zhou, Y., An, Y.: A new and efficient luminescence enhancement system of Eu–N-(3,5-dibromosalicylidene)-2-aminopyridine–1,10-phenanthroline and its application in the determination of trace amounts of europium. Spectrochim. Acta A 104, 243 (2013).10.1016/j.saa.2012.11.086Suche in Google Scholar

25. Bünzli, J.-C. G., Eliseeva, S. V.: Intriguing aspects of lanthanide luminescence. Chem. Sci. 4, 1939 (2013).10.1039/c3sc22126aSuche in Google Scholar

26. Biju, S., Gopakumar, N., Bünzli, J.-C. G., Scopelliti, R., Kim, H. K., Reddy, M. L. P.: Brilliant photoluminescence and triboluminescence from ternary complexes of DyIII and TbIII with 3-phenyl-4-propanoyl-5-isoxazolonate and a bidentate phosphine oxide coligand. Inorg. Chem. 52, 8750 (2013).10.1021/ic400913fSuche in Google Scholar

27. Bünzli, J.-C. G.: On the design of highly luminescent lanthanide complexes. Coord. Chem. Rev. 293–294, 19 (2015).10.1016/j.ccr.2014.10.013Suche in Google Scholar

28. Bünzli, J.-C. G., Chauvin, A.-S., Kim, H. K., Deiters, E., Eliseeva, S. V.: Lanthanide luminescence efficiency in eight- and nine-coordinate complexes: Role of the radiative lifetime. Coord. Chem. Rev. 254, 2623 (2010).10.1016/j.ccr.2010.04.002Suche in Google Scholar

29. Ci, Y.-X., Lan, Z.-H.: Fluorometric determination of samarium and gadolinium by enhancement of fluorescence of samarium-thenoyltrifluoroacetone-1,10-phenanthroline ternary complex by gadolinium. Anal. Chem. 61, 1063 (1989).10.1021/ac00185a004Suche in Google Scholar

30. Xu, Y.-Y., Hemmila, I. A.: Co-fluorescence enhancement system based on pivaloyltrifluoroacetone and yttrium for the simultaneous detection of europium, terbium, samarium and dysprosium. Anal. Chim. Acta 256, 9 (1992).10.1016/0003-2670(92)85319-2Suche in Google Scholar

31. Jinghe, Y., Xuezhen, R., Huabin, Z., Ruiping, S.: Enhanced luminescence of the europium(III)-terbium(III)-dibenzoylmethane-ammonia-acetone system and its application to the determination of europium. Analyst 115, 1505 (1990).10.1039/an9901501505Suche in Google Scholar

32. Ci, Y.-X., Lan, Z.-H.: Fluorescence enhancement of the europium(III)-thenoyltrifluoroacetone-trioctylphosphine oxide ternary complex by gadolinium(III) and its application to the determination of europium(III). Analyst 113, 1453 (1988).10.1039/an9881301453Suche in Google Scholar

33. Panigrahi, B. S., Peter, S., Viswanathan, K. S.: Cofluorescence of Eu3+ in complexes of aromatic carboxylic acids. Spectrochim. Acta A 53, 2579 (1997).10.1016/S1386-1425(97)00190-XSuche in Google Scholar

34. Xu, C.-J., Xie, F., Guo, X.-Z., Yang, H.: Synthesis and cofluorescence of Eu(Y) complexes with salicylic acid and o-phenanthroline. Spectrochim. Acta A 61, 2005 (2005).10.1016/j.saa.2004.07.034Suche in Google Scholar

35. Xue-hui, Z., Ke-long, H., Su-qin, L., Fei-peng, J., Zhi-guo, L., Shun-qin, H., Zhao-jian, L.: Syntheses and cofluorescence of complexes of Eu(III)/Y(III) with terephthalic acid, 2-thenoyltrifluoroacetone and trioctylphosphine oxide. Trans. Nonferr. Metals Soc. China 17, 638 (2007).10.1016/S1003-6326(07)60148-4Suche in Google Scholar

36. Xu, Y.-Y., Hemmila, I. A., Lovgren, T. N. -E.: Co-fluorescence effect in time-resolved fluoroimmunoassays. A review. Analyst 117, 1061 (1992).10.1039/AN9921701061Suche in Google Scholar

37. Yang, J., Zhou, H., Ren, X., Li, C.: Fluorescence enhancement of the Eu-Tb-benzoylacetone-phenanthroline system. Anal. Chim. Acta 238, 307 (1990).10.1016/S0003-2670(00)80552-8Suche in Google Scholar

38. Li, W., Li, W., Yu, G., Wang, Q., Jin, Y.: Enhanced luminescence and energy transfer of Eu(III) by Tb(III) in chelates in micelle solutions. J. Alloys Compd. 191, 107 (1993).10.1016/0925-8388(93)90279-VSuche in Google Scholar

39. Yang, J., Ge, H., Jie, N., Ren, X., Wang, N., Zou, H.: Study on the co-luminescence system of Tb-Gd-BPMPHD-CTMAB and its analytical application. Spectrochim. Acta A 51, 185 (1995).10.1016/0584-8539(94)E0102-GSuche in Google Scholar

40. Sun, C., Yang, J., Wu, X., Liu, S., Su, B.: Study on the fluorescent enhancement effect in terbium–gadolinium–protein–sodium dodecyl benzene sulfonate system and its application on sensitive detection of protein at nanogram level. Biochimie 86, 569 (2004).10.1016/j.biochi.2004.07.002Suche in Google Scholar PubMed

41. Liu, S., Yang, J., Wu, X., Su, B., Sun, C., Wang, F.: Analysis of tryptophan at nmol l−1 level based on the fluorescence enhancement of terbium–gadolinium–tryptophan–sodium dodecyl benzene sulfonate system. Talanta 64, 387 (2004).10.1016/j.talanta.2004.02.023Suche in Google Scholar PubMed

