Home Floppy molecules—their internal dynamics, spectroscopy and applications
Article
Licensed
Unlicensed Requires Authentication

Floppy molecules—their internal dynamics, spectroscopy and applications

  • Iwona Gulaczyk ORCID logo EMAIL logo and Marek Kręglewski
Published/Copyright: February 8, 2021
Become an author with De Gruyter Brill

Abstract

Floppy molecules can be defined as molecules performing large amplitude vibrations (LAVs). There are different types of LAVs among which the most common are inversion and internal rotation. Molecules with LAVs have been of great interest for a very long time since their dynamic, geometry and molecular spectra were very often considered as a challenge. In the review, we present an outline of the history and development of various theoretical approaches concerning molecules with LAVs. Different types of LAVs are described with the emphasis on inversion tunneling (wagging) and internal rotation (torsion). Furthermore, strategies for building explicit and effective Hamiltonians are given and explained in detail using a hydrazine molecule, which is an exemplary molecule performing three LAVs—two inversions and one internal rotation. Since floppy molecules play a significant role in numerous areas as chemistry, pharmacy, astrophysics, biology, agriculture etc., we also provide an overview of their applications.


Corresponding author: Iwona Gulaczyk, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Hougen, JT, Bunker, PR, Johns, JWC. The vibration-rotation problem in triatomic molecules allowing for a large-amplitude bending vibration. J Mol Spectrosc 1970;34:136. https://doi.org/10.1016/0022-2852(70)90080-9.Search in Google Scholar

2. Hougen, JT. A rotational Hamiltonian for the ground vibrational state of hydrazine. J Mol Spectrosc 1981;89:296. https://doi.org/10.1016/0022-2852(81)90025-4.Search in Google Scholar

3. Wilson, EBJr, Howard, JB. The vibration rotation energy levels of polyatomic molecules I. Mathematical theory of semirigid asymmetrical top molecules. J Chem Phys 1936;4:260. https://doi.org/10.1063/1.1749833.Search in Google Scholar

4. Darling, BT, Dennison, DM. The water vapor molecule. Phys Rev 1940;57:128. https://doi.org/10.1103/physrev.57.128.Search in Google Scholar

5. Nielsen, HH. The vibration-rotation energies of molecules. Rev Mod Phys 1951;23:90. https://doi.org/10.1103/revmodphys.23.90.Search in Google Scholar

6. Dennison, DM, Uhlenbeck, GE. The two-minima problem and the ammonia molecule. Phys Rev 1932;41:313. https://doi.org/10.1103/physrev.41.313.Search in Google Scholar

7. Kemp, JD, Pitzer, KS. Hindered rotation of the methyl groups in ethane. J Chem Phys 1936;4:749. https://doi.org/10.1063/1.1749784.Search in Google Scholar

8. Koehler, JS, Dennison, DM. Hindered rotation in methyl alcohol. Phys Rev 1940;57:1006. https://doi.org/10.1103/physrev.57.1006.Search in Google Scholar

9. Wilson, EBJr, Decius, JC, Cross, PC. Molecular vibrations. New York: Mc Graw-Hill Book Co.; 1955.10.1063/1.3061820Search in Google Scholar

10. Thorson, WR, Nakagawa, I. Dynamics of the quasi‐linear molecule. J Chem Phys 1960;33:994. https://doi.org/10.1063/1.1731399.Search in Google Scholar

11. Freed, KF, Lombardi, JR. Considerations on the rotation-vibration of triatomic molecules. J Chem Phys 1966;45:591. https://doi.org/10.1063/1.1727613.Search in Google Scholar

12. Kirtman, B. Interactions between ordinary vibrations and hindered internal rotation. I. Rotational energies. J Chem Phys 1962;37:2516. https://doi.org/10.1063/1.1733049.Search in Google Scholar

13. Kirtman, B. Interactions between ordinary vibrations and hindered internal rotation. II. Theory of internal rotation fine structure in some perpendicular bands of ethane‐type molecules. J Chem Phys 1964;41:775. https://doi.org/10.1063/1.1725960.Search in Google Scholar

14. Meyer, R, Günthard, HH. General internal motion of molecules, classical and quantum‐mechanical Hamiltonian. J Chem Phys 1968;49:1510. https://doi.org/10.1063/1.1670272.Search in Google Scholar

15. Quade, CR. The interaction of a large amplitude internal motion with other vibrations in molecules. The effective Hamiltonian for the large amplitude motion. J Chem Phys 1976;65:700. https://doi.org/10.1063/1.433084.Search in Google Scholar

16. Louck, JD, Galbraith, HW. Eckart vectors, Eckart frames, and polyatomic molecules. Rev Mod Phys 1976;48:69. https://doi.org/10.1103/revmodphys.48.69.Search in Google Scholar

17. Hougen, JT. A group-theoretical treatment of electronic, vibrational, torsional, and rotational motions in the dimethylacetylene molecule. Can J Phys 1964;42:1920. https://doi.org/10.1139/p64-182.Search in Google Scholar

18. Hougen, JT. Vibrational motions in dimethyl acetylene. Can J Phys 1965;43:935. https://doi.org/10.1139/p65-089.Search in Google Scholar

19. Bunker, PR, Hougen, JT. Normal modes, coriolis coupling, and centrifugal distortion in molecules with nearly free internal rotation: CH3CCCH3 and CH3CCSiH3. Can J Phys 1967;45:3867. https://doi.org/10.1139/p67-324.Search in Google Scholar

20. Bunker, PR. Dimethylacetylene: an analysis of the theory required to interpret its vibrational spectrum. J Chem Phys 1967;47:718. https://doi.org/10.1063/1.1711945.Search in Google Scholar

21. Bunker, PR. Erratum: dimethylacetylene: an analysis of the theory required to interpret its vibrational spectrum. J Chem Phys 1968;48:2832. https://doi.org/10.1063/1.1669535.Search in Google Scholar

22. Papoušek, D, Stone, JMR, Špirko, V. Vibration-inversion-rotation spectra of ammonia. A vibration-inversion-rotation Hamiltonian for NH3. J Mol Spectrosc 1973;48:17–37, https://doi.org/10.1016/0022-2852(73)90132-X.Search in Google Scholar

23. Redding, RW. Rotational levels of double-minimum potentials: the linear BAB molecule with unequal bond lengths. J Mol Spectrosc 1971;38:396. https://doi.org/10.1016/0022-2852(71)90122-6.Search in Google Scholar

24. Sarka, K. The vibration - rotation Hamiltonian of the tetratomic quasilinear molecule. J Mol Spectrosc 1971;38:545. https://doi.org/10.1016/0022-2852(71)90081-6.Search in Google Scholar

25. Moule, DC, Ramachandra Rao, CVS. Vibration-rotation-inversion Hamiltonian of formaldehyde. J Mol Spectrosc 1973;45:120. https://doi.org/10.1016/0022-2852(73)90181-1.Search in Google Scholar

26. Stone, JRS. The large amplitude motion-rotation Hamiltonian for tetratomic molecules, application to HCNO and HNCO. J Mol Spectrosc 1975;54:1–9. https://doi.org/10.1016/0022-2852(75)90002-8.Search in Google Scholar

27. Danielis, V, Papoušek, D, Špirko, V, Hokák, M. Vibration-inversion-rotation spectra of ammonia. J Mol Spectrosc 1975;54:339. https://doi.org/10.1016/0022-2852(75)90165-4.Search in Google Scholar

28. Špirko, V, Stone, JMR, Papoušek, D. Vibration-inversion-rotation spectra of ammonia: centrifugal distortion, coriolis interactions, and force field in 14NH3, 15NH3, 14ND3, and 14NT3. J Mol Spectrosc 1976;60:159–78.10.1016/0022-2852(76)90123-5Search in Google Scholar

29. Hardwick, JL, Brand, JCD. Anharmonic potential constants and the large amplitude bending vibration in nitrogen dioxide. Can J Phys 1976;54:80. https://doi.org/10.1139/p76-010.Search in Google Scholar

30. Brand, JCD, Ramachandra Rao, CVS. The vibration-rotation problem in triatomic molecules allowing for two large-amplitude stretching vibrations. J Mol Spectrosc 1976;61:360. https://doi.org/10.1016/0022-2852(76)90327-1.Search in Google Scholar

31. Weber, WH, Ford, GW. Carbon suboxide as a quasilinear molecule with a large amplitude bending mode. J Mol Spectrosc 1976;63:445. https://doi.org/10.1016/0022-2852(76)90306-4.Search in Google Scholar

32. Istomin, VA, Stepanov, NF, Zhilinskii, BI. Vibration-rotation problem for triatomic molecules with two large-amplitude coordinates. J Mol Spectrosc 1977;67:265. https://doi.org/10.1016/0022-2852(77)90042-x.Search in Google Scholar

33. Bunker, PR, Stone, JMR. The bending-rotation Hamiltonian for the triatomic molecule and application to HCN and H2O. J Mol Spectrosc 1972;41:310. https://doi.org/10.1016/0022-2852(72)90209-3.Search in Google Scholar

34. Bunker, PR, Landsberg, BM. The rigid bender and semirigid bender models for the rotation-vibration Hamiltonian. J Mol Spectrosc 1977;67:374. https://doi.org/10.1016/0022-2852(77)90048-0.Search in Google Scholar

35. Hoy, AR, Bunker, PR. A precise solution of the rotation bending Schrödinger equation for a triatomic molecule with application to the water molecule. J Mol Spectrosc 1979;74:1. https://doi.org/10.1016/0022-2852(79)90019-5.Search in Google Scholar

36. Jensen, P, Bunker, PR, Hoy, AR. The equilibrium geometry, potential function, and rotation‐vibration energies of CH2 in the X̃3B1 ground state. J Chem Phys 1982;77:5370. https://doi.org/10.1063/1.443785.Search in Google Scholar

37. Jensen, P, Bunker, PR. The application of the nonrigid bender Hamiltonian to a quasilinear molecule. J Mol Spectrosc 1983;99:348. https://doi.org/10.1016/0022-2852(83)90319-3.Search in Google Scholar

38. Bunker, PR. Quasilinear and quasiplanar molecules. Annu Rev Phys Chem 1983;34:59. https://doi.org/10.1146/annurev.pc.34.100183.000423.Search in Google Scholar

39. Jensen, P, Bunker, PR. The nonrigid bender Hamiltonian using an alternative perturbation technique. J Mol Spectrosc 1986;118:18. https://doi.org/10.1016/0022-2852(86)90220-1.Search in Google Scholar

40. Jensen, P. The nonrigid bender Hamiltonian for calculating the rotation-vibration energy levels of a triatomic molecule. Comput Phys Rep 1983;1:1.10.1016/0167-7977(83)90003-5Search in Google Scholar

41. Špirko, V. The inversional dependence of hyperfine quadrupole coupling in 14NH3. Mol Phys 1979;38:1761. ibid. 43 (1981) 723, https://doi.org/10.1080/00268977900102841.Search in Google Scholar

42. Špirko, V. Vibrational anharmonicity and the inversion potential function of NH3. J Mol Spectrosc 1983;101:30. https://doi.org/10.1016/0022-2852(83)90004-8; Špirko V, Kraemer WP, ibid. 133 (1989) 331, Anharmonic potential function and effective geometries for the NH3 molecule, https://doi.org/10.1016/0022-2852(89)90196-3.Search in Google Scholar

43. Kręglewski, M. Vibration-inversion-internal rotation-rotation Hamiltonian for methylamine. J Mol Spectrosc 1978;72:1. https://doi.org/10.1016/0022-2852(78)90038-3; ibid. 133 (1989) 10, The geometry and inversion-internal rotation potential function of methylamine.Search in Google Scholar

44. Kręglewski, M. The effect of the large amplitude vibration on the rotational structure of the 3500 Å transition of formaldehyde: part I. J Mol Struct 1979;55:135, https://doi.org/10.1016/0022-2860(79)80193-3.Search in Google Scholar

45. Kręglewski, M. Correlation diagrams for quasi-symmetric top molecules with a single rotor. J Mol Spectrosc 1984;105:8, https://doi.org/10.1016/0022-2852(84)90100-0.Search in Google Scholar

46. Kręglewski, M, Jensen, P. Determination of the skeletal bending potential function for SiH3NCO from the microwave spectrum. J Mol Spectrosc 1984;103:312, https://doi.org/10.1016/0022-2852(84)90058-4.Search in Google Scholar

47. Kręglewski, M. Methyl isothiocyanate as a quasi-symmetric top. A reinterpretation of the microwave spectrum. Chem Phys Lett 1984;112:275. https://doi.org/10.1016/0009-2614(84)80549-7.Search in Google Scholar

48. Wierzbicki, A, Koput, J, Krȩglewski, M. The large-amplitude motions in quasi-symmetric top molecules with internal C3v rotors. J Mol Spectrosc 1983;99:102. https://doi.org/10.1016/0022-2852(83)90296-5.Search in Google Scholar

49. Kręglewski, M. Wpływa drgań o dużej amplitudzie na widma oscylacyjno-rotacyjne i strukturę cząsteczek typu bąka quasi-symetrycznego. Wiad Chem 1986;40:803.Search in Google Scholar

50. Koput, J. Characteristic patterns in microwave spectra of quasi-symmetric top molecules of the WH3XYZ type. J Mol Spectrosc 1986;118:448. https://doi.org/10.1016/0022-2852(86)90181-5.Search in Google Scholar

51. Quade, CR. Contributions of the interaction of internal rotation with other vibrations to the effective potential energy for internal rotation in molecules with symmetric internal rotors. J Chem Phys 1980;73:2107. https://doi.org/10.1063/1.440405.Search in Google Scholar

52. Guan, Y, Quade, CR. Curvilinear coordinate formulation for vibration-rotation-large amplitude internal motion interactions. I. The general theory. J Chem Phys 1986;84:5624. https://doi.org/10.1063/1.449923.Search in Google Scholar

53. Szalay, V. On the separation of the large- and small-amplitude internal motions of a molecule. J Mol Spectrosc 1985;110:172. https://doi.org/10.1016/0022-2852(85)90221-8.Search in Google Scholar

54. Pyka, J, Foltynowicz, I, Makarewicz, J. A numerical approach to the internal large amplitude motion Hamiltonian of a polyatomic molecule. J Mol Spectrosc 1990;143:137. https://doi.org/10.1016/0022-2852(90)90266-s.Search in Google Scholar

55. Makarewicz, J, Łodyga, W. Self-consistent internal axes for a rotating-vibrating triatomic molecule. Mol Phys 1988;64:899. https://doi.org/10.1080/00268978800100613.Search in Google Scholar

56. Makarewicz, J. Hartree theory for rovibrational states of molecules. Mol Phys 1987;61:547. https://doi.org/10.1080/00268978700101311.Search in Google Scholar

57. Makarewicz, J. Self-consistent approach to the bending-rotation interactions in the H2O molecule. J Mol Spectrosc 1988;130:316. https://doi.org/10.1016/0022-2852(88)90080-x.Search in Google Scholar

58. Tennyson, J. The calculation of the vibration-rotation energies of triatomic molecules using scattering coordinates. Comput Phys Rep 1986;4:1.10.1016/0167-7977(86)90005-5Search in Google Scholar

59. Manning, MF. Energy levels of a symmetrical double minima problem with applications to the NH3 and ND3 molecules. J Chem Phys 1935;3:136. https://doi.org/10.1063/1.1749619.Search in Google Scholar

60. Cleeton, CE, Williams, NH. Electromagnetic waves of 1.1 cm wave-length and the absorption spectrum of ammonia. Phys Rev 1934;45:234. https://doi.org/10.1103/physrev.45.234.Search in Google Scholar

61. Sheng, H-y, Barker, EF, Dennison, DM. Further resolution of two parallel bands of ammonia and the interaction between vibration and rotation. Phys Rev 1941;60:786. https://doi.org/10.1103/physrev.60.786.Search in Google Scholar

62. Swalen, JD, Ibers, JA. Potential function for the inversion of ammonia. J Chem Phys 1962;36:1914. https://doi.org/10.1063/1.1701290.Search in Google Scholar

63. Coon, JB, Naugle, NW, McKenzie, RD. The investigation of double-minimum potentials in molecules. J Mol Spectrosc 1966;20:107. https://doi.org/10.1016/0022-2852(66)90046-4.Search in Google Scholar

64. Kręglewski, M. The story of the ammonia molecule: ten years of investigation of molecular inversion. J Mol Struct 1983;100:179, https://doi.org/10.1016/0022-2860(83)90091-1.Search in Google Scholar

65. Kręglewski, M. The geometry and inversion-internal rotation potential function of methylamine. J Mol Spectrosc 1989;133:10. https://doi.org/10.1016/0022-2852(89)90239-7.Search in Google Scholar

66. Ohashi, N, Murase, N, Yamanouchi, K, Sugie, M, Takeo, H, Matsumura, C, et al.. Analysis of the inversion splittings in methylhydrazine. J Mol Spectrosc 1989;138:497. https://doi.org/10.1016/0022-2852(89)90015-5.Search in Google Scholar

67. Łodyga, W, Kręglewski, M. Two-dimensional potential function for hydrazine determined from rotation-vibration spectra. Chem Phys Lett 1993;210:303, https://doi.org/10.1016/0009-2614(93)89137-7.Search in Google Scholar

68. Gulaczyk, I, Kręglewski, M. Multi-dimensional proton tunneling in 2-methylmalonaldehyde. J Mol Struct 2020;1220:128733. https://doi.org/10.1016/j.molstruc.2020.128733.Search in Google Scholar

69. Kozłowska, ED. Wiad Chem 1983;37:765.Search in Google Scholar

70. Groner, P, Sullivan, JF, During, JR. Vibrational spectra and structure. Amsterdam: Elsevier; 1978, vol. 8. chapter 6.Search in Google Scholar

71. Lin, CC, Swalen, JD. Internal rotation and microwave spectroscopy. Rev Mod Phys 1959;31:841. https://doi.org/10.1103/revmodphys.31.841.Search in Google Scholar

72. Tsuboi, M, Tamagake, K, Hirakawa, AY, Yamaguchi, J, Nakagawa, H, Manocha, AS, et al.. Internal rotation in ethylamine: a treatment as a two‐top problem. J Chem Phys 1975;63:5177. https://doi.org/10.1063/1.431300.Search in Google Scholar

73. Flaud, JM, Camy‐Peyret, C, Johns, JWC, Carli, B. The far infrared spectrum of H2O2. First observation of the staggering of the levels and determination of the cis barrier. J Chem Phys 1989;91:1504. https://doi.org/10.1063/1.457110.Search in Google Scholar

74. Meyer, R, Caminati, W, Hollenstein, H. Torsional motions in methyl glycolate. J Mol Spectrosc 1989;137:87. https://doi.org/10.1016/0022-2852(89)90271-3.Search in Google Scholar

75. Meyer, R. Flexible models for intramolecular motion, a versatile treatment and its application to glyoxal. J Mol Spectrosc 1979;76:266. https://doi.org/10.1016/0022-2852(79)90230-3.Search in Google Scholar

76. Brown, C, Hogg, DR, McKeen, DC. Infrared spectra of some 2-nitrobenzenesulphenate esters, 2-NO2C6H4S.O.R. Spectrochim Acta 1970;26A:26A. https://doi.org/10.1016/0584-8539(70)80247-1.Search in Google Scholar

77. Jensen, P. HCNO as a semirigid bender: the degenerate ν4 state. J Mol Spectrosc 1983;101:422. https://doi.org/10.1016/0022-2852(83)90146-7.Search in Google Scholar

78. Jensen, P. C3O2 as a semirigid bender: the degenerate ν5 state. J Mol Spectrosc 1984;104:59. https://doi.org/10.1016/0022-2852(84)90245-5.Search in Google Scholar

79. Mills, IM. Born-Oppenheimer failure in the separation of low-frequency molecular vibrations. J Phys Chem 1984;88:532. https://doi.org/10.1021/j150647a043.Search in Google Scholar

80. Egawa, T, Fukuyama, T, Yamamoto, S, Takabayashi, F, Kambara, H, Ueda, T, et al.. Molecular structure and puckering potential function of cyclobutane studied by gas electron diffraction and infrared spectroscopy. J Chem Phys 1987;86:6018. https://doi.org/10.1063/1.452489.Search in Google Scholar

81. Egawa, T, Yamamoto, S, Ueda, T, Kuchitsu, K. Two-dimensional analysis of the ring-puckering and methylene-rocking modes of cyclobutane. J Mol Spectrosc 1987;126:231. https://doi.org/10.1016/0022-2852(87)90094-4.Search in Google Scholar

82. Tecklenberg, JL. Kinetic energy functions for the ring-bending and ring-twisting vibrations of asymmetrically substituted six-membered rings. J Mol Spectrosc 1989;137:65. https://doi.org/10.1016/0022-2852(89)90269-5.Search in Google Scholar

83. Laane, J. Determination of vibrational potential energy surfaces from Raman and infrared spectra. Pure Appl Chem 1987;59:1307. https://doi.org/10.1351/pac198759101307.Search in Google Scholar

84. Robiette, AG, Borgers, TR, Strauss, HL. New interpretation of the far infrared spectrum and ring-puckering potential of azetidine. Mol Phys 1981;42:1519. https://doi.org/10.1080/00268978100101121.Search in Google Scholar

85. Kilpatrick, JE, Pitzer, KS, Spitzer, R. The thermodynamics and molecular structure of cyclopentane1. J Am Chem Soc 1947;69:2483. https://doi.org/10.1021/ja01202a069.Search in Google Scholar

86. Berry, RS. Correlation of rates of intramolecular tunneling processes, with application to some group V compounds. J Chem Phys 1960;32:933. https://doi.org/10.1063/1.1730820.Search in Google Scholar

87. Berry, RS. Time-dependent measurements and molecular structure: ozone. Rev Mod Phys 1960;32:447. https://doi.org/10.1103/revmodphys.32.447.Search in Google Scholar

88. Herzberg, G. Molecular spectra and molecular structure: electronic spectra and electronic structure of polyatomic molecules. Malabar, Fl, USA: Krieger Publishing Company; 1991a, vol. 3.Search in Google Scholar

89. Herzberg, G. Molecular spectra and molecular structure: infrared and raman of polyatomic molecules. Malabar, Fl, USA: Krieger Publishing Company; 1991b, vol. 2.Search in Google Scholar

90. Bunker, PR, Jensen, P. Molecular symmetry and spectroscopy. Ottawa: NRC Research Press; 1998.Search in Google Scholar

91. Longuet-Higgins, HC. The symmetry groups of non-rigid molecules. Mol Phys 1963;6:445–60. https://doi.org/10.1080/00268976300100501.Search in Google Scholar

92. Hougen, JT. Vibronic and rotational energy levels of a linear triatomic molecule in a3Π electronic state. J Chem Phys 1962;36:1874. https://doi.org/10.1063/1.1701283.Search in Google Scholar

93. Wilson, EB, Lin, CC, Lide, DR. Calculation of energy levels for internal torsion and over‐all rotation. I. CH3BF2 type molecules. J Chem Phys 1955;23:136–42. https://doi.org/10.1063/1.1740512.Search in Google Scholar

94. Howard, JB. The normal vibrations and the vibrational spectrum of C2H6. J Chem Phys 1937;5:442–50. https://doi.org/10.1063/1.1750052.Search in Google Scholar

95. Wilson, EB. Nuclear spin and symmetry effects in the heat capacity of ethane gas. J Chem Phys 1938;6:740–5. https://doi.org/10.1063/1.1750160.Search in Google Scholar

96. Kasuya, T, Kojima, T. Internal motions of hydrazine. J Phys Soc Jpn 1963;18:364–8. https://doi.org/10.1143/jpsj.18.364.Search in Google Scholar

97. Watson, JKG. The correlation of the symmetry classifications of states of nonrigid molecules. Can J Phys 1965;43:1996–2007. https://doi.org/10.1139/p65-193.Search in Google Scholar

98. Swalen, JD, Costain, CC. Internal rotation in molecules with two internal rotors: microwave spectrum of acetone. J Chem Phys 1959;31:1562–74. https://doi.org/10.1063/1.1730653.Search in Google Scholar

99. Myers, RJ, Wilson, EB. Application of symmetry principles to the rotation‐internal torsion levels of molecules with two equivalent methyl groups. J Chem Phys 1960;33:186–91. https://doi.org/10.1063/1.1731075.Search in Google Scholar

100. Groner, P. Molecular symmetry: why permutation-inversion (PI) groups don’t render the point groups obsolete. J Mol Spectrosc 2018;343:34–43. https://doi.org/10.1016/j.jms.2017.07.011.Search in Google Scholar

101. Watson, JKG. Vibrational spectra and structure. During, JR, editor. Amsterdam: Elsevier; 1977, vol. 6, chapter 1.Search in Google Scholar

102. Groner, P. Large-amplitude motion tunneling parameters in effective rotational Hamiltonians from rotation-internal rotation theory. J Mol Spectrosc 1992;156:164. https://doi.org/10.1016/0022-2852(92)90101-s.Search in Google Scholar

103. Dalton, BJ. Nonrigid molecule effects on the rovibronic energy levels and spectra of phosphorous pentafluoride. J Chem Phys 1971;54:4745. https://doi.org/10.1063/1.1674750.Search in Google Scholar

104. Hougen, JT. Summary of group theoretical results for microwave and infrared studies of H2O2. Can J Phys 1984;62:1392. https://doi.org/10.1139/p84-186.Search in Google Scholar

105. Ohashi, N, Hougen, JT. The torsional-wagging tunneling problem and the torsional-wagging-rotational problem in methylamine. J Mol Spectrosc 1987;121:474. https://doi.org/10.1016/0022-2852(87)90064-6.Search in Google Scholar

106. Oda, M, Ohashi, N, Hougen, JT. A group-theoretical formalism for the large-amplitude vibration-rotation problem in methylamine-d1. J Mol Spectrosc 1990;142:57. https://doi.org/10.1016/0022-2852(90)90292-x.Search in Google Scholar

107. Kleiner, I, Hougen, JT, Suenram, RD, Lovas, FJ, Godefroid, M. The ground torsional state of acetaldehyde. J Mol Spectrosc 1991;148:38. https://doi.org/10.1016/0022-2852(91)90032-6.Search in Google Scholar

108. Hougen, JT, Ohashi, N. Group theoretical treatment of the planar internal rotation problem in (HF)2. J Mol Spectrosc 1985;109:134. https://doi.org/10.1016/0022-2852(85)90056-6.Search in Google Scholar

109. Hougen, JT. A generalized internal axis method for high barrier tunneling problems, as applied to the water dimer. J Mol Spectrosc 1985;114:395. https://doi.org/10.1016/0022-2852(85)90234-6.Search in Google Scholar

110. Coudert, LH, Hougen, JT. Tunneling splittings in the water dimer: further development of the theory. J Mol Spectrosc 1988;130:86. ibid., 139 (1990) 259. https://doi.org/10.1016/0022-2852(88)90286-x.Search in Google Scholar

111. Coudert, LH, Hougen, JT. Tunneling splittings in (XY3)2-type dimers. J Mol Spectrosc 1991;149:73. https://doi.org/10.1016/0022-2852(91)90144-y.Search in Google Scholar

112. Hougen, JT, Ohashi, N. Tunneling splitting patterns in two forms of the methanol-water dimer. J Mol Spectrosc 1993;159:363. https://doi.org/10.1006/jmsp.1993.1135.Search in Google Scholar

113. Hollas, JM. Modern spectroscopy. England: John Willey & Sons Ltd; 2004.Search in Google Scholar

114. Hougen, JT. Strategies for advanced applications of permutation-inversion groups to the microwave spectra of molecules with large amplitude motions. J Mol Spectrosc 2009;256:170–85. https://doi.org/10.1016/j.jms.2009.04.011.Search in Google Scholar

115. Kasuya, T. Microwave studies of internal motions of hydrazine molecule. Sci Pap Inst Phys Chem Res 1962;56:1–39.Search in Google Scholar

116. Papoušek, D, Sarka, K, Špirko, V, Jordanov, B. Collect Czech Chem Commun 1971;36:890–905.10.1135/cccc19710890Search in Google Scholar

117. Merer, AJ, Watson, JKG. Symmetry considerations for internal rotation in ethylene-like molecules. J Mol Spectrosc 1973;47:499–514. https://doi.org/10.1016/0022-2852(73)90097-0.Search in Google Scholar

118. Łodyga, W, Kręglewski, M, Makarewicz, J. The Inversion–Torsion potential function for hydrazine. J Mol Spectrosc 1997;183:374–87. https://doi.org/10.1006/jmsp.1997.7271.Search in Google Scholar PubMed

119. Tsunekawa, S, Kojima, T, Hougen, JT. Analysis of the microwave spectrum of hydrazine. J Mol Spectrosc 1982;95:133–52. https://doi.org/10.1016/0022-2852(82)90243-0.Search in Google Scholar

120. Łodyga, W, Makarewicz, J. Torsion-wagging tunneling and vibrational states in hydrazine determined from its ab initio potential energy surface. J Chem Phys 2012;136:174301.10.1063/1.4705267Search in Google Scholar PubMed

121. Ohashi, N, Lafferty, WJ, Olson, WB. Fourier transform spectrum of the torsional band of hydrazine. J Mol Spectrosc 1986;117:119–33. https://doi.org/10.1016/0022-2852(86)90096-2.Search in Google Scholar

122. Ohashi, N, Olson, WB. Fourier transform spectrum of the second torsional band of hydrazine. J Mol Spectrosc 1991;145:383–91. https://doi.org/10.1016/0022-2852(91)90125-t.Search in Google Scholar

123. Ohashi, N, Henry, L, Chazelas, J, Valentin, A. Further analysis of the fourier transform spectrum of the antisymmetric amino-wagging band of hydrazine. J Mol Spectrosc 1993;161:560–74. https://doi.org/10.1006/jmsp.1993.1258.Search in Google Scholar

124. Ohashi, N, Masue, M. Explicit expressions for torsional-wagging-rotational Hamiltonian matrix elements in hydrazine-like molecules. J Mol Spectrosc 1991;150:238–54. https://doi.org/10.1016/0022-2852(91)90207-q.Search in Google Scholar

125. Gulaczyk, I, Kręglewski, M, Valentin, A. The N–N stretching band of hydrazine. J Mol Spectrosc 2003;220:132–6. https://doi.org/10.1016/s0022-2852(03)00106-1.Search in Google Scholar

126. Giguère, PA, Liu, ID. On the infrared spectrum of hydrazine. J Chem Phys 1952;20:136–40. https://doi.org/10.1063/1.1700155.Search in Google Scholar

127. Tsuboi, M, Hamada, Y, Henry, L, Chazelas, J, Valentin, A. Amino wagging and inversion in hydrazine: K′ = 1 levels in the first excited state of the antisymmetric wagging vibration. J Mol Spectrosc 1984;108:328–42. https://doi.org/10.1016/0022-2852(84)90189-9.Search in Google Scholar

128. Gulaczyk, I, Kręglewski, M. The symmetric amino-wagging band of hydrazine: assignment and analysis. J Mol Spectrosc 2008;249:73–7. https://doi.org/10.1016/j.jms.2008.02.012.Search in Google Scholar

129. Gulaczyk, I, Pyka, J, Kręglewski, M. The effective Hamiltonian for the coupling between inversion–torsion states of hydrazine. J Mol Spectrosc 2007;241:75–89. https://doi.org/10.1016/j.jms.2006.11.001.Search in Google Scholar

130. Suggs, HJ, Luskus, LJ, Kilian, HJ, Mokry, JW. Exhaust gas composition of the F-16 emergency power unit. Technical report USAF. SAM-TR-79-2, 2019.Search in Google Scholar

131. Fourikis, N, Takagi, K, Morimoto, M. Detection of interstellar methylamine by its 2_{02}->1_{10} A_{aˆ{-}} state transition. APJ (Acta Pathol Jpn) 1974;191:L139. https://doi.org/10.1086/181570.Search in Google Scholar

132. Kaifu, N, Morimoto, M, Nagane, K, Akabane, K, Iguchi, T, Takagi, K. Detection of interstellar methylamine. APJ (Acta Pathol Jpn) 1974;191:L135. https://doi.org/10.1086/181569.Search in Google Scholar

133. Muller, S, Beelen, A, Guélin, M, Aalto, S, Black, JH, Combes, F, et al.. Molecules atz = 0.89. A&A 2011;535:A103. https://doi.org/10.1051/0004-6361/201117096.Search in Google Scholar

134. Glavin, DP, Dworkin, JP, Sandford, SA. Detection of cometary amines in samples returned by Stardust. Met Planet Sci 2008;43:399. https://doi.org/10.1111/j.1945-5100.2008.tb00629.x.Search in Google Scholar

