Startseite Citric acid: fermentative production using organic wastes as feedstocks
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Citric acid: fermentative production using organic wastes as feedstocks

  • Birhan Aynalem , Himani Negi , Yigrem Alemu , Nirmala Sehrawat und Amit Kumar EMAIL logo
Veröffentlicht/Copyright: 26. September 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Citric acid is the most important organic acid produced in tonnage and is used extensively in the pharmaceutical, chemical and food industries due to its low cost and high efficiency compared to other acidulates. Citric acid is produced by fungi, bacteria and yeasts under solid-state and submerged state fermentations. Aspergillus niger is one of the most dominant producer of citric acid. Different fruit wastes and agricultural residues are employed as surplus resources for microbial production of citric acid. In this review, the microbial sources and different organic wastes involved in citric acid production have been discussed. Furthermore, the recovery, purification and application of citric acid in different human utilities have also been reviewed.


Corresponding author: Amit Kumar, Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India, E-mail:

Acknowledgement

The authors would like to thank the editors Amit Kumar and Vikas Kumar for their guidance and review of this article before its publication.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Competing interests: The authors declare no conflicts of interest regarding this article.

  3. Research funding: None.

References

1. Yazid, NA, Barrena, R, Komilis, D, Sánchez, A. Solid-state fermentation as a novel paradigm for organic waste valorization: a review. Sustainability 2017;9:1–28.10.3390/su9020224Suche in Google Scholar

2. Gurtler, JB, Mai, TL. Traditional preservatives – organic acids. Encycl Food Microbiol 2014;3:119–30.10.1016/B978-0-12-384730-0.00260-3Suche in Google Scholar

3. Papagianni, M. Organic acids: the biochemical basis. Compr Biotechnol 2011;1:109–20.10.1016/B978-0-08-088504-9.00011-8Suche in Google Scholar

4. Vandenberghe, LPS, Karp, SG, Oliveira, PZD, Carvalho, JCD, Rodrigues, C. Solid state fermentation for the production of organic acids. Curr Dev Biotechnol Bioeng 2018;9:415–34.10.1016/B978-0-444-63990-5.00018-9Suche in Google Scholar

5. Behera, BC, Mishra, R, Mohapatra, S. Microbial citric acid: production, properties, application, and future perspectives review. Food Front 2021;8:62–76. https://doi.org/10.1002/fft2.66.Suche in Google Scholar

6. Ali, SR, Anwar, Z, Irshad, M, Mukhtar, S, Warraich, NT. Bio-synthesis of citric acid from single and co-culture-based fermentation technology using agro-wastes. J Radiat Res Appl Sci 2015;9:57–62. https://doi.org/10.1016/j.jrras.2015.09.003.Suche in Google Scholar

7. Njokweni, SG, Steyn, A, Botes, M, Viljoen-Bloom, M, Zyl, WH. Potential valorization of organic waste streams to valuable organic acids through microbial conversion: a South African case study. Catalysts 2021;11:964. https://doi.org/10.3390/catal11080964.Suche in Google Scholar

8. Kumar, D, Jain, VK, Shanker, G, Srivastava, A. Citric acid production by solid state fermentation using sugarcane bagasse. Process Biochem 2003;38:1731–8. https://doi.org/10.1016/s0032-9592(02)00252-2.Suche in Google Scholar

9. Handelsman, J, Wackett, LP. Ecology and industrial microbiology microbial diversity – sustaining the earth and industry. Curr Opin Microbiol 2002;5:237–9. https://doi.org/10.1016/s1369-5274(02)00331-4.Suche in Google Scholar PubMed

10. Verma, P, Shah, M. Bioprospecting of microbial diversity: challenges and applications in biochemical industry, agriculture and environment protection, 1st ed. Netherlands: Elsevier Ltd; 2022:356 p.Suche in Google Scholar

11. Liaud, N, Giniés, C, Navarro, D, Fabre, N, Crapart, S, Gimbert, IH, et al.. Exploring fungal biodiversity: organic acid production by 66 strains of filamentous fungi. Fungal Biol Biotechnol 2014;1:1–10. https://doi.org/10.1186/s40694-014-0001-z.Suche in Google Scholar

12. Show, PL, Oladelea, KO, Siewa, Q, Zakryc, FAA, Land, JC, Ling, TC. Overview of citric acid production from Aspergillus niger. Front Life Sci 2015;8:271–83. https://doi.org/10.1080/21553769.2015.1033653.Suche in Google Scholar

13. Hesham, AE, Mostafa, YS, AlSharqi, LEO. Optimization of citric acid production by immobilized cells of novel yeast isolates. Mycobiology 2020;48:122–32. https://doi.org/10.1080/12298093.2020.1726854.Suche in Google Scholar PubMed PubMed Central

14. Morgunov, IG, Kamzolova, SV, Lunina, JN. Citric acid production by Yarrowia lipolytica yeast on different renewable raw materials. Fermentation 2018;4:36–46. https://doi.org/10.3390/fermentation4020036.Suche in Google Scholar

15. Dhillona, GS, Brar, SK, Kaur, S, Verma, M. Bioproduction and extraction optimization of citric acid from Aspergillus niger by rotating drum type solid-state bioreactor. Ind Crop Prod 2013;41:78–84. https://doi.org/10.1016/j.indcrop.2012.04.001.Suche in Google Scholar

16. Darouneh, E, Alavi, A, Vosoughi, M, Arjmand, M, Seifkordi, A, Zhang, X. Citric acid production: surface culture versus submerged culture. Adv J Microbiol Res 2014;2014:1–5. https://doi.org/10.1007/s12013-013-9760-z.Suche in Google Scholar PubMed

17. Pallares, J, Rodríguez, S, Sanromán, A. Citric acid production in submerged and solid state culture of Aspergillus niger. Bioprocess Eng 1996;15:31–3. https://doi.org/10.1007/bf00435524.Suche in Google Scholar

18. Zhang, M, Wang, H. Organic wastes as carbon sources to promote sulfate reducing bacterial activity for biological remediation of acid mine drainage. Miner Eng 2014;69:81–90. https://doi.org/10.1016/j.mineng.2014.07.010.Suche in Google Scholar

19. NogueiraaIsabel, FGE, Bastos, ACRR, SouzabJanice, GA, Carvalhob, GD, Oliveira, LCA. Recycling of solid waste rich in organic nitrogen from leather industry: mineral nutrition of rice plants. J Hazard Mater 2011;186:1064–9. https://doi.org/10.1016/j.jhazmat.2010.11.111.Suche in Google Scholar PubMed

20. Karthikeyan, A, Sivakumar, N. Citric acid production by Koji fermentation using banana peel as a novel substrate. Bioresour Technol 2010;101:5552–6. https://doi.org/10.1016/j.biortech.2010.02.063.Suche in Google Scholar PubMed

21. Dhillon, GS, Brar, SK, Verma, M, Tyagi, RD. Utilization of different agro-industrial wastes for sustainable bioproduction of citric acid by Aspergillus niger. Biochem Eng J 2011;54:83–92. https://doi.org/10.1016/j.bej.2011.02.002.Suche in Google Scholar

22. Xue, X, Bi, F, Liu, B, Li, J, Zhang, L, Zhang, L, et al.. Improving citric acid production of an industrial Aspergillus niger CGMCC 10142: identification and overexpression of a high-affinity glucose transporter with different promoters. Microb Cell Factories 2021;20:1–13. https://doi.org/10.1186/s12934-021-01659-3.Suche in Google Scholar PubMed PubMed Central

23. Hang, YD, Woodams, EE. Enzymatic enhancement of citric acid production by Aspergillus niger from corn cobs. Lebensm-Wiss Technol 2001;34:484–6. https://doi.org/10.1006/fstl.2001.0784.Suche in Google Scholar

24. Dienye, BN, Ahaotu, I, Agwa, OK, Odu, NN. Citric acid production potential of Aspergillus niger using Chrysophyllum albidum peel. Adv Biosci Biotechnol 2018;9:190–203. https://doi.org/10.4236/abb.2018.94013.Suche in Google Scholar

25. Rodrigues, C, Vandenberghe, LPS, Teodoro, J, Pandey, A, Soccol, CR. Improvement on citric acid production in solid-state fermentation by Aspergillus niger LPB BC mutant using citric pulp. Appl Biochem Biotechnol 2009;158:72–87. https://doi.org/10.1007/s12010-008-8370-5.Suche in Google Scholar PubMed

26. Thomas, P, West, A. Citric acid production by Aspergillus niger using solid-state fermentation of agricultural processing coproducts. Appl Biosci 2023;2:1–13. https://doi.org/10.3390/applbiosci2010001.Suche in Google Scholar

27. Patel, P, Modi, A, Minipara, D, Kumar, A. Microbial biosurfactants in management of organic waste. In: Mishra, VK, Kumar, A, editors. Sustainable environmental clean-up. Amsterdam, NL: Elsevier; 2021:211–30 pp.10.1016/B978-0-12-823828-8.00010-4Suche in Google Scholar

28. Sawant, O, Mahale, S, Ramchandran, V, Nagaraj, G, Bankar, A. Fungal citric acid production using waste materials: a mini-review. J Microbiol Biotechnol Food Sci 2018;8:821–8. https://doi.org/10.15414/jmbfs.2018.8.2.821-828.Suche in Google Scholar

29. Dutta, A, Sahoo, S, Mishra, RR, Pradhan, B, Das, A, Behera, BC. A comparative study of citric acid production from different agro-industrial wastes by Aspergillus niger isolated from mangrove forest soil. Environ Exp Biol 2019;17:115–22.10.22364/eeb.17.12Suche in Google Scholar

30. Angumeenal, AR, Venkappayya, D. An overview of citric acid production. LWT – Food Sci Technol 2013;50:367–70. https://doi.org/10.1016/j.lwt.2012.05.016.Suche in Google Scholar

31. Satheeshkumar, S, Sivagurunathan, P, Muthulakshmi, K, Uma, C. Utilization of fruit waste for the production of citric acid by using Aspergillus niger. J Drug Deliv Therapeut 2019;9:9–14. https://doi.org/10.22270/jddt.v9i4-a.3487.Suche in Google Scholar

32. Hang, YD, Woodams, EE. Solid state fermentation of apple pomace for citric acid production. MIRCEN J Appl Microbiol Biotechnol 1986;2:283–7. https://doi.org/10.1007/bf00933494.Suche in Google Scholar

33. Sharifzadeh, M, Najafpour, G. Citric acid production from apple pomace by solid state fermentation. In: International conference on environment, 13–15 November 2006. Penang, Malaysia: Universiti Sains Malaysia; 2006:1–7 pp.Suche in Google Scholar

34. Shojaosadati, SA, Babaeipour, V. Citric acid production from apple pomace in multi-layer packed bed solid-state bioreactor. Process Biochem 2002;37:909–14. https://doi.org/10.1016/s0032-9592(01)00294-1.Suche in Google Scholar

35. Rivas, B, Torrado, A, Torre, P, Converti, A, Domínguez, JM. Submerged citric acid fermentation on orange peel autohydrolysate. J Agric Food Chem 2008;56:2380–7. https://doi.org/10.1021/jf073388r.Suche in Google Scholar PubMed

36. Torrado, AM, Cortés, S, Salgado, JM, Max, B, Rodríguez, N, Bibbins, BP, et al.. Citric acid production from orange peel wastes by solid-state fermentation. Braz J Microbiol 2011;42:394–409. https://doi.org/10.1590/s1517-83822011000100049.Suche in Google Scholar PubMed PubMed Central

37. Kubicek, CP, Karaffa, L. Organic acids. In: Ratledge, C, Kristiansen, B, editors. Basic biotechnology, 3rd ed. Cambridge: Cambridge University Press; 2006:359–80 pp.10.1017/CBO9780511802409.017Suche in Google Scholar

38. Hamdy, HS. Citric acid production by Aspergillus niger grown on orange peel medium fortified with cane molasses. Ann Microbiol 2013;63:267–78. https://doi.org/10.1007/s13213-012-0470-3.Suche in Google Scholar

39. Kareem, SO, Akpan, I, Alebiowu, OO. Production of citric acid by Aspergillus niger using pineapple waste. Malays J Microbiol 2010;6:161–5.10.21161/mjm.19009Suche in Google Scholar

40. Cabrera, HAP, Menezes, HC, Oliveira, JV, Batista, RFS. Evaluation of residual levels of benomyl, methyl parathion, diuron, and vamidothion in pineapple pulp and bagasse (Smooth cayenne). J Agric Food Chem 2000;48:5750–3. https://doi.org/10.1021/jf9911444.Suche in Google Scholar PubMed

41. Tran, CT, Mitchell, DA. Pineapple waste a novel substrate for citric acid production by solid-state fermentation. Biotechnol Lett 1995;17:1107–10. https://doi.org/10.1007/bf00143111.Suche in Google Scholar

42. Priscilla, D, Gnaneel, M. Production of citric acid from banana peel using Aspergillus niger. Int J Creativ Res Thoughts 2020;8:547–58.Suche in Google Scholar

43. Angumeenal, AR, Venkappayya, D. Artrocarpus heterophyllus – a potential substrate for citric acid biosynthesis using Aspergillus niger. LWT – Food Sci Technol 2005;38:89–93. https://doi.org/10.1016/j.lwt.2004.04.014.Suche in Google Scholar

44. Başeğmez, HİO. Effect of waste grape pomace on citric acid bioproduction by submerged fermentation. Emir J Food Agric 2021;42:23–34.Suche in Google Scholar

45. Hang, YD, Luh, BS, Woodams, EE. Microbial production of citric acid by solid-state fermentation of kiwifruit peel. J Food Sci 1987;52:226–7. https://doi.org/10.1111/j.1365-2621.1987.tb14014.x.Suche in Google Scholar

46. Roukas, T, Kotzekidou, P. Pomegranate peel waste: a new substrate for citric acid production by Aspergillus niger in solid-state fermentation under non-aseptic conditions. Environ Sci Pollut Res 2020;27:13105–13. https://doi.org/10.1007/s11356-020-07928-9.Suche in Google Scholar PubMed

47. Singh, B. Rice Husk Ash, Editor(s): Rafat Siddique, Paulo Cachim. In: Woodhead Publishing series in civil and structural engineering, waste and supplementary cementitious materials in concrete. Sawston: Woodhead Publishing; 2018:417–60 pp.10.1016/B978-0-08-102156-9.00013-4Suche in Google Scholar

48. Samosir, AGR, Sariati, MN, Sitepu, I, Ritonga, ER, Samosir, AM, Martgrita, MM. Optimisation of rice husks’ lignocellulose pre-treatment methods and use of central composite design in citric acid fermentation: a review. IOP Conf Ser Earth Environ Sci 2022;1097:012015. https://doi.org/10.1088/1755-1315/1097/1/012015.Suche in Google Scholar

49. Ritonga, ER, Manurung, A, Martgrita, MM. Optimization of citric acid production by utilizing rice husk waste as a substrate using submerged fermentation. In: Proceedings of the 4th international conference on life sciences and biotechnology (ICOLIB 2021). Jember, Indonesia: Atlantis Press; 2022:88–97 pp.10.2991/978-94-6463-062-6_10Suche in Google Scholar

50. Khosravi-Darani, K, Zoghi, A. Comparison of pretreatment strategies of sugarcane baggase: experimental design for citric acid production. Bioresour Technol 2008;99:6986–93. https://doi.org/10.1016/j.biortech.2008.01.024.Suche in Google Scholar PubMed

51. Pandey, A, Soccol, CR, Nigam, P, Soccol, VT. Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 2000;74:69–80. https://doi.org/10.1016/s0960-8524(99)00142-x.Suche in Google Scholar

52. Kurbanoğlu, EB, Algur, ÖF. Use of ram horn hydrolysate as peptone for bacterial growth. Turkish J Biol 2002;26:115–23.Suche in Google Scholar

53. Baden, HP, Kubilus, J. The fibrous protein of fish epidermis. J Invest Dermatol 1983;80:S36–8. https://doi.org/10.1111/1523-1747.ep12537074.Suche in Google Scholar

54. Kurbanoglu, EB, Kurbanoglu, NI. Production of citric acid from ram horn hydrolysate by Aspergillus niger. Process Biochem 2003;38:1421–4. https://doi.org/10.1016/s0032-9592(03)00029-3.Suche in Google Scholar

55. US Department of Agriculture. World agricultural production, circular series foreign agric. serv. USA: US Department of Agriculture; 2020.Suche in Google Scholar

56. Malukani, B. Export potential of soyabean from India: a trend analysis. Prestige J Manag Res 2016;3:43–53.Suche in Google Scholar

57. Bittencourt, GA, de Souza, VLP, Valladares-Diestra, K, Herrmann, LW, de Mello, AFM, Vásquez, ZS, et al.. Soybean hulls as carbohydrate feedstock for medium to high-value biomolecule production in biorefineries: a review. Bioresour Technol 2021;339:125594. https://doi.org/10.1016/j.biortech.2021.125594.Suche in Google Scholar PubMed

58. Bittencourt, GA, de Souza, VLP, Valladares-Diestra, KK, Soccol, CR. Soybean hull valorization for sugar production through the optimization of citric acid pretreatment and enzymatic hydrolysis. Ind Crop Prod 2022;186:115–78.10.1016/j.indcrop.2022.115178Suche in Google Scholar

59. Darouneh, E, Alavi, A, Vosoughi, M, Arjmand, M, Seifkordi, A, Rajabi, R. Citric acid production: surface culture versus submerged culture. Afr J Microbiol Res 2009;3:541–5.Suche in Google Scholar

60. Marlinda, MN, Irwan, M, Ramli, A. Citric acid production from molasses use biosynthesis Aspergillus niger. Int J Sci Technol Res 2019;8:357–60.Suche in Google Scholar

61. Shetty, VG. Production and optimization of citric acid by Aspergillus niger using molasses and corncob. Int J Pharm Pharmaceut Sci 2015;7:152–7.Suche in Google Scholar

62. Barl, B, Biliaderis, CG, Murray, ED, Macgregor, AW. Combined chemical and enzymic treatments of corn husk lignocellulosics. J Sci Food Agric 1991;56:195–214. https://doi.org/10.1002/jsfa.2740560209.Suche in Google Scholar

63. Hang, YD, Woodams, EE. Corn husks: a potential substrate for production of citric acid by Aspergillus niger. LWT – Food Sci Technol 2000;33:520–1. https://doi.org/10.1006/fstl.2000.0711.Suche in Google Scholar

64. Soccol, RC, Vandenberghe, SPL, Rodrigues, C, Pandey, A. A new perspective for citric acid production and application. Food Technol Biotechnol 2006;44:141–9.Suche in Google Scholar

65. Lende, SV, Karemore, H, Umekar, MJ. Review on production of citric acid by fermentation technology. GSC Biol Pharmaceut Sci 2021;17:085–93. https://doi.org/10.30574/gscbps.2021.17.3.0313.Suche in Google Scholar

66. Max, B, Salgado, MJ, Rodríguez, N, Cortés, S, Converti, A, Domínguez, JM. Biotechnological production of citric acid. Braz J Microbiol 2010;41:862–75. https://doi.org/10.1590/s1517-83822010000400005.Suche in Google Scholar

Received: 2023-05-28
Accepted: 2023-09-04
Published Online: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 14.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2022-0158/html
Button zum nach oben scrollen