Home Battery concepts: The past, the present, and research highlights
Article
Licensed
Unlicensed Requires Authentication

Battery concepts: The past, the present, and research highlights

  • Melanie Nentwich EMAIL logo , Bianca Störr and Juliane Hanzig
Published/Copyright: September 19, 2018
Become an author with De Gruyter Brill

Abstract

The concept of a battery is not a modern invention, as first proofs go back to 200 bc. The development of electrochemical cells similar to those that we use today started at the end of the eighteenth century with the experiments of Luigi Galvani. The following paragraphs will give an overview of the progress in electrochemistry from the very early reports to the state of the art. Additionally, some future perspectives from the recent years will be highlighted.

References

[1] Kanani N. The Parthian battery: electric current 2,000 years ago? Fachzeitschrift des VINI. 2004;7:167. https://web.archive.org/web/20100401051957/http://www.vini.de/Gahname/Gahname7/Gahname7-Parthian%20Battery.pdfSearch in Google Scholar

[2] König W. Ein galvanisches element aus der Partherzeit?. Forsch Fortschr. 1936;14:155.Search in Google Scholar

[3] Franklin B. Franklin Papers, Volume 3, 29 April 1749 to Peter Collinson. p. 352 § 18. http://franklinpapers.org/franklin//framedVolumes.jsp?vol=3&page=352aSearch in Google Scholar

[4] Geschichte des Geschlechts von Kleist – Muttrin-Damensche Linie. Ergänzungen zu III. 350 – Ewald Jürgen, Schilderungen Ewald Jürgens zu seinen Experimenten und Informationen zum Ausbildungsgang. http://www.v-kleist.com/FG/Muttrin/fg0220.htmSearch in Google Scholar

[5] Piccolino M. Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani. Brain Res Bull. 1998;46:381. https://doi.org/10.1016/S0361-9230(98)00026-4.Search in Google Scholar

[6] Volta A. Schriften über die thierische Elektrizität. Calve. 1793. https://books.google.de/books?hl=de&lr=& id=IMm6hvoMMWkC&oi=fnd&pg=PA1&dq=alessandro+volta&ots= ek2UVzeKmf&sig=WRjGXfQJFj1bXq9INeIMRhWN_ u4#v=onepage&q=alessandro%20volta&f=falseSearch in Google Scholar

[7] Volta A. On the electricity excited by the mere contact of conducting substances of different kinds. Lett J. B. Bart. 1800. https://www.biodiversitylibrary.org/item/60966#page/53/mode/1up.Search in Google Scholar

[8] Nicholson W, Carlisle A, Cruickshank M. IV. Experiments in galvanic electricity. Philos Mag: Comprehend Various Branch Sci, Liberal Fine Arts Agric Manuf Commer. 1800;7:337. 10.1080/14786440008562593.Search in Google Scholar

[9] Ritter JW. Ladungssäule. Voigts Magazin für den neuesten Zustand der Naturkunde. 1803;6:105.Search in Google Scholar

[10] Riecke E. Messung der von einer Zamboni’schen Säule gelieferten Electricitätsmenge. Annal Physik. 1883;256:512. 10.1002/andp.18832561110.Search in Google Scholar

[11] Faraday M. Experimental researches in electricity. Philos Trans R Soc. 1832;122:125. doi:10.1098/rstl.1832.0006.Search in Google Scholar

[12] Daniell JF. An introduction to the study of chemical philosophy. Landmarks of science. London: J.W. Parker, 1843:504. https://books.google.co.uk/books?id=bRkPAAAAYAAJ&pg=PA504#v=onepage&q&f=trueSearch in Google Scholar

[13] Grove WR. XXIV. On voltaic series and the combination of gases by platinum. Philos Maga. 1839;3:127. 10.1080/14786443908649684.Search in Google Scholar

[14] Leclanché G. French patent, Nr. 71865. 1866.Search in Google Scholar

[15] Bunsen RW. Über eine neue Construction der galvanischen Säule. Eur J Org Chem. 1841;38:311. 10.1002/jlac.18410380306.Search in Google Scholar

[16] Planté G. Nouvelle pile secondaire d’une grande puissance. In: Comptes rendus hebdomadaires des séances de l’Académie des sciences, vol. 50, 1860:640. http://gallica.bnf.fr/ark:/12148/bpt6k3007r/f653.imageSearch in Google Scholar

[17] Clark L. On a standard voltaic battery. Philos Trans R Soc London. 1874;164. 10.1098/rstl.1874.0001.Search in Google Scholar

[18] Jungner EW. Anordning vid elektroder för elektriska accumulatorer. Kungliga Patent- och Registeringsverket, Patent No. 8558. 1897. http://was.prv.se/spd/pdf/gchKQBqp%2BEDP0tTkAJNoTg%3D%3D/SE8558.C1.pdf.Search in Google Scholar