135. Birge, RR, Hubbard, LM. Molecular dynamics of cis-trans isomerization in rhodopsin. J Am Chem Soc 1980;102:2195. https://doi.org/10.1021/ja00527a008.Search in Google Scholar

136. Balogh-Nair, V, Nakanishi, K. The stereochemistry of vision. In: Tamm, Ch., editor. New comprehensive biochemistry. Amsterdam Mathies: Elsevier; 1982, vol 3 Stereochemistry.10.1016/S0167-7306(08)60398-1Search in Google Scholar

137. Brito Cruz, RA, Cruz, CH, Pollard, WT, Shank, CV. Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. Science 1988;240:777. https://doi.org/10.1126/science.3363359.Search in Google Scholar PubMed

138. Boxer, SG, Goldstein, RA, Lockhart, DJ, Middendorf, TR, Takiff, L. Excited states, electron-transfer reactions, and intermediates in bacterial photosynthetic reaction centers. J Phys Chem 1989;93:8280 and references therein. https://doi.org/10.1021/j100363a004.Search in Google Scholar

139. Nakamura, S, Irie, M. Thermally irreversible photochromic systems. A theoretical study. J Org Chem 1988;53:6136. M. Irie. J Appl Phys 28 (1989). https://doi.org/10.1021/jo00261a035.Search in Google Scholar

140. Uchida, K, Nakayama, Y, Irie, M. Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-Bis(benzo[b]thiophen-3-yl)ethene derivatives. Bcsj 1990;63:1311. https://doi.org/10.1246/bcsj.63.1311.Search in Google Scholar

141. Muszkat, KA, Fischer, E. Structure, spectra, photochemistry, and thermal reactions of the 4a,4b-dihydrophenanthrenes. J Chem Soc B 1967:662. https://doi.org/10.1039/j29670000662.Search in Google Scholar

142. Gegiou, D, Muszkat, KA, Fischer, E. Temperature dependence of photoisomerization. V. Effect of substituents on the photoisomerization of stilbenes and azobenzenes. J Am Chem Soc 1968;90:3907. https://doi.org/10.1021/ja01017a002.Search in Google Scholar

143. Frederick, JH, Fujiwara, Y, Penn, JH, Yoshihara, K, Petek, H. Models for stilbene photoisomerization: experimental and theoretical studies of the excited-state dynamics of 1,2-diphenylcycloalkenes. J Phys Chem 1991;95:2845. https://doi.org/10.1021/j100160a040.Search in Google Scholar

144. Bâldea, I. Floppy molecules as candidates for achieving optoelectronic molecular devices without skeletal rearrangement or bond breaking. Phys Chem Chem Phys 2017;19:30842–51. https://doi.org/10.1039/c7cp06428d.Search in Google Scholar PubMed

145. Frisbie, CD. Designing a robust single-molecule switch. Science 2016;352:1394–5. https://doi.org/10.1126/science.aag0827.Search in Google Scholar PubMed

146. Kumar, AS, Ye, T, Takami, T, Yu, B-C, Flatt, AK, Tour, JM, et al.. Reversible photo-switching of single azobenzene molecules in controlled nanoscale environments. Nano Lett 2008;8:1644–8. https://doi.org/10.1021/nl080323+.10.1021/nl080323+Search in Google Scholar PubMed

147. Mativetsky, JM, Pace, G, Elbing, M, Rampi, MA, Mayor, M, Samorì, P. Azobenzenes as light-controlled molecular electronic switches in nanoscale Metal–Molecule–Metal junctions. J Am Chem Soc 2008;130:9192–3. https://doi.org/10.1021/ja8018093.Search in Google Scholar PubMed

148. Yasuda, S, Nakamura, T, Matsumoto, M, Shigekawa, H. Phase switching of a single isomeric molecule and associated characteristic rectification. J Am Chem Soc 2003;125:16430–3. https://doi.org/10.1021/ja038233o.Search in Google Scholar PubMed

149. Zhang, X, Wen, Y, Li, Y, Li, G, Du, S, Guo, H, et al.. Molecularly controlled modulation of conductance on azobenzene monolayer-modified silicon surfaces. J Phys Chem C 2008;112:8288–93. https://doi.org/10.1021/jp711808p.Search in Google Scholar

150. Ferri, V, Elbing, M, Pace, G, Dickey, MD, Zharnikov, M, Samorì, P, et al.. Light-powered electrical switch based on cargo-lifting azobenzene monolayers. Angew Chem Int Ed 2008;47:3407–9. https://doi.org/10.1002/anie.200705339.Search in Google Scholar PubMed

151. Bȃldea, I. A quantum chemical study from a molecular transport perspective: ionization and electron attachment energies for species often used to fabricate single-molecule junctions. Faraday Discuss 2014;174:37–56.10.1039/C4FD00101JSearch in Google Scholar

Published Online: 2021-02-08

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2020-0035/html
Scroll to top button