Startseite Complexing power of hydro-soluble degradation products from γirradiated polyvinylchloride: influence on Eu(OH)3(s) solubility and Eu(III) speciation in neutral to alkaline environment
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Complexing power of hydro-soluble degradation products from γirradiated polyvinylchloride: influence on Eu(OH)3(s) solubility and Eu(III) speciation in neutral to alkaline environment

  • Pascal E. Reiller EMAIL logo , Elodie Fromentin , Muriel Ferry , Adeline Dannoux-Papin , Hawa Badji , Michel Tabarant und Thomas Vercouter
Veröffentlicht/Copyright: 22. März 2017

Abstract

The complexing power of hydrosoluble degradation products (HDPs) from an alkaline hydrolysis of a 10 MGy γ-irradiated polyvinylchloride is studied. The complexation of Eu(III), as an analogue of lanthanide and actinide radionuclides at their +III oxidation state for oxygen containing functions, is evidenced both from the increasing of Eu(OH)3(s) dissolution, and from a complexometric titration by time-resolved luminescence spectroscopy. The dissolution of Eu(OH)3(s) in a simplified alkaline solution (0.3 M KOH/0.1 M NaOH) increases moderately, but significantly, with the HDPs concentration. The luminescence signal of the supernatant clearly indicates the presence of several complexed Eu(III) species. Performing a complexometric titration of Eu(III) from pH 6 by alkaline HDPs shows the formation of two different species with increasing HDPs’ concentration and pH. Operational complexation constants – based on dissolved carbon concentration – are proposed. The analyses of the spectra and luminescence decays seem to confirm the presence of two different species.


Corresponding author: Dr. Pascal E. Reiller, PhD, Den – Service d’Etudes Analytiques et de Réactivité des Surfaces (SEARS), CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France

Acknowledgements:

Camille Auriault and Daniel Léonço are acknowledged for their participation in the experimental dissolution and TRLS work. Soumaya Boughattas is acknowledged for the synthesis of Eu(OH)3(s). Dr. Nathalie Macé is acknowledged for her support during the TOC analyses. This work was financed by AREVA, Andra, and CEA within the framework of the COSTO project from CEA. Dr. Christine Lamouroux-Lucas is acknowledged for her strong support.

References

1. Berner, U. R.: Evolution of pore water chemistry during degradation of cement in a radioactive waste repository environment. Waste Manage. 12, 201 (1992).10.1016/0956-053X(92)90049-OSuche in Google Scholar

2. Colombani, J., Herbette, G., Rossi, C., Joussot-Dubien, C., Labed, V., Gilardi, T.: Leaching of plasticized PVC: effect of irradiation. J. Appl. Polym. Sci. 112, 1372 (2009).10.1002/app.29612Suche in Google Scholar

3. Dannoux, A.: Extrapolation dans le temps des cinétiques de production des produits de dégradation radiolytique : application à un polyuréthane (2007), PhD Thesis, Université Paris XI, Orsay, France, p. 270.Suche in Google Scholar

4. Dannoux, A., Esnouf, S., Amekraz, B., Dauvois, V., Moulin, C.: Degradation mechanism of poly(ether-urethane) Estane® induced by high-energy radiation. II. Oxidation effects. J. Polym. Sci., Part B: Polym. Phys. 46, 861 (2008).10.1002/polb.21419Suche in Google Scholar

5. Fromentin, E., Pielawski, M., Lebeau, D., Esnouf, S., Cochin, F., Legand, S., Ferry, M.: Leaching of radio-oxidized poly(ester urethane): water-soluble molecules characterization. Polym. Degrad. Stab. 128, 172 (2016).10.1016/j.polymdegradstab.2016.03.007Suche in Google Scholar

6. Bourbon, X., Toulhoat, P.: Influence of organic degradation products on the solubilisation of radionuclides in intermediate and low level radioactive wastes. Radiochim. Acta 74, 315 (1996).10.1524/ract.1996.74.special-issue.315Suche in Google Scholar

7. Vercammen, K., Glaus, M. A., Van Loon, L. R.: Complexation of Th(IV) and Eu(III) by α-isosaccharinic acid under alkaline conditions. Radiochim. Acta 89, 393 (2001).10.1524/ract.2001.89.6.393Suche in Google Scholar

8. Glaus, M. A., Van Loon, L. R.: Degradation of cellulose under alkaline conditions: new insights from a 12 years degradation study. Environ. Sci. Technol. 42, 2906 (2008).10.1021/es7025517Suche in Google Scholar PubMed