[19] Jungner EW. Sätt att på elektrolytisk väg förstora ytan af sådana metaller, hvilkas syreföreningar äro kemiskt olösliga i alkaliska lösningar, Kungliga Patent- och Registeringsverket, Patent No. 15567. 1899. http://was.prv.se/spd/pdf/NiU5SxtgOeTSfAo8BkBrHw%3D%3D/SE15567.C1.pdfSearch in Google Scholar

[20] Edison TA. Reversible galvanic battery. United States Patent, No. 678722. 1901. https://www.google.com/patents/US678722Search in Google Scholar

[21] Mayer SW, McKenzie DE. Lightweight secondary battery. United States Patent, No. 3185590. 1965. https://www.google.com/patents/US3185590.Search in Google Scholar

[22] SwinkelsD AJ. Lithium-chlorine battery. J Elect Soc. 1966;113:6. 10.1149/1.2423867.Search in Google Scholar

[23] Mizushima K, Jones PC, Wiseman PJ, Goodenough JB.. LixCoO2 (0 < x ≤ 1): a new cathode material for batteries of high energy density. Mater Res Bull. 1980;15:783. DOI: https://doi.org/10.1016/0025-5408(80)90012-4.Search in Google Scholar

[24] Partridge BA, Jenkins TR, McGuire M. Sodium-sulphur battery cells. United States Patent, No. 3982959. 1976. https://worldwide.espacenet.com/publicationDetails/biblio?FT =D&date=19760928&DB=&locale=de_EP&CC=US&NR=3982959A&KC=A&ND=1#.Search in Google Scholar

[25] Reddy TD. Linden’s handbook of batteries. 4th ed. McGrawHill. New York, NY: United States, 2011. 978-0071624213.Search in Google Scholar

[26] Kurzweil P, Dietlmeier OK. Elektrochemische Speicher. Wiesbaden: Springer Vieweg, 2015. 10.1007/978-3-658-10900-4.Search in Google Scholar

[27] Daniel C, Besenhard J. Handbook of battery materials, vol. 1, 2nd ed. Weinheim: Wiley-VCH, 2012. 978-3-527-32695-2.Search in Google Scholar

[28] Kangro W. Verfahren zur Speicherung von elektrischer Energie. Deutsches Patent, Nr. 914264 (C). 1954. https://worldwide.espacenet.com/publicationDetails/biblio?locale=de_EP&CC=DE&NR=914264#.Search in Google Scholar

[29] Kangro W, Pieper H. Zur Frage der Speicherung von elektrischer Energie in Flüssigkeiten. Electrochim Acta. 1954;7:435. 10.1016/0013-4686(62)80032-2Search in Google Scholar

[30] Hagedorn NH. NASA redox storage system development project. Final report, No. DOE/NASA/12726-24, NASA-TM-83677. 1984. https://www.osti.gov/scitech/biblio/6472995.10.2172/6472995Search in Google Scholar

[31] Thaller LH. Electrically rechargeable redox flow cell. United States Patent, No. 3996064. 1976. https://www.google.com/patents/US3996064.Search in Google Scholar

[32] Ponce de León C, Frías-Ferrer A, González-García J, Szánto DA, Walsh FC. Redox flow cells for energy conversion. J Power Sources. 2006 9;160(1):716–732. DOI: 10.1016/j.jpowsour.2006.02.095.Search in Google Scholar

[33] Skyllas-Kazacos M, Rychick M, Robins R. All-vanadium redox battery. United States Patent, No. 4786567. 1988. https://www.google.com/patents/US4786567Search in Google Scholar

[34] Remick RJ, Ang PG. Electrically rechargeable anionically active reduction-oxidation electrical storage-supply system. United States Patent, No. 4485154. 1981. https://www.google.com/patents/US4485154.Search in Google Scholar

[35] Bradley CS. Secondary battery. United States Patent, No. 312802. 1880. https://www.google.com/patents/US312802.Search in Google Scholar

[36] Putt RA. Assessment of technical and economic feasibility of zinc/bromine batteries for utility load leveling. Rolling Meadows, IL: Final Report Gould, Inc., 1979. https://www.osti.gov/scitech/biblio/6106713.10.2172/6106713Search in Google Scholar

[37] Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M. Progress in flow battery research and development. J Electrochem Soc. 2011;158:55. 10.1149/1.3599565.Search in Google Scholar

[38] Wang W, Luo Q, Li B, Wei X, Liu L, Yang Z. Recent progress in redox flow battery research and development. Adv Funct Mater. 2013;23:970. 10.1002/adfm.201200694.Search in Google Scholar

