Abstract
Luminescence from UO22+ (uranyl ion) complexed with 2,6-pyridine dicarboxylic acid (PDA) has been studied using acetonitrile (MeCN) as solvent between pH 1.0 and 6.0. The enhancement in luminescence intensity because of sensitization by PDA in the non-aqueous environment provided by the MeCN is found to be one order better than in aqueous medium. The luminescence is further enhanced by about four times following the addition of Y3+; a process known as co-luminescence. This is the first study on co-luminescence of uranyl ion in its PDA complex. Lifetime studies indicate the presence of two species having different micro-environments. Formations of both intra and inter molecular complexes are believed to be responsible for enhancement due to co-luminescence.
References
1. Berthoud, T., Decambox, P., Kirsch, B., Mauchien, P., Moulin C.: Direct uranium trace analysis in plutonium solutions by time-resolved laser-induced spectrofluorometry. Anal. Chem. 60, 1296 (1988).10.1021/ac00164a011Search in Google Scholar
2. Decambox, P., Mauchien, P., Moulin, C.: Direct and fast determination of uranium in human urine samples by laser-induced time-resolved spectrofluorometry. Appl. Spectrosc. 45, 116 (1991).10.1366/0003702914337768Search in Google Scholar
3. Brina, R., Miller, A. G.: Direct detection of trace levels of uranium by laser-induced kinetic phosphorimetry. Anal. Chem. 64, 1413 (1992).10.1021/ac00037a020Search in Google Scholar
4. Moulin, C., Beaucaire, C., Decambox, P., Mauchien, P.: Determination of uranium in solution at the ng 1−1 level by time-resolved laser-induced spectrofluorimetry: application to geological samples. Anal. Chim. Acta 238, 291 (1990).10.1016/S0003-2670(00)80550-4Search in Google Scholar
5. Moulin, C., Decambox, P., Trecani, L.: Direct and fast uranium determination in zirconium by time-resolved laser-induced fluorescence spectrometry. Anal. Chim. Acta 321, 121 (1996).10.1016/0003-2670(95)00546-3Search in Google Scholar
6. Rathore, D. P. S.: Advances in technologies for the measurement of uranium in diverse matrices. Talanta 77, 9 (2008).10.1016/j.talanta.2008.06.019Search in Google Scholar
7. Moriyasu, M.,Yokoyama, Y., Ikeda, S.: Quenching of uranyl luminescence by water molecule. J. Inorg. Nucl. Chem. 39, 2211 (1977).10.1016/0022-1902(77)80397-7Search in Google Scholar
8. Meinrath, G.: Aquatic Chemistry of Uranium, Vol. 1, Freiberg On-Line Geoscience, Passau, Germany (1998), p. 22.Search in Google Scholar
9. Meinrath, G., Kato, Y., Yoshida, Z.: Spectroscopic study of the uranyl hydrolysis species (UO2)2 (OH)22+. J. Radio. Nucl. Chem. 174, 299 (1993).10.1007/BF02037917Search in Google Scholar
10. Moriyasu, M., Yokoyama, Y., Ikeda, S.: Anion coordination to uranyl ion and the luminescence lifetime of the uranyl complex. J. Inorg. Nucl. Chem. 39, 2199 (1977).10.1016/0022-1902(77)80395-3Search in Google Scholar
11. Maji, S., Kumar, S., Sankaran, K.: Fluorimetric estimation of U(VI) in the presence of a large excess of Th(IV). J. Radio. Nucl. Chem. 302, 1277 (2014).10.1007/s10967-014-3527-xSearch in Google Scholar
12. Perry, L. M., Winefordner, J. D.: Energy transfer between 1,3-dimethylxanthine and europium(III) in aqueous solution. Anal. Chim. Acta 237, 273 (1990).10.1016/S0003-2670(00)83929-XSearch in Google Scholar
13. Morin, M., Bador, R., Dechaud, H.: Detection of europium(III) and samarium(III) by chelation and laser-excited time-resolved fluorimetry. Anal. Chim. Acta 219, 67 (1989).10.1016/S0003-2670(00)80334-7Search in Google Scholar
