Startseite Present trends in the encapsulation of anticancer drugs
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Present trends in the encapsulation of anticancer drugs

  • Xavier Montané ORCID logo EMAIL logo , Karolina Matulewicz , Karolina Balik , Paulina Modrakowska , Marcin Łuczak , Yaride Pérez Pacheco , Belen Reig-Vano , Josep M. Montornés , Anna Bajek und Bartosz Tylkowski
Veröffentlicht/Copyright: 8. Februar 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Different nanomedicine devices that were developed during the recent years can be suitable candidates for their application in the treatment of various deadly diseases such as cancer. From all the explored devices, the nanoencapsulation of several anticancer medicines is a very promising approach to overcome some drawbacks of traditional medicines: administered dose of the drugs, drug toxicity, low solubility of drugs, uncontrolled drug delivery, resistance offered by the physiological barriers in the body to drugs, among others. In this chapter, the most important and recent progress in the encapsulation of anticancer medicines is examined: methods of preparation of distinct nanoparticles (inorganic nanoparticles, dendrimers, biopolymeric nanoparticles, polymeric micelles, liposomes, polymersomes, carbon nanotubes, quantum dots, and hybrid nanoparticles), drug loading and drug release mechanisms. Furthermore, the possible applications in cancer prevention, diagnosis, and cancer therapy of some of these nanoparticles have been highlighted.


Corresponding author: Xavier Montané, Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili Facultat de Quimica, Carrer Marcel·lí Domingo s/n, 43007, Tarragona, Spain, E-mail:

Acknowledgment

This work was cofinanced by the European Union from the European Social Fund under the Knowledge Education Development 2014–2020 Operational Program. Project implemented as part of the competition of the National Center for Research and Development: for Interdisciplinary Programs of Doctoral Studies on increasing the quality and effectiveness of education at doctoral studies (enrollment number: POWR.03.02.00-IP.08-00-DOK/16).

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Moderna’s. Moderna work on a COVID-19 vaccine candidate. Available from: https://www.modernatx.com/modernas-work-potential-vaccine-against-covid-19 [Accessed 14 Aug 2020].Suche in Google Scholar

2. Shewach, DS, Kuchta, RD. Introduction to cancer chemotherapeutics. Chem Rev 2009;109:2859–61, https://doi.org/10.1021/cr900208x.Suche in Google Scholar PubMed PubMed Central

3. Costa, J. Cancer. Availabe from: https://www.britannica.com/science/cancer-disease [Accessed 02 Jan 2020].Suche in Google Scholar

4. Blackadar, CB. Historical review of the causes of cancer. World J Clin Oncol 2016;7:54–86, https://doi.org/10.5306/wjco.v7.i1.54.Suche in Google Scholar PubMed PubMed Central

5. Afshar, M, Madani, S, Tarazoj, AA, Papi, SH, Otroshi, O, Gandomani, HS, et al.. Physical activity and types of cancer. WCR 2018;5:1–11.Suche in Google Scholar

6. Cancer facts and figures 2020. Available from: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2019.html [Accessed 10 Aug 2020].Suche in Google Scholar

7. World cancer report 2014. Lyon: International Agency for Research on Cancer; 2014.Suche in Google Scholar

8. Patel, SP, Patel, PB, Parekh, BB. Application of nanotechnology in cancers prevention, early detection and treatment. J Canc Res Therapeut 2014;10:479–86.10.4103/0973-1482.138196Suche in Google Scholar

9. Bernards, R, Jafee, E, Joyce, JA, Lowe, SW, Mardis, ER, Morrison, SJ, et al.. A roadmap for the next decade in cancer research. Nat Cancer 2020;1:12–17, https://doi.org/10.1038/s43018-019-0015-9.Suche in Google Scholar PubMed

10. Freitas, RA. Nanomedicine, volume I: basic capabilities, 1st ed. Texas: Landes Bioscience; 1999.Suche in Google Scholar

11. Kawasaki, ES, Player, A. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomed Nanotechnol 2005;1:101–9, https://doi.org/10.1016/j.nano.2005.03.002.Suche in Google Scholar PubMed

12. Alsehli, M. Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: recent advances in drug delivery. Saudi Pharmaceut J 2020;28:255–65, https://doi.org/10.1016/j.jsps.2020.01.004.Suche in Google Scholar PubMed PubMed Central

13. Chi, XQ, Liu, K, Luo, XJ, Yin, ZY, Lin, HY, Gao, JH. Recent advances of nanomedicines for liver cancer therapy. J Mater Chem B 2020;8:3747–71, https://doi.org/10.1039/c9tb02871d.Suche in Google Scholar PubMed

14. Wilczewska, AZ, Niemirowicz, K, Markiewicz, KH, Car, H. Nanoparticles as drug delivery systems. Pharmacol Rep 2012;64:1020–37, https://doi.org/10.1016/s1734-1140(12)70901-5.Suche in Google Scholar PubMed

15. Montané, X, Bajek, A, Roszkowski, K, Montornés, JM, Giamberini, M, Roszkowski, S, et al.. Encapsulation for cancer therapy. Molecules 2020;25:1–26, https://doi.org/10.3390/molecules25071605.Suche in Google Scholar PubMed PubMed Central

16. Murakami, T, Tsuchida, K. Recent advances in inorganic nanoparticle-based drug delivery systems. Mini Rev Med Chem 2008;8:175–83.10.2174/138955708783498078Suche in Google Scholar PubMed

17. Fernandes, N, Rodrigues, CF, Moreira, AF, Correia, IJ. Overview of the application of inorganic nanomaterials in cancer photothermal therapy. Biomater Sci 2020;8:2990–3020, https://doi.org/10.1039/d0bm00222d.Suche in Google Scholar PubMed

18. Paris, JL, Baeza, A, Vallet-Regi, M. Overcoming the stability, toxicity, and biodegradation challenges of tumor stimuli-responsive inorganic nanoparticles for delivery of cancer therapeutics. Expet Opin Drug Deliv 2019;16:1095–112, https://doi.org/10.1080/17425247.2019.1662786.Suche in Google Scholar PubMed

19. Meidanchi, A. Mg(1-x)CuxFe2O4 superparamagnetic nanoparticles as nano-radiosensitizer agents in radiotherapy of MCF-7 human breast cancer cells. Nanotechnology 2020;31:1–9, https://doi.org/10.1088/1361-6528/ab8cf2.Suche in Google Scholar PubMed

20. Sheenaa, TS, Dhivya, R, Rajiu, V, Jeganathan, K, Palaniandavar, M, Mathan, G, et al.. Folate-engineered mesoporous silica-encapsulated copper (II) complex [Cu(L)(dppz)]+: an active targeting cell-specific platform for breast cancer therapy. Inorg Chim Acta 2020;510:1–7, https://doi.org/10.1016/j.ica.2020.119783.Suche in Google Scholar

21. Hirao, A, Yoo, HS. Dendrimer-like star-branched polymers: novel structurally well-defined hyperbranched polymers. Polym J 2011;43:2–17, https://doi.org/10.1038/pj.2010.109.Suche in Google Scholar

22. Tripathy, S, Das, MK. Dendrimers and their applications as novel drug delivery carriers. J Appl Pharmaceut Sci 2013;3:142–9.Suche in Google Scholar

23. Sandoval-Yanez, C, Rodriguez, CC. Dendrimers: amazing platforms for bioactive molecule delivery systems. Materials 2020;13:1–20, https://doi.org/10.3390/ma13030570.Suche in Google Scholar PubMed PubMed Central

24. Mendes, LP, Pan, J, Torchilin, VP. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 2017;22:1–21.10.3390/molecules22091401Suche in Google Scholar

25. Yousefi, M, Narmani, A, Jafari, SM. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv Colloid Interfac 2020;278:1–13, https://doi.org/10.1016/j.cis.2020.102125.Suche in Google Scholar PubMed

26. Alfei, S, Marengo, B, Zuccari, G, Turrini, F, Domenicotti, C. Dendrimer nanodevices and gallic acid as novel strategies to fight chemoresistance in neuroblastoma cells. Nanomaterials-Basel 2020;10:1–30, https://doi.org/10.3390/nano10061243.Suche in Google Scholar PubMed PubMed Central

27. Sahoo, RK, Gothwal, A, Rani, S, Nakhate, KT, Ajazuddin, Gupta, U. PEGylated dendrimer mediated delivery of bortezomib: drug conjugation versus encapsulation. Int J Pharm 2020;584:1–13, https://doi.org/10.1016/j.ijpharm.2020.119389.Suche in Google Scholar PubMed

28. Bassas-Galia, M, Follonier, S, Pusnik, M, Zinn, M. Natural polymers: a source of inspiration. In: Perale, G, Hilborn, J, editors. Bioresorbable polymers for biomedical applications: from fundamentals to translational medicine. Cambridge: Woodhead Publishing; 2017. pp. 31–64.10.1016/B978-0-08-100262-9.00002-1Suche in Google Scholar

29. Scheffel, U, Rhodes, BA, Natarajan, TK, Wagner, HNJr. Albumin microspheres for study of the reticuloendothelial system. J Nucl Med 1972;13:498–503.Suche in Google Scholar

30. Pal, K, Roy, S, Parida, PK, Dutta, A, Bardhan, S, Das, S, et al.. Folic acid conjugated curcumin loaded biopolymeric gum acacia microsphere for triple negative breast cancer therapy in invitro and invivo model. Mater Sci Eng C-Mater 2019;95:204–16, https://doi.org/10.1016/j.msec.2018.10.071.Suche in Google Scholar PubMed

31. Kim, D, Le, QV, Kim, YB, Oh, YK. Safety and photochemotherapeutic application of poly(γ-glutamic acid)-based biopolymeric nanoparticle. Acta Pharm Sin B 2019;9:565–74, https://doi.org/10.1016/j.apsb.2019.01.005.Suche in Google Scholar PubMed PubMed Central

32. Lynge, ME, van der Westen, R, Postma, A, Stadler, B. Polydopamine-a nature-inspired polymer coating for biomedical science. Nanoscale 2011;3:4916–28, https://doi.org/10.1039/c1nr10969c.Suche in Google Scholar PubMed

33. Gothwal, A, Khan, I, Gupta, U. Polymeric micelles: recent advancements in the delivery of anticancer drugs. Pharm Res (NY) 2016;33:18–39, https://doi.org/10.1007/s11095-015-1784-1.Suche in Google Scholar PubMed

34. Keskin, D, Tezcaner, A. Micelles as delivery system for cancer treatment. Curr Pharmaceut Des 2017;23:5230–41.10.2174/1381612823666170526102757Suche in Google Scholar PubMed

35. Batrakova, EV, Bronich, TK, Vetro, JA, Kabanov, AV. Polymer micelles as drug carriers. In: Torchilin, VP, editor. Nanoparticulates as drug carriers, 1st ed. London: Imperial College Press London; 2006. pp. 57–9s3.10.1142/9781860949074_0005Suche in Google Scholar

36. Yu, GP, Ning, Q, Mo, ZC, Tang, SS. Intelligent polymeric micelles for multidrug codelivery and cancer therapy. Artif Cell Nanomed B 2019;47:1476–87, https://doi.org/10.1080/21691401.2019.1601104.Suche in Google Scholar PubMed

37. Aziz, ZABA, Ahmad, A, Mohd-Setapar, SH, Hassan, H, Lokhat, D, Kamal, MA, et al.. Recent advances in drug delivery of polymeric nano-micelles. Curr Drug Metabol 2017;18:16–29, https://doi.org/10.2174/1389200217666160921143616.Suche in Google Scholar PubMed

38. Dai, Y, Chen, X, Zhang, XJ. Recent advances in stimuli-responsive polymeric micelles via click chemistry. Polym Chem 2019;10:34–44, https://doi.org/10.1039/c8py01174e.Suche in Google Scholar

39. Sun, TM, Zhang, YS, Pang, B, Hyun, DC, Yang, MX, Xia, YN. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 2014;53:12320–64.10.1201/9780429027819-2Suche in Google Scholar

40. Liu, YR, Wu, J, Huang, L, Qiao, J, Wang, N, Yu, D, et al.. Synergistic effects of antitumor efficacy via mixed nano-size micelles of multifunctional Bletilla striata polysaccharide-based copolymer and D-α-tocopheryl polyethylene glycol succinate. Int J Biol Macromol 2020;154:499–510, https://doi.org/10.1016/j.ijbiomac.2020.03.136.Suche in Google Scholar PubMed

41. Zhou, SY, Fu, SW, Wang, HL, Deng, YH, Zhou, X, Sun, W, et al.. Acetal-linked polymeric prodrug micelles based on aliphatic polycarbonates for paclitaxel delivery: preparation, characterization,in vitrorelease and anti-proliferation effects. J Biomater Sci Polym Ed 2020;31:1–32, https://doi.org/10.1080/09205063.2020.1792046.Suche in Google Scholar PubMed

42. Gregoriadis, G. Liposomes as carriers of enzymes or drugs: new approach to treatment of storage diseases. Biochem J 1971;124:58, https://doi.org/10.1042/bj1240058p.Suche in Google Scholar PubMed PubMed Central

43. Bozzuto, G, Molinari, A. Liposomes as nanomedical devices. Int J Nanomed 2015;10:975–99, https://doi.org/10.2147/ijn.s68861.Suche in Google Scholar PubMed PubMed Central

44. Gao, A, Hu, XL, Saeed, M, Chen, BF, Li, YP, Yu, HJ. Overview of recent advances in liposomal nanoparticle-based cancer immunotherapy. Acta Pharmacol Sin 2019;40:1129–37, https://doi.org/10.1038/s41401-019-0281-1.Suche in Google Scholar PubMed PubMed Central

45. Kiaie, SH, Mojarad-Jabali, S, Khaleseh, F, Allahyari, S, Taheri, E, Zakeri-Milani, P, et al.. Axial pharmaceutical properties of liposome in cancer therapy: recent advances and perspectives. Int J Pharm 2020;581:1–18, https://doi.org/10.1016/j.ijpharm.2020.119269.Suche in Google Scholar PubMed

46. Allen, TM, Cullis, PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 2013;65:36–48, https://doi.org/10.1016/j.addr.2012.09.037.Suche in Google Scholar PubMed

47. Dorababu, A. Recent advances in nanoformulated chemotherapeutic drug delivery (2015-2019). Chemistry 2019;4:8731–44, https://doi.org/10.1002/slct.201901064.Suche in Google Scholar

48. Li, N, Xie, X, Hu, YX, He, HD, Fu, X, Fang, TT, et al.. Herceptin-conjugated liposomes co-loaded with doxorubicin and simvastatin in targeted prostate cancer therapy. Am J Transl Res 2019;11:1255–69.Suche in Google Scholar

49. Safwat, S, Ishak, RA, Hathout, RM, Mortada, ND. Statins anticancer targeted delivery systems: re-purposing an old molecule. J Pharm Pharmacol 2017;69:613–24, https://doi.org/10.1111/jphp.12707.Suche in Google Scholar PubMed

50. Dai, YN, Su, JZ, Wu, K, Ma, WK, Wang, B, Li, MX, et al.. Multifunctional thermosensitive liposomes based on natural phase-change material: near-infrared light-triggered drug release and multimodal imaging-guided cancer combination therapy. ACS Appl Mater Interfaces 2019;11:10540–53, https://doi.org/10.1021/acsami.8b22748.Suche in Google Scholar PubMed

51. Discher, DE, Ahmed, F. Polymersomes. Annu Rev Biomed Eng 2006;8:323–41, https://doi.org/10.1146/annurev.bioeng.8.061505.095838.Suche in Google Scholar PubMed

52. Van Hest, JC, Delnoye, DA, Baars, MW, van Genderen, MH, Meijer, EW. Polystyrene-dendrimer amphiphilic block copolymers with a generation-dependent aggregation. Science 1995;268:1592–5, https://doi.org/10.1126/science.268.5217.1592.Suche in Google Scholar PubMed

53. Lee, JS, Feijen, J. Polymersomes for drug delivery: design, formation and characterization. J Control Release 2012;161:473–83, https://doi.org/10.1016/j.jconrel.2011.10.005.Suche in Google Scholar PubMed

54. Matoori, S, Leroux, JC. Twenty-five years of polymersomes: lost in translation? Mater Horiz 2020;7:1297–309, https://doi.org/10.1039/c9mh01669d.Suche in Google Scholar

55. Nehate, C, Nayal, A, Koul, V. Redox responsive polymersomes for enhanced doxorubicin delivery. ACS Biomater Sci Eng 2019;5:70–80, https://doi.org/10.1021/acsbiomaterials.8b00238.Suche in Google Scholar PubMed

56. Hossainzadeh, S, Ranji, N, Sohi, AN, Najafi, F. Silibinin encapsulation in polymersome: a promising anticancer nanoparticle for inducing apoptosisanddecreasing the expression level of miR-125b/miR-182 in human breast cancer cells. J Cell Physiol 2019;234:22285–98, https://doi.org/10.1002/jcp.28795.Suche in Google Scholar PubMed

57. Simon, J, Flahaut, E, Golzio, M. Overview of carbon nanotubes for biomedical applications. Materials 2019;12:1–21, https://doi.org/10.3390/ma12040624.Suche in Google Scholar PubMed PubMed Central

58. Liu, Z, Tabakman, SM, Chen, Z, Dai, HJ. Preparation of carbon nanotube bioconjugates for biomedical applications. Nat Protoc 2009;4:1372–82, https://doi.org/10.1038/nprot.2009.146.Suche in Google Scholar PubMed PubMed Central

59. Hassan, HAFM, Diebold, SS, Smyth, LA, Walters, AA, Lombardi, G, Al-Jamal, KT. Application of carbon nanotubes in cancer vaccines: achievements, challenges and chances. J Control Release 2019;297:79–90, https://doi.org/10.1016/j.jconrel.2019.01.017.Suche in Google Scholar PubMed

60. Raphey, VR, Henna, TK, Nivitha, KP, Mufeedha, P, Sabu, C, Pramod, K. Advanced biomedical applications of carbon nanotube. Mater Sci Eng C-Mater 2019;100:616–30, https://doi.org/10.1016/j.msec.2019.03.043.Suche in Google Scholar PubMed

61. Mohseni-Dargah, M, Akbari-Birgani, S, Madadi, Z, Saghatchi, F, Kaboudin, B. Carbon nanotube-delivered iC9 suicide gene therapy for killing breast cancer cells in vitro. Nanomedicine-UK 2019;14:1033–47, https://doi.org/10.2217/nnm-2018-0342.Suche in Google Scholar PubMed

62. Sundaram, P, Abrahamse, H. Effective photodynamic therapy for colon cancer cells using chlorin e6 coated hyaluronic acid-based carbon nanotubes. Int J Mol Sci 2020;21:1–15, https://doi.org/10.3390/ijms21134745.Suche in Google Scholar PubMed PubMed Central

63. Juzeniene, A. Chlorin e6-based photosensitizers for photodynamic therapy and photodiagnosis. Photodiagn Photodyn 2009;6:94–6, https://doi.org/10.1016/j.pdpdt.2009.06.001.Suche in Google Scholar PubMed

64. Chen, B, Li, DY, Wang, F. InP quantum dots: synthesis and lighting applications. Small 2020:1–20.10.1002/smll.202002454Suche in Google Scholar PubMed

65. Huang, YM, Singh, KJ, Liu, AC, Lin, CC, Chen, Z, Wang, K, et al.. Advances in quantum-dot-based displays. Nanomaterials-Basel 2020;10:1–26, https://doi.org/10.3390/nano10071327.Suche in Google Scholar PubMed PubMed Central

66. Zheng, XT, Ananthanarayanan, A, Luo, KQ, Chen, P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 2015;11:1620–36, https://doi.org/10.1002/smll.201402648.Suche in Google Scholar PubMed

67. Manivannan, S, Ponnuchamy, K. Quantum dots as a promising agent to combat COVID-19. Appl Organomet Chem 2020:1–6.10.1002/aoc.5887Suche in Google Scholar PubMed PubMed Central

68. Li, ZJ, Xu, H, Shao, JD, Jiang, C, Zhang, F, Lin, J, et al.. Polydopamine-functionalized black phosphorus quantum dots for cancer theranostics. Appl Mater Today 2019;15:297–304, https://doi.org/10.1016/j.apmt.2019.02.002.Suche in Google Scholar

69. Tan, LJ, He, CY, Chu, XJ, Chu, YQ, Ding, YM. Charge-reversal ZnO-based nanospheres for stimuli-responsive release of multiple agents towards synergistic cancer therapy. Chem Eng J 2020;395:1–11, https://doi.org/10.1016/j.cej.2020.125177.Suche in Google Scholar

70. Barreto, JA, O’Malley, W, Kubeil, M, Graham, B, Stephan, H, Spiccia, L. Nanomaterials: applications in cancer imaging and therapy. Adv Mater 2011;23:18–40, https://doi.org/10.1002/adma.201190041.Suche in Google Scholar

71. He, C, Lin, W. Hybrid nanoparticles for cancer imaging and therapy. In: Mirkin, C, Meade, TJ, Petrosko, SH, Stegh, AH, editors. Nanotechnology-based precision tools for the detection and treatment of cancer. Geneva: Springer International Publishing; 2015, vol 166. pp. 173–92.10.1007/978-3-319-16555-4_8Suche in Google Scholar PubMed

72. Pan, Y, Xue, PJ, Liu, SP, Zhang, LC, Guan, QB, Zhu, JL, et al.. Metal-based hybrid nanoparticles as radiosensitizers in cancer therapy. Colloid Interface Sci 2018;23:45–51, https://doi.org/10.1016/j.colcom.2018.01.004.Suche in Google Scholar

73. Thorat, ND, Townley, HE, Patil, RM, Tofail, SAM, Bauer, J. Comprehensive approach of hybrid nanoplatforms in drug delivery and theranostics to combat cancer. Drug Discov Today 2020;25:1245–52, https://doi.org/10.1016/j.drudis.2020.04.018.Suche in Google Scholar PubMed

74. Li, C, Wang, KB, Li, JZ, Zhang, QC. Recent progress in stimulus-responsive two-dimensional metal-organic frameworks. ACS Mater Lett 2020;2:779–97, https://doi.org/10.1021/acsmaterialslett.0c00148.Suche in Google Scholar

75. Javanbakht, S, Hemmati, A, Namazi, H, Heydari, A. Carboxymethylcellulose-coated 5-fluorouracil@MOF-5 nano-hybrid as a bio-nanocomposite carrier for the anticancer oral delivery. Int J Biol Macromol 2020;155:876–82, https://doi.org/10.1016/j.ijbiomac.2019.12.007.Suche in Google Scholar PubMed

76. Karimi, S, Namazi, H. Simple preparation of maltose-functionalized dendrimer/graphene quantum dots as a pH-sensitive biocompatible carrier for targeted delivery of doxorubicin. Int J Biol Macromol 2020;156:648–59, https://doi.org/10.1016/j.ijbiomac.2020.04.037.Suche in Google Scholar PubMed

Published Online: 2021-02-08

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2020-0080/pdf
Button zum nach oben scrollen