[39] Skyllas-Kazacos M, Kazacos G, Poon G, Verseema v. Recent advances with UNSW vanadium-based redox flow batteries. Int J Energy Res. 2010;34:182.10.1002/er.1658Search in Google Scholar

[40] Zhao P, Zhang H, Zhou H, Chen J, Gao S, Yi B. Characteristics and performance of 10 kW class all-vanadium redox-flow battery stack. J Power Sources. 2006;162:1416. 10.1016/j.jpowsour.2006.08.016.Search in Google Scholar

[41] Musée Tudor. curriculum vitae on the museum’s webpage. https://web.archive.org/web/20160909200212/http://musee-tudor.lu/lebenslaufSearch in Google Scholar

[42] VARTA. VARTA brand history (1887–1909). https://www.varta-automotive.com/en-gb/why-varta/varta-brand-history/1887-1909Search in Google Scholar

[43] Power Sonic. Rechargeable sealed lead acid battery. data sheet PS-260 2 Volt 6.0 AH 2016. http://www.power-sonic.com/images/powersonic/sla_batteries/ps_psg_series/2volt/PS260.pdf.Search in Google Scholar

[44] Leadbetter J, Swan LG. Selection of battery technology to support grid-integrated renewable electricity. J Power Sources. 2012;216:376. 10.1016/j.jpowsour.2012.05.081. and references thereinSearch in Google Scholar

[45] Wang Y, Liu B, Li Q. Cartmell S, Ferrara S, Deng ZD, et al. Lithium and lithium ion batteries for applications in microelectronic devices: a review. J Power Sources. 2015;286:330. 10.1016/j.jpowsour.2015.03.164.Search in Google Scholar

[46] Botouhi A, Auger DJ, Propp K, Longo S, Wild M. A review on electric vehicle battery modelling: from lithium-ion toward lithium-sulphur. Renew Sustain Rev. 2016;56:1008. 10.1016/j.rser.2015.12.009.Search in Google Scholar

[47] Diouf B, Pode R. Potential of lithium-ion batteries in renewable energy. Renew Energy. 2015;375. 10.1016/j.renene.2014.11.058.Search in Google Scholar

[48] Kraytsberg A, Ein-Eli Y. Higher, stronger, better... A review of 5 Volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater. 2012;2:922. 10.1002/aenm.201200068.Search in Google Scholar

[49] Fergus JW. Recent developments in cathode materials for lithium ion batteries. J Power Sources. 2010;195:939. 10.1016/j.jpowsour.2009.08.089.Search in Google Scholar

[50] Zhang WJ. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources. 2011;196:13. 10.1016/j.jpowsour.2010.07.020.Search in Google Scholar

[51] de las Casas C, Li W. A review of application of carbon nanotubes for lithium ion battery anode material. J Power Sources. 2012;208:74. 10.1016/j.jpowsour.2012.02.013.Search in Google Scholar

[52] Kalhoff J, Eshetu GG, Bresser D, Passerini S. Safer electrolytes for lithium-ion batteries: State of the art and perspectives. Chem Sus Chem. 2015;8:2154. 10.1002/cssc.201500284Search in Google Scholar PubMed

[53] Alias N, Mohamad AA. Advances of aqueous rechargeable lithium-ion battery: A review. J Power Sources. 2015;274:237. 10.1016/j.jpowsour.2014.10.009.Search in Google Scholar

[54] Ordoñez J, Gago EJ, Girard A. Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew Sustain Energy Rev. 2016;60:195. 10.1016/j.rser.2015.12.363Search in Google Scholar

[55] Sharma RA, Wright WJ, Murie RA. Feedthrough assembly for lithium-iron sulphide cell. United States Patent, No. 4061841. 1977. https://www.google.com/patents/US4061841Search in Google Scholar

[56] Energizer. Product Datasheet Energizer L91 (Ultimate Lithium), http://data.energizer.com/pdfs/l91.pdfSearch in Google Scholar

[57] Buß K, Wrobel P, Doetsch C. Global distribution of grid-connected electrical energy storage systems. Int J Sustain Energy Plann Manage 2016;9:31.10.5278/ijsepm.2016.9.431.10.5278/ijsepm.2016.9.4Search in Google Scholar

[58] Ellis BL, Nazar LF. Sodium and sodium-ion energy storage batteries. Curr Opin Solid State Mater Sci. 2012;16:168. 10.1016/j.cossms.2012.04.002Search in Google Scholar

[59] Danuta H, Juliusz U. Electric dry cell and storage battery. United States Patent, No. 3043896. 1962. https://www.google.com/patents/US3043896.Search in Google Scholar

[60] Kummer J, Weber V. A sodium-sulphur secondary battery. SAE Technical Paper, No. 670179 1967. 10.4271/670179.Search in Google Scholar

[61] