Startseite Complexes between core-modified porphyrins ZnP(X)4 (X = P and S) and small semiconductor nanoparticle Zn6S6: are they possible?
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Complexes between core-modified porphyrins ZnP(X)4 (X = P and S) and small semiconductor nanoparticle Zn6S6: are they possible?

  • Aleksey E. Kuznetsov EMAIL logo
Veröffentlicht/Copyright: 19. September 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The synthetic approach of the anchoring of porphyrins to the surface of semiconductor nanoparticles (NPs) has been realized to form very promising organic/inorganic nanocomposites. They have been of considerable scientific and a wide practical interest including such areas as material science, biomedical applications, and dye-sensitized solar cells (DSSCs). Macrocyclic pyrrole-containing compounds, such as phthalocyanines and porphyrins, can bind to the NP surface by a variety of modes: as monodentate ligands oriented perpendicular to the NP surface, parallel to the NP surface, or, alternatively, in a perpendicular orientation bridging two adjacent NPs. Also, non-covalent (coordination) interactions may be realized between the NP via its metal centers and appropriate meso-attached groups of porphyrins. Recently, we showed computationally that the prominent structural feature of the core-modified MP(X)4 porphyrins (X = P) is their significant distortion from planarity. Motivated by the phenomenon of numerous complexes formation between tetrapyrrols and NPs, we performed the density functional theory (DFT) studies of the complex formation between the core-modified ZnP(X)4 species (X = P and S) without any substituents or linkers and semiconductor NPs, exemplified by small NP Zn6S6. The complexes formation was investigated using the following theoretical approaches: (i) B3LYP/6-31G* and (ii) CAM-B3LYP/6-31G*, both in the gas phase and with implicit effects from C6H6 considered. The calculated binding energies of the complexes studied were found to be significant, varying from ca. 29 up to ca. 69 kcal/mol, depending on the complex and the approach employed.

Funding statement: This work was partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grant “Estudo Teórico Computacional de Sistemas Nanoestruturados com Potencial Aplicação Tecnológica”, number 402313/2013-5, approved in the call N° 70/2013 Bolsa de Atração de Jovens Talentos - BJT - MEC/MCTI/CAPES/CNPq/FAPs/Linha 2 - Bolsa de Atração de Jovens Talentos – BJT. Partial support comes also from the University of São Paulo – SP. The computational resources of the Centro Nacional de Processamento de Alto Desempenho – UFC are highly apprecaited.

References

[1] Durot S, Taesch J, Heitz V. Multiporphyrinic cages: Architectures and functions. Chem Rev. 2014;114:8542−78.10.1021/cr400673ySuche in Google Scholar PubMed

[2] Kim D. Multiporphyrin arrays: Fundamentals and applications. Singapore: Pan Stanford Publishing, 2012:828.10.1201/b11621Suche in Google Scholar

[3] Kadish KM, Smith KM, Guilard R. Handbook of porphyrin science, vol. 1. London: World Scientific Publishing, 2010.10.1142/7376-vol1Suche in Google Scholar

[4] Aratani N, Kim D, Osuka A. Discrete cyclic porphyrin arrays as artificial light-harvesting antenna. Acc Chem Res. 2009;42:1922–34.10.1021/ar9001697Suche in Google Scholar PubMed

[5] Wasielewski MR. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc Chem Res. 2009;42:1910–21.10.1021/ar9001735Suche in Google Scholar PubMed

[6] Kang BK, Aratani N, Lim JK, Kim D, Osuka A, Yoo K-H. Electrical transport properties and their reproducibility for linear porphyrin arrays. Mater Sci Eng, C. 2006;26:1023.10.1016/j.msec.2005.09.090Suche in Google Scholar

[7] Jurow M, Schuckman AE, Batteas JD, Drain CM. Porphyrins as molecular electronic components of functional devices. Coord Chem Rev. 2010;254:2297.10.1016/j.ccr.2010.05.014Suche in Google Scholar PubMed PubMed Central

[8] Ogi S, Ikeda T, Wakabayashi R, Shinkai S, Takeuchi M. A bevel-gear-shaped rotor bearing a double-decker porphyrin complex. Chem Eur J. 2010;16:8285.10.1002/chem.201000276Suche in Google Scholar PubMed

[9] Lang T, Graf E, Kyritsakas N, Hosseini MW. An oscillating molecular turnstile. Dalton Trans. 2011;40:5244.10.1039/c1dt10184fSuche in Google Scholar PubMed

[10] To W-P, Liu Y, Lau T-C, Che C-M. A robust palladium(II)–Porphyrin complex as catalyst for visible light induced oxidative C-H functionalization. Chem Eur J. 2013;19:5654.10.1002/chem.201203774Suche in Google Scholar PubMed

[11] Meunier B, Robert A, Pratviel G, Bernardou J. In Kadish KM, Smith KM, Guilard R, editors. The porphyrin handbook, vol. 4. San Diego, CA: Academic Press, 2010:119−88.Suche in Google Scholar

[12] Therrien B. Chemistry of nanocontainers. In: Albrecht M., Hahn E., editors. Topics in current chemistry. Vol. 319. Berlin, Heidelberg: Springer, 2012:35−55.Suche in Google Scholar

[13] Drain CM, Varotto A, Radivojevic I. Self-organized porphyrinic materials. Chem Rev. 2009;109:1630.10.1021/cr8002483Suche in Google Scholar PubMed PubMed Central

[14] Zenkevich EI, Von Borczyskowski C. Self-organization principles in the formation of multiporphyrin complexes and “semiconductor quantum dot-porphyrin” nanoassemblies. J Porphyrins Phthalocyanines. 2014;18:1–19.10.1142/S1088424613300097Suche in Google Scholar

[15] Stewart MH, Huston AL, Scott AM, Efros AL, Melinger JS, Gemmill KB, Trammell SA, et al. Complex förster energy transfer interactions between semiconductor quantum dots and a redox-active osmium assembly. ACS Nano. 2012;6:5330–47.10.1021/nn301177hSuche in Google Scholar PubMed

[16] Lee JR, Whitley HD, Meulenberg RW, Wolcott A, Zhang JZ, Prendergast D, Lovingood DD, et al. Ligand-mediated modification of the electronic structure of CdSe quantum dots. Nano Lett. 2012;12:2763−7.10.1021/nl300886hSuche in Google Scholar PubMed

[17] Kilina S, Velizhanin KA, Ivanov S, Prezhdo OV, Tretiak S. Surface ligands increase photoexcitation relaxation rates in CdSe quantum dots. ACS Nano. 2012;6:6515–24.10.1021/nn302371qSuche in Google Scholar PubMed

[18] Zenkevich EI, Von Borczyskowski C. Assembly principles and relaxation processes in nanosized heterogeneous complexes: multiporphyrin structures and CdSe/ZnS nanocrystals. High Energy Chem. 2009;43:570–6.10.1134/S0018143909070121Suche in Google Scholar

[19] Kowerko D, Krause S, Amecke N, Abdel­Mottaleb M, Schuster J, Von Borczyskowski C. Identification of different donor-acceptor structures via förster resonance energy transfer (FRET) in quantum-dot-perylene bisimide assemblies. Int J Mol Sci. 2009;10:5239–56.10.3390/ijms10125239Suche in Google Scholar PubMed PubMed Central

[20] McArthur EA, Godbe JM, Tice DB, Weiss EA. A study of the binding of cyanine dyes to colloidal quantum dots using spectral signatures of dye aggregation. J Phys Chem C. 2012;116:6136−42.10.1021/jp300478gSuche in Google Scholar

[21] Blanco-Canosac JB, Wud M, Susumub K, Eleonora Petryayeva TL, Jennings PE, Russ Algar DW, Medintz IL. Recent progress in the bioconjugation of quantum dots. Coord Chem Rev. 2014;263–264:101–37.10.1016/j.ccr.2013.08.030Suche in Google Scholar

[22] Bradburne CE, Delehanty JB, Gemmill KB, Mei BC, Mattoussi H, Susumu K, et al. Cytotoxicity of quantum dots used for in vitro cellular labeling: Role of QD surface ligand, delivery modality, cell type, direct comparison to organic fluorophores. Bioconjug Chem. 2013;24:1570–83.10.1021/bc4001917Suche in Google Scholar PubMed

[23] Rajbanshi B, Sarkar P. Optimizing the photovoltaic properties of CdTe quantum dot − porphyrin nanocomposites: A theoretical study. J Phys Chem C. 2016;120:17878−86.10.1021/acs.jpcc.6b04662Suche in Google Scholar

[24] Jhonsi MA, Renganathan R. Investigations on the photoinduced interaction of water soluble thioglycolic acid (TGA) capped CdTe quantum dots with certain porphyrins. J Colloid Interface Sci. 2010;344:596−602.10.1016/j.jcis.2010.01.022Suche in Google Scholar PubMed

[25] Amelia M, Credi A. Photosensitization of the luminescence of CdTe nanocrystals by noncovalently bound Zn tetraphenylporphyrin. Inorg Chim Acta. 2012;381:247−50.10.1016/j.ica.2011.08.055Suche in Google Scholar

[26] Keane PM, Gallagher SA, Magno LM, Leising MJ, Clark IP, Greetham GM, Towrie M, et al. Photophysical studies of CdTe quantum dots in the presence of a zinc cationic porphyrin. Dalton Trans. 2012;41:13159−66.10.1039/c2dt30741cSuche in Google Scholar PubMed

[27] Aly SM, Ahmed GH, Shaheen BS, Sun J, Mohammed OF. Molecular-structure control of ultrafast electron injection at cationic porphyrin-CdTe quantum dot interfaces. J Phys Chem Lett. 2015;6:791−5.10.1021/acs.jpclett.5b00235Suche in Google Scholar PubMed

[28] Ahmed GH, Aly SM, Usman A, Eita MS, Melnikov VA, Mohammed OF. Quantum confinement-tunable intersystem crossing and the triplet state lifetime of cationic porphyrin−CdTe quantum dot nano-assemblies. Chem Commun. 2015;51:8010−3.10.1039/C5CC01542ASuche in Google Scholar PubMed

[29] Imahori H, Umeyama T, Ito S. Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Acc Chem Res. 2009;42:1809−18.10.1021/ar900034tSuche in Google Scholar PubMed

[30] Li -L-L, Diau EW. Porphyrin-sensitized solar cells. Chem Soc Rev. 2013;42:291−304.10.1039/C2CS35257ESuche in Google Scholar PubMed

[31] Imahori H, Kurotobi K, Walter MG, Rudine A, Wamser C. Porphyrin-and phthalocyanine-based solar cells. Handb Porphyrin Sci. 2012;18:57.10.1142/9789814335508_0007Suche in Google Scholar

[32] Wang C-L, Shiu J-W, Hsiao Y-N, Chao P-S, Wei-Guang Diau E, Lin C-Y. Co-sensitization of zinc and free-base porphyrins with an organic dye for efficient dye-sensitized solar cells. J Phys Chem C. 2014;118:27801−7.10.1021/jp510057bSuche in Google Scholar

[33] Hart AS, Kc CB, Gobeze HB, Sequeira LR, D’Souza F. Porphyrin-sensitized solar cells: Effect of carboxyl anchor group orientation on the cell performance. ACS Appl Mater Interfaces. 2013;5:5314−23.10.1021/am401201qSuche in Google Scholar PubMed

[34] Mandal B, Sarkar S, Sarkar P. Theoretical studies on understanding the feasibility of porphyrin-sensitized graphene quantum dot solar cell. J Phys Chem C. 2015;119:3400−07.10.1021/jp511375aSuche in Google Scholar

[35] Chakravarty C, Ghosh P, Mandal B, Sarkar P. Understanding the electronic structure of graphene quantum dotfullerene nanohybrids for photovoltaic applications. Z Phys Chem. 2016;230:777−90.10.1515/zpch-2015-0697Suche in Google Scholar

[36] Claessens CG, González-Rodríguez D, Salomé Rodríguez-Morgade M, Medina A, Torres T. Subphthalocyanines, subporphyrazines, and subporphyrins: Singular nonplanar aromatic systems. Chem Rev. 2014;114:2192–277.10.1021/cr400088wSuche in Google Scholar PubMed

[37] Chambrier I, Banerjee C, Remiro-Buenaman~ana S, Chao Y, Cammidge AN, Bochmann M. Synthesis of porphyrin−CdSe quantum dot assemblies: Controlling ligand binding by substituent effects. Inorg Chem. 2015;54:7368−80.10.1021/acs.inorgchem.5b00892Suche in Google Scholar PubMed

[38] Barbee J, Kuznetsov AE. Revealing substituent effects on the electronic structure and planarity of Ni-porphyrins. Comp Theor Chem. 2012;981:73–85.10.1016/j.comptc.2011.11.049Suche in Google Scholar PubMed PubMed Central

[39] Kuznetsov AE. Metalloporphyrins with all the pyrrole nitrogens replaced with phosphorus atoms, MP(P)4 (M = Sc, Ti, Fe, Ni, Cu, Zn). Chem Phys. 2015;447:36–45.10.1016/j.chemphys.2014.11.018Suche in Google Scholar

[40] Kuznetsov AE. How the change of the ligand from L = porphine, P2-, to L = P4-substituted porphine, P(P)42-, affects the electronic properties and the M-L binding energies for the first-row transition metals M = Sc-Zn: Comparative study. Chem Phys. 2016;469-470:38–48.10.1016/j.chemphys.2016.02.010Suche in Google Scholar

[41] Kuznetsov AE. Computational design of ZnP(P)4 stacks: Three modes of binding. J Theor Comput Chem. 2016;15:1650043.10.1142/S0219633616500437Suche in Google Scholar

[42] Kuznetsov AE. Can MP(P)4 compounds form complexes with C60? J Appl Solution Chem Modeling. 2017;6:91–7.10.6000/1929-5030.2017.06.03.1Suche in Google Scholar

[43] Kuznetsov AE. Design of novel classes of building blocks for nanotechnology: Core‐modified metalloporphyrins and their derivatives, descriptive inorganic chemistry researches of metal compounds, Dr. Takashiro Akitsu (Ed.), InTech, Available at: https://www.intechopen.com/books/descriptive-inorganic-chemistry-researches-of-metal-compounds/design-of-novel-classes-of-building-blocks-for-nanotechnology-core-modified-metalloporphyrins-and-th. 2017.10.5772/67728Suche in Google Scholar

[44] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09: ES64L-G09RevD.01 24-Apr-2013. Wallingford CT: Gaussian, Inc., 2013Suche in Google Scholar

[45] Parr RG, Yang W. Density-functional theory of atoms and molecules. Oxford: Oxford University Press, 1989.Suche in Google Scholar

[46] Ditchfield R, Hehre WJ, Pople JA. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys. 1971;54:724–8.10.1063/1.1674902Suche in Google Scholar

[47] Hehre WJ, Ditchfield R, Pople JA. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys. 1972;56:2257–61.10.1063/1.1677527Suche in Google Scholar

[48] Hariharan PC, Pople JA. Accuracy of AHn equilibrium geometries by single determinant molecular orbital theory. Mol Phys. 1974;27:209–14.10.1080/00268977400100171Suche in Google Scholar

[49] Gordon MS. The isomers of silacyclopropane. Chem Phys Lett. 1980;76:163–8.10.1016/0009-2614(80)80628-2Suche in Google Scholar

[50] Hariharan PC, Pople JA. The influence of polarization functions on molecular orbital hydrogenation energies. Theo. Chim. Acta. 1973;28:213–22.10.1007/BF00533485Suche in Google Scholar

[51] Yanai T, Tew D, Handy N. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett. 2004;393:51–7.10.1016/j.cplett.2004.06.011Suche in Google Scholar

[52] Kozlowski PM, Bingham JR, Jarzecki AA. Theoretical analysis of core size effects in metalloporphyrins. J Phys Chem A. 2008;112:12781–8.10.1021/jp801696cSuche in Google Scholar PubMed

[53] Myradalyyev S, Limpanuparb T, Wang X, Hirao H. Comparative computational analysis of binding energies between several divalent first-row transition metals (Cr2+, Mn2+, Fe2+, Co2+, Ni2+, and Cu2+) and ligands (porphine, corrin, and TMC). Polyhedron. 2013;52:96–101.10.1016/j.poly.2012.11.018Suche in Google Scholar

[54] Cancès E, Mennucci B, Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys. 1997;107:3032–41.10.1063/1.474659Suche in Google Scholar

[55] Barone V, Cossi M, Tomasi J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys. 1997;107:3210–21.10.1063/1.474671Suche in Google Scholar

[56] Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev. 1988;88:899–926.10.1021/cr00088a005Suche in Google Scholar

[57] Reed AE, Weinstock RB, Weinhold F. Natural-population analysis. J Chem Phys. 1985;83:735–46.10.1063/1.449486Suche in Google Scholar

[58] Schaftenaar G, Noordik JH. Molden: A pre- and post-processing program for molecular and electronic structures. J Comput-Aided Mol Design. 2000;14:123–34.10.1023/A:1008193805436Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (DOI:https://doi.org/10.1515/psr-2017-0187).


Published Online: 2018-09-19

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2017-0187/html
Button zum nach oben scrollen