14. Panigrahi, B. S., Peter, S., Viswanathan, K. S., Mathews, C. K.: Fluorescence enhancement of Tb3+ in Tb-aromatic acid complexes: correlation of synergistic enhancement with the structure of the ligand. Spectrochim. Acta A 51, 2289 (1995).10.1016/0584-8539(95)01464-0Search in Google Scholar
15. Taketatsu, T.: Spectrophotofluorimetric determination of terbium, europium and samarium with pivaloyltrifluoroacetone and tri-n-octylphosphine oxide in micellar solution of nona-oxyethylene dodecyl ether. Talanta 29, 397 (1982).10.1016/0039-9140(82)80175-6Search in Google Scholar
16. Luo, Y.-M., Li, J., Xiao, L.-X., Tang, R.-R., Tang, X.-C.: Synthesis, characterization and fluorescence properties of Eu(III) and Tb(III) complexes with novel mono-substituted β-diketone ligands and 1,10-phenanthroline. Spectrochim. Acta A 72, 703 (2009).10.1016/j.saa.2008.10.059Search in Google Scholar PubMed
17. Azab, H. A., Duerkop, A., Saad, E. M., Awad, F. K., Abd El Aal, R. M., Kamel, R. M.: A novel luminescent terbium-3-carboxycoumarin probe for time-resolved fluorescence sensing of pesticides methomyl, aldicarb and prometryne. Spectrochim. Acta A 97, 915 (2012).10.1016/j.saa.2012.07.079Search in Google Scholar PubMed
18. Binsheng, Y., Hoegy, F., Mislin, G. L. A., Mesini, P. J., Schalk, I. J.: Terbium, a fluorescent probe for investigation of siderophore pyochelin interactions with its outer membrane transporter FptA. J. Inorg. Biochem. 105, 1293 (2011).10.1016/j.jinorgbio.2011.03.016Search in Google Scholar PubMed
19. Charbonniere, L. J., Ziessel, R., Montalti, M., Prodi, L., Zaccheroni, N., Boehme, C., Wipff, G.: Luminescent lanthanide complexes of a Bis-bipyridine-phosphine-oxide ligand as tools for anion detection. J. Am. Chem. Soc. 124, 7779 (2002).10.1021/ja0200847Search in Google Scholar PubMed
20. An, B.-L., Gong, M.-L., Cheah, K.-W., Zhang, J.-M., Li, K.-F.: Synthesis and bright luminescence of lanthanide (Eu(III), Tb(III)) complexes sensitized with a novel organic ligand. Chem. Phys. Lett. 385, 345 (2004).10.1016/j.cplett.2003.12.093Search in Google Scholar
21. Essawy, A. A.: Highly selective antenna effect in polystyrene membrane immobilized 2-pyridone sensitizer: novel spectrofluorimetric method for assessment of nano scale terbium (III). Sensor. Actuator. 196, 640 (2014).10.1016/j.snb.2014.02.060Search in Google Scholar
22. Juan, P., Xiaotian, G., Jianbo, Y., Yanhui, Z., Ying, Z., Yunyou, W., Bo, S.: Synthesis and fluorescence studies on novel complexes of Tb(III) and Eu(III) with 4-(9H-carbazol-9-yl) benzoic acid. J. Alloys Compd. 426, 363 (2006).10.1016/j.jallcom.2006.02.030Search in Google Scholar
23. Shiraishi, Y., Furubayashi, Y., Nishimura, G., Hirai, T.: Sensitized luminescence of Eu and Tb macrocyclic complexes bearing benzophenone antennae. J. Lumin. 26, 68 (2007).10.1016/j.jlumin.2006.05.007Search in Google Scholar
24. Zhang, L., Zheng, X., Ahmad, W., Zhou, Y., An, Y.: A new and efficient luminescence enhancement system of Eu–N-(3,5-dibromosalicylidene)-2-aminopyridine–1,10-phenanthroline and its application in the determination of trace amounts of europium. Spectrochim. Acta A 104, 243 (2013).10.1016/j.saa.2012.11.086Search in Google Scholar
25. Bünzli, J.-C. G., Eliseeva, S. V.: Intriguing aspects of lanthanide luminescence. Chem. Sci. 4, 1939 (2013).10.1039/c3sc22126aSearch in Google Scholar
26. Biju, S., Gopakumar, N., Bünzli, J.-C. G., Scopelliti, R., Kim, H. K., Reddy, M. L. P.: Brilliant photoluminescence and triboluminescence from ternary complexes of DyIII and TbIII with 3-phenyl-4-propanoyl-5-isoxazolonate and a bidentate phosphine oxide coligand. Inorg. Chem. 52, 8750 (2013).10.1021/ic400913fSearch in Google Scholar
27. Bünzli, J.-C. G.: On the design of highly luminescent lanthanide complexes. Coord. Chem. Rev. 293–294, 19 (2015).10.1016/j.ccr.2014.10.013Search in Google Scholar
28. Bünzli, J.-C. G., Chauvin, A.-S., Kim, H. K., Deiters, E., Eliseeva, S. V.: Lanthanide luminescence efficiency in eight- and nine-coordinate complexes: Role of the radiative lifetime. Coord. Chem. Rev. 254, 2623 (2010).10.1016/j.ccr.2010.04.002Search in Google Scholar
29. Ci, Y.-X., Lan, Z.-H.: Fluorometric determination of samarium and gadolinium by enhancement of fluorescence of samarium-thenoyltrifluoroacetone-1,10-phenanthroline ternary complex by gadolinium. Anal. Chem. 61, 1063 (1989).10.1021/ac00185a004Search in Google Scholar
30. Xu, Y.-Y., Hemmila, I. A.: Co-fluorescence enhancement system based on pivaloyltrifluoroacetone and yttrium for the simultaneous detection of europium, terbium, samarium and dysprosium. Anal. Chim. Acta 256, 9 (1992).10.1016/0003-2670(92)85319-2Search in Google Scholar
31. Jinghe, Y., Xuezhen, R., Huabin, Z., Ruiping, S.: Enhanced luminescence of the europium(III)-terbium(III)-dibenzoylmethane-ammonia-acetone system and its application to the determination of europium. Analyst 115, 1505 (1990).10.1039/an9901501505Search in Google Scholar
32. Ci, Y.-X., Lan, Z.-H.: Fluorescence enhancement of the europium(III)-thenoyltrifluoroacetone-trioctylphosphine oxide ternary complex by gadolinium(III) and its application to the determination of europium(III). Analyst 113, 1453 (1988).10.1039/an9881301453Search in Google Scholar
33. Panigrahi, B. S., Peter, S., Viswanathan, K. S.: Cofluorescence of Eu3+ in complexes of aromatic carboxylic acids. Spectrochim. Acta A 53, 2579 (1997).10.1016/S1386-1425(97)00190-XSearch in Google Scholar
34. Xu, C.-J., Xie, F., Guo, X.-Z., Yang, H.: Synthesis and cofluorescence of Eu(Y) complexes with salicylic acid and o-phenanthroline. Spectrochim. Acta A 61, 2005 (2005).10.1016/j.saa.2004.07.034Search in Google Scholar
35. Xue-hui, Z., Ke-long, H., Su-qin, L., Fei-peng, J., Zhi-guo, L., Shun-qin, H., Zhao-jian, L.: Syntheses and cofluorescence of complexes of Eu(III)/Y(III) with terephthalic acid, 2-thenoyltrifluoroacetone and trioctylphosphine oxide. Trans. Nonferr. Metals Soc. China 17, 638 (2007).10.1016/S1003-6326(07)60148-4Search in Google Scholar
36. Xu, Y.-Y., Hemmila, I. A., Lovgren, T. N. -E.: Co-fluorescence effect in time-resolved fluoroimmunoassays. A review. Analyst 117, 1061 (1992).10.1039/AN9921701061Search in Google Scholar
37. Yang, J., Zhou, H., Ren, X., Li, C.: Fluorescence enhancement of the Eu-Tb-benzoylacetone-phenanthroline system. Anal. Chim. Acta 238, 307 (1990).10.1016/S0003-2670(00)80552-8Search in Google Scholar
38. Li, W., Li, W., Yu, G., Wang, Q., Jin, Y.: Enhanced luminescence and energy transfer of Eu(III) by Tb(III) in chelates in micelle solutions. J. Alloys Compd. 191, 107 (1993).10.1016/0925-8388(93)90279-VSearch in Google Scholar
39. Yang, J., Ge, H., Jie, N., Ren, X., Wang, N., Zou, H.: Study on the co-luminescence system of Tb-Gd-BPMPHD-CTMAB and its analytical application. Spectrochim. Acta A 51, 185 (1995).10.1016/0584-8539(94)E0102-GSearch in Google Scholar
40. Sun, C., Yang, J., Wu, X., Liu, S., Su, B.: Study on the fluorescent enhancement effect in terbium–gadolinium–protein–sodium dodecyl benzene sulfonate system and its application on sensitive detection of protein at nanogram level. Biochimie 86, 569 (2004).10.1016/j.biochi.2004.07.002Search in Google Scholar PubMed
41. Liu, S., Yang, J., Wu, X., Su, B., Sun, C., Wang, F.: Analysis of tryptophan at nmol l−1 level based on the fluorescence enhancement of terbium–gadolinium–tryptophan–sodium dodecyl benzene sulfonate system. Talanta 64, 387 (2004).10.1016/j.talanta.2004.02.023Search in Google Scholar PubMed
42. Maji, S., Viswanathan, K. S.: Sensitization of uranium fluorescence using 2,6-pyridinedicarboxylic acid: application for the determination of uranium in the presence of lanthanides. J. Lumin. 129, 1242 (2009).10.1016/j.jlumin.2009.06.018Search in Google Scholar
43. Maji, S., Viswanathan, K. S.: Enhancement of uranyl fluorescence using trimesic acid: Ligand sensitization and co-fluorescence. J. Lumin. 131, 1848 (2011).10.1016/j.jlumin.2011.04.051Search in Google Scholar
44. Servaes, K., Houwer, S. D., Walrand, C. G., Binnemans, K.: Spectroscopic properties of uranyl crown ether complexes in non-aqueous solvents. Phys. Chem. Chem. Phys. 6, 2946 (2004).10.1039/B317003ASearch in Google Scholar
45. Nockemann, P., Deun, R. V., Thijs, B., Huys, D., Vanecht, E., Hecke, K. V., Meervelt, L.V., Binnemans, K.: Uranyl complexes of carboxyl-functionalized ionic liquids. Inorg. Chem. 49, 3351 (2010).10.1021/ic902406hSearch in Google Scholar
46. Nockemann, P., Servaes, K., Deun, R. V., Hecke, K. V., Meervelt, L. V., Binnemans, K., Walrand, C. G.: Speciation of uranyl complexes in ionic liquids by optical spectroscopy. Inorg. Chem. 46, 11335 (2007).10.1021/ic701752jSearch in Google Scholar
47. Kumar, S., Maji, S., Joseph, M., Sankaran, K.: Ligand sensitized luminescence of uranyl by benzoic acid in acetonitrile medium: A new luminescent uranyl benzoate specie. Spectrochim. Acta A 138, 509 (2015).10.1016/j.saa.2014.11.033Search in Google Scholar
48. Kumar, S., Maji, S., Joseph, M., Sankaran, K.: Spectroscopic investigation of europium benzoate in acetonitrile: luminescence enhancement and complexation studies. J. Lumin. 161, 123 (2015).10.1016/j.jlumin.2014.12.055Search in Google Scholar
49. Peral, F., Gallego, E.: Self-association of pyridine-2,6-dicarboxylic acid in aqueous solution as determined from ultraviolet hypochromic and hyperchromic effects. Spectrochim. Acta A 56, 2149 (2000).10.1016/S1386-1425(00)00270-5Search in Google Scholar
50. Jakusch, T., Jin, W., Yang, L., Kiss, T., Crans, D. C.: Vanadium(IV/V) speciation of pyridine-2,6-dicarboxylic acid and 4-hydroxy-pyridine-2,6-dicarboxylic acid complexes: potentiometry, EPR spectroscopy and comparison across oxidation states. J. Inorg. Biochem. 95, 1 (2003).10.1016/S0162-0134(03)00090-4Search in Google Scholar
51. Tabatabaee, M., Dadkhodaee, M., Kukovec, B.-M.: Different coordination environments of iron(III) and pseudopolymorphism in complexes with dipicolinic acid and 2-amino-6-picoline. The influence of molar ratio and solvent type. Polyhedron 51, 316 (2013).10.1016/j.poly.2012.12.033Search in Google Scholar
52. Xie, Y.-F., Zhu, H., Shi, H.-T., Jia, A.-Q., Zhang, Q.-F.: Ruthenium complexes containing pyridine-2,6-dicarboxylato ligands. Inorg. Chim. Acta 428, 147 (2015).10.1016/j.ica.2014.12.031Search in Google Scholar
53. Harrowfield, J. M., Lugan, N., Shahverdizadeh, G. H., Soudi, A. A., Thuery, P.: Solid-state luminescence and π-staking in crystalline uranyl dipicolinates. Eur. J. Inorg. Chem. 2, 389 (2006).10.1002/ejic.200500671Search in Google Scholar
54. Masci, B., Thuery, P.: Uranyl complexes with the pyridine-2,6-dicarboxylato ligand: new dinuclear species with μ-η2, η2-peroxide, μ2-hydroxide or μ2-methoxide bridges. Polyhedron 24, 229 (2005).10.1016/j.poly.2004.11.002Search in Google Scholar
55. Jiang, Y.-S., Li, G.-H., Tian, Y., Liao, Z.-L., Chen, J.-S.: Uranyl pyridine-dicarboxylate compounds with clustered water molecules. Inorg. Chem. Comm. 9, 595, (2006).10.1016/j.inoche.2006.03.002Search in Google Scholar
56. Frisch, M., Cahill, C. L.: Synthesis, structure and fluorescent studies of novel uranium coordination polymers in the pyridinedicarboxylic acid system. Dalton Trans. 39, 4679 (2006).10.1039/b608187hSearch in Google Scholar PubMed
57. Xu, C., Tian, G., Teat, S. J., Rao, L.: Complexation of U(VI) with dipicolinic acid: thermodynamics and coordination modes. Inorg. Chem. 52, 2750 (2013).10.1021/ic4000389Search in Google Scholar PubMed
58. Maji, S., Kumar, S., Sankaran, K.: Fluorescence and co-fluorescence of Tb3+ and Eu3+ in acetonitrile using 2,6-pyridine dicarboxylic acid as ligand. Spectrochim. Acta A 135, 405 (2015).10.1016/j.saa.2014.07.022Search in Google Scholar PubMed
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Measurement of activation cross sections of the 27Al(n,α)24Na and 27Al(n,p)27Mg reactions with quasi-monoenergetic neutrons
- Luminescence of uranyl ion complexed with 2,6-pyridine dicarboxylic acid as ligand in acetonitrile medium: observation of co-luminescence
- Optimization of uranyl ions removal from aqueous solution by natural and modified kaolinites
- Stability constant determinations for technetium (IV) complexation with selected amino carboxylate ligands in high nitrate solutions
- Evaluation of ammonium bifluoride fusion for rapid dissolution in post-detonation nuclear forensic analysis
- A thermodynamic model for the solubility of HfO2(am) in the aqueous K + – HCO3 − – CO32 − – OH − – H2O system
- The role of correlations in the determination of the transport properties of LaCl3 in high temperature molten eutectic LiCl–KCl
- Fabrication of a flexible polycarbonate/porphyrin film dosimeter for high dose dosimetry
- Complexing power of hydro-soluble degradation products from γirradiated polyvinylchloride: influence on Eu(OH)3(s) solubility and Eu(III) speciation in neutral to alkaline environment
Articles in the same Issue
- Frontmatter
- Measurement of activation cross sections of the 27Al(n,α)24Na and 27Al(n,p)27Mg reactions with quasi-monoenergetic neutrons
- Luminescence of uranyl ion complexed with 2,6-pyridine dicarboxylic acid as ligand in acetonitrile medium: observation of co-luminescence
- Optimization of uranyl ions removal from aqueous solution by natural and modified kaolinites
- Stability constant determinations for technetium (IV) complexation with selected amino carboxylate ligands in high nitrate solutions
- Evaluation of ammonium bifluoride fusion for rapid dissolution in post-detonation nuclear forensic analysis
- A thermodynamic model for the solubility of HfO2(am) in the aqueous K + – HCO3 − – CO32 − – OH − – H2O system
- The role of correlations in the determination of the transport properties of LaCl3 in high temperature molten eutectic LiCl–KCl
- Fabrication of a flexible polycarbonate/porphyrin film dosimeter for high dose dosimetry
- Complexing power of hydro-soluble degradation products from γirradiated polyvinylchloride: influence on Eu(OH)3(s) solubility and Eu(III) speciation in neutral to alkaline environment