42. Maji, S., Viswanathan, K. S.: Sensitization of uranium fluorescence using 2,6-pyridinedicarboxylic acid: application for the determination of uranium in the presence of lanthanides. J. Lumin. 129, 1242 (2009).10.1016/j.jlumin.2009.06.018Suche in Google Scholar

43. Maji, S., Viswanathan, K. S.: Enhancement of uranyl fluorescence using trimesic acid: Ligand sensitization and co-fluorescence. J. Lumin. 131, 1848 (2011).10.1016/j.jlumin.2011.04.051Suche in Google Scholar

44. Servaes, K., Houwer, S. D., Walrand, C. G., Binnemans, K.: Spectroscopic properties of uranyl crown ether complexes in non-aqueous solvents. Phys. Chem. Chem. Phys. 6, 2946 (2004).10.1039/B317003ASuche in Google Scholar

45. Nockemann, P., Deun, R. V., Thijs, B., Huys, D., Vanecht, E., Hecke, K. V., Meervelt, L.V., Binnemans, K.: Uranyl complexes of carboxyl-functionalized ionic liquids. Inorg. Chem. 49, 3351 (2010).10.1021/ic902406hSuche in Google Scholar

46. Nockemann, P., Servaes, K., Deun, R. V., Hecke, K. V., Meervelt, L. V., Binnemans, K., Walrand, C. G.: Speciation of uranyl complexes in ionic liquids by optical spectroscopy. Inorg. Chem. 46, 11335 (2007).10.1021/ic701752jSuche in Google Scholar

47. Kumar, S., Maji, S., Joseph, M., Sankaran, K.: Ligand sensitized luminescence of uranyl by benzoic acid in acetonitrile medium: A new luminescent uranyl benzoate specie. Spectrochim. Acta A 138, 509 (2015).10.1016/j.saa.2014.11.033Suche in Google Scholar

48. Kumar, S., Maji, S., Joseph, M., Sankaran, K.: Spectroscopic investigation of europium benzoate in acetonitrile: luminescence enhancement and complexation studies. J. Lumin. 161, 123 (2015).10.1016/j.jlumin.2014.12.055Suche in Google Scholar

49. Peral, F., Gallego, E.: Self-association of pyridine-2,6-dicarboxylic acid in aqueous solution as determined from ultraviolet hypochromic and hyperchromic effects. Spectrochim. Acta A 56, 2149 (2000).10.1016/S1386-1425(00)00270-5Suche in Google Scholar

50. Jakusch, T., Jin, W., Yang, L., Kiss, T., Crans, D. C.: Vanadium(IV/V) speciation of pyridine-2,6-dicarboxylic acid and 4-hydroxy-pyridine-2,6-dicarboxylic acid complexes: potentiometry, EPR spectroscopy and comparison across oxidation states. J. Inorg. Biochem. 95, 1 (2003).10.1016/S0162-0134(03)00090-4Suche in Google Scholar

51. Tabatabaee, M., Dadkhodaee, M., Kukovec, B.-M.: Different coordination environments of iron(III) and pseudopolymorphism in complexes with dipicolinic acid and 2-amino-6-picoline. The influence of molar ratio and solvent type. Polyhedron 51, 316 (2013).10.1016/j.poly.2012.12.033Suche in Google Scholar

52. Xie, Y.-F., Zhu, H., Shi, H.-T., Jia, A.-Q., Zhang, Q.-F.: Ruthenium complexes containing pyridine-2,6-dicarboxylato ligands. Inorg. Chim. Acta 428, 147 (2015).10.1016/j.ica.2014.12.031Suche in Google Scholar

53. Harrowfield, J. M., Lugan, N., Shahverdizadeh, G. H., Soudi, A. A., Thuery, P.: Solid-state luminescence and π-staking in crystalline uranyl dipicolinates. Eur. J. Inorg. Chem. 2, 389 (2006).10.1002/ejic.200500671Suche in Google Scholar

54. Masci, B., Thuery, P.: Uranyl complexes with the pyridine-2,6-dicarboxylato ligand: new dinuclear species with μ-η2, η2-peroxide, μ2-hydroxide or μ2-methoxide bridges. Polyhedron 24, 229 (2005).10.1016/j.poly.2004.11.002Suche in Google Scholar

55. Jiang, Y.-S., Li, G.-H., Tian, Y., Liao, Z.-L., Chen, J.-S.: Uranyl pyridine-dicarboxylate compounds with clustered water molecules. Inorg. Chem. Comm. 9, 595, (2006).10.1016/j.inoche.2006.03.002Suche in Google Scholar

56. Frisch, M., Cahill, C. L.: Synthesis, structure and fluorescent studies of novel uranium coordination polymers in the pyridinedicarboxylic acid system. Dalton Trans. 39, 4679 (2006).10.1039/b608187hSuche in Google Scholar PubMed

57. Xu, C., Tian, G., Teat, S. J., Rao, L.: Complexation of U(VI) with dipicolinic acid: thermodynamics and coordination modes. Inorg. Chem. 52, 2750 (2013).10.1021/ic4000389Suche in Google Scholar PubMed

58. Maji, S., Kumar, S., Sankaran, K.: Fluorescence and co-fluorescence of Tb3+ and Eu3+ in acetonitrile using 2,6-pyridine dicarboxylic acid as ligand. Spectrochim. Acta A 135, 405 (2015).10.1016/j.saa.2014.07.022Suche in Google Scholar PubMed

Received: 2016-10-26
Accepted: 2017-1-23
Published Online: 2017-3-7
Published in Print: 2017-7-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2016-2718/html
Button zum nach oben scrollen