9. Van Loon, L. R., Hummel, W.: Radiolytic and chemical degradation of strong acidic ion-exchange resins: study of the ligands formed. Nucl. Technol. 128, 359 (1999).10.13182/NT99-A3037Suche in Google Scholar

10. Van Loon, L. R., Hummel, W.: The degradation of strong basic anion exchange resins and mixed-bed ion-exchange resins: effect of degradation products on radionuclide speciation. Nucl. Technol. 128, 388 (1999).10.13182/NT99-A3039Suche in Google Scholar

11. Hummel, W., Van Loon, L. R.: The effect of degradation products of strong acidic cation exchange resins on radionuclide speciation: a case study with Ni2+. Nucl. Technol. 128, 372 (1999).10.13182/NT99-A3038Suche in Google Scholar

12. Choppin, G. R., Dadgar, A., Rizkalla, E. N.: Thermodynamics of complexation of lanthanides by dicarboxylate ligands. Inorg. Chem. 25, 3581 (1986).10.1021/ic00240a009Suche in Google Scholar

13. Lajunen, L. H. J., Portanova, R., Piispanen, J., Tolazzi, M.: Critical evaluation of stability constants for alpha-hydroxycarboxylic acid complexes with protons and metal ions and the accompanying enthalpy changes – Part I: aromatic ortho-hydroxycarboxylic acids. Pure Appl. Chem. 69, 329 (1997).10.1351/pac199769020329Suche in Google Scholar

14. Portanova, R., Lajunen, L. H. J., Tolazzi, M., Piispanen, J.: Critical evaluation of stability constants for alpha-hydroxycarboxylic acid complexes with protons and metal ions and the accompanying enthalpy changes – Part II: aliphatic 2-hydroxycarboxylic acids. Pure Appl. Chem. 75, 495 (2003).10.1351/pac200375040495Suche in Google Scholar

15. Hummel, W., Anderegg, G., Rao, L. F., Puigdomènech, I., Tochiyama, O.: Chemical Thermodynamics 9. Chemical Thermodynamics of Compounds and Complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with Selected Organic Ligands (2005), North Holland Elsevier Science Publishers B. V., Amsterdam, The Netherlands, p. 1088.Suche in Google Scholar

16. Wieland, E., Jakob, A., Tits, J., Lothenbach, B., Kunz, D.: Sorption and diffusion studies with low molecular weight organic compounds in cementitious systems. Appl. Geochem. 67, 101 (2016).10.1016/j.apgeochem.2016.01.009Suche in Google Scholar

17. Vercammen, K., Glaus, M. A., Van Loon, L. R.: Evidence for the existence of complexes between Th(IV) and α-isosaccharinic acid under alkaline conditions. Radiochim. Acta 84, 221 (1999).10.1524/ract.1999.84.4.221Suche in Google Scholar

18. Vercammen, K., Glaus, M. A., Van Loon, L. R.: Complexation of calcium by α-isosaccharinic acid under alkaline conditions. Acta Chem. Scand. 53, 241 (1999).10.3891/acta.chem.scand.53-0241Suche in Google Scholar

19. Wang, Z. M., van de Burgt, L. J., Choppin, G. R.: Spectroscopic study of lanthanide(III) complexes with carboxylic acids. Inorg. Chim. Acta 293, 167 (1999).10.1016/S0020-1693(99)00234-0Suche in Google Scholar

20. Thakur, P., Conca, J. L., Choppin, G. R.: Complexation studies of Cm(III), Am(III), and Eu(III) with linear and cyclic carboxylates and polyaminocarboxylates. J. Coord. Chem. 64, 3215 (2011).10.1080/00958972.2011.616927Suche in Google Scholar

21. Park, K. K., Jung, E. C., Cho, H. R., Kim, W. H.: Ternary complex formation of Eu(III) with o-phthalate in aqueous solutions. Spectrochim. Acta, Part A 73, 615 (2009).10.1016/j.saa.2009.03.003Suche in Google Scholar PubMed

22. Pearson, R. G.: Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533 (1963).10.1021/ja00905a001Suche in Google Scholar

23. Hummel, W., Berner, U., Curti, E., Pearson, F. J., Thoenen, T.: Nagra/PSI chemical thermodynamic data base 01/01 (2002), NAGRA, Report NTB 02-06, Parkland, FL, USA. p. 564.10.1524/ract.2002.90.9-11_2002.805Suche in Google Scholar

24. Kielland, J.: Individual activity coefficients of ions in aqueous solutions. J. Am. Chem. Soc. 59, 1675 (1937).10.1021/ja01288a032Suche in Google Scholar

25. Vercouter, T., Vitorge, P., Trigoulet, N., Giffaut, E., Moulin, C.: Eu(CO3)33- and the limiting carbonate complexes of other M3+ f-elements in aqueous solutions: a solubility and TRLFS study. New J. Chem. 29, 544 (2005).10.1039/b413002bSuche in Google Scholar

26. Berner, U. R.: Modeling the incongruent dissolution of hydrated cement minerals. Radiochim. Acta 44–45, 387 (1988).10.1524/ract.1988.4445.2.387Suche in Google Scholar

27. Berner, U. R.: A Thermodynamic Description of the Evolution of Pore Water Chemistry and Uranium Speciation during the Degradation of Cement (1990), Nagra, Report PSI Bericht 62, Paul Scherrer Institut, Villigen, Switzerland, and TR-90-12, Wettingen, Switzerland.Suche in Google Scholar

28. Macero, D. J., Anderson, L. B., Malachesky, P.: Voltammetric studies of Eu(III) in formate buffer – Formal potential of Eu(III)-Eu(II) system. J. Electroanal. Chem. 10, 76 (1959).10.1016/0022-0728(65)85018-5Suche in Google Scholar

29. Pascual, E. G., Choppin, G. R.: The thermodynamics of complexation of lanthanides by o-phthalic acid. Lanthanide Actinide Res. 1, 57 (1985).Suche in Google Scholar

30. Moreau, P., Colette-Maatouk, S., Vitorge, P., Gareil, P., Reiller, P. E.: Complexation of europium(III) by hydroxybenzoic acids: a time-resolved luminescence spectroscopy study. Inorg. Chim. Acta 432, 81 (2015).10.1016/j.ica.2015.03.036Suche in Google Scholar

31. Wang, Z. M., van de Burgt, L. J., Choppin, G. R.: Spectroscopic study of lanthanide(III) complexes with aliphatic dicarboxylic acids. Inorg. Chim. Acta 310, 248 (2000).10.1016/S0020-1693(00)00259-0Suche in Google Scholar

32. Pointeau, I., Hainos, D., Coreau, N., Reiller, P.: Effect of organics on selenite uptake by cementitious materials. Waste Manage. 26, 733 (2006).10.1016/j.wasman.2006.01.026Suche in Google Scholar

33. Berthoud, T., Decambox, P., Kirsch, B., Mauchien, P., Moulin, C.: Direct determination of traces of lanthanide ions in aqueous-solutions by laser-induced time-resolved spectrofluorimetry. Anal. Chim. Acta 220, 235 (1989).10.1016/S0003-2670(00)80266-4Suche in Google Scholar

34. Brevet, J., Claret, F., Reiller, P. E.: Spectral and temporal luminescent properties of Eu(III) in humic substance solutions from different origins. Spectrochim. Acta, Part A 74, 446 (2009).10.1016/j.saa.2009.06.042Suche in Google Scholar PubMed

35. Reiller, P. E., Brevet, J.: Bi-exponential decay of Eu(III) complexed by Suwannee River humic substances: spectroscopic evidence of two different excited species. Spectrochim. Acta, Part A 75, 629 (2010).10.1016/j.saa.2009.11.029Suche in Google Scholar PubMed

36. Kouhail, Y. Z., Benedetti, M. F., Reiller, P. E.: Eu(III)-fulvic acid complexation: evidence of fulvic acid concentration dependent interactions by time-resolved luminescence spectroscopy. Environ. Sci. Technol. 50, 3706 (2016).10.1021/acs.est.5b05456Suche in Google Scholar

37. Carnall, W. T., Fields, P. R., Rajnak, K.: Electronic energy levels of trivalent lanthanide aquo ions. IV. Eu3+. J. Chem. Phys. 49, 4450 (1968).10.1063/1.1669896Suche in Google Scholar

38. Dryer, D. J., Korshin, G. V., Fabbricino, M.: In situ examination of the protonation behavior of fulvic acids using differential absorbance spectroscopy. Environ. Sci. Technol. 42, 6644 (2008).10.1021/es800741uSuche in Google Scholar

39. Janot, N., Reiller, P. E., Korshin, G. V., Benedetti, M. F.: Using spectrophotometric titrations to characterize humic acid reactivity at environmental concentrations. Environ. Sci. Technol. 44, 6782 (2010).10.1021/es1012142Suche in Google Scholar

40. Yan, M., Dryer, D., Korshin, G. V.: Spectroscopic characterization of changes of DOM deprotonation–protonation properties in water treatment processes. Chemosphere 148, 426 (2016).10.1016/j.chemosphere.2016.01.055Suche in Google Scholar

41. Plancque, G., Moulin, V., Toulhoat, P., Moulin, C.: Europium speciation by time-resolved laser-induced fluorescence. Anal. Chim. Acta 478, 11 (2003).10.1016/S0003-2670(02)01486-1Suche in Google Scholar

42. Vercouter, T.: Complexes aqueux de lanthanides (III) et actinides (III) avec les ions carbonates et sulfates. Etude thermodynamique par spectrofluorimétrie laser résolue en temps et spectrométrie de masse à ionisation électrospray (2005), Université Evry-Val d’Essonne, Evry, France, p. 253.Suche in Google Scholar

43. Horrocks, W. D., Jr., Sudnick, D. R.: Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water-molecules. J. Am. Chem. Soc. 101, 334 (1979).10.1021/ja00496a010Suche in Google Scholar

44. Reiller, P. E., Brevet, J., Nebbioso, A., Piccolo, A.: Europium(III) complexed by HPSEC size-fractions of a vertisol humic acid: small differences evidenced by time-resolved luminescence spectroscopy. Spectrochim. Acta, Part A 78, 1173 (2011).10.1016/j.saa.2010.12.075Suche in Google Scholar PubMed

45. Plancque, G., Maurice, Y., Moulin, V., Toulhoat, P., Moulin, C.: On the use of spectroscopic techniques for interaction studies, Part I: complexation between europium and small organic ligands. Appl. Spectrosc. 59, 432 (2005).10.1366/0003702053641540Suche in Google Scholar PubMed

46. Kuke, S., Marmodée, B., Eidner, S., Schilde, U., Kumke, M. U.: Intramolecular deactivation processes in complexes of salicylic acid or glycolic acid with Eu(III). Spectrochim. Acta, Part A 75, 1333 (2010).10.1016/j.saa.2009.12.080Suche in Google Scholar PubMed

47. Kimura, T., Choppin, G. R.: Luminescence study on determination of the hydration number of Cm(III). J. Alloys Compd. 213, 313 (1994).10.1016/0925-8388(94)90921-0Suche in Google Scholar

48. Marmodée, B., Jahn, K., Ariese, F., Gooijer, C., Kumke, M. U.: Direct spectroscopic evidence of 8- and 9-fold coordinated europium(III) species in H2O and D2O. J. Phys. Chem. A 114, 13050 (2010).10.1021/jp1094036Suche in Google Scholar PubMed

49. Pearson, F. J.: Opalinus Clay Experimental Water: A1 Type, Version 980318 (1998), Paul Scherrer Institut, Report Technical Report TM-44-98-07, Villigen, Switzerland.Suche in Google Scholar

50. de Craen, M., Wang, L., Van Geet, M., Moors, H.: Geochemistry of Boom Clay Pore Water at the Mol site (2004), SCK•CEN, Report SCK•CEN-BLG-990, Mol, Belgium. p. 181.Suche in Google Scholar

51. Gaucher, E. C., Blanc, P., Bardot, F., Braibant, G., Buschaert, S., Crouzet, C., Gautier, A., Girard, J.-P., Jacquot, E., Lassin, A., Negrel, G., Tournassat, C., Vinsot, A., Altmann, S.: Modelling the porewater chemistry of the Callovian-Oxfordian formation at a regional scale. C. R. Geosci. 338, 917 (2006).10.1016/j.crte.2006.06.002Suche in Google Scholar

52. Pointeau, I., Coreau, N., Reiller, P. E.: Uptake of anionic radionuclides Cl, I, SeO32− and CO32− onto degraded cement pastes and competing effect of organic ligands. Radiochim. Acta 96, 367 (2008).10.1524/ract.2008.1503Suche in Google Scholar


Supplemental Material:

The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/ract-2016-2691).


Received: 2016-9-1
Accepted: 2017-1-27
Published Online: 2017-3-22
Published in Print: 2017-7-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2016-2691/html
Button zum nach oben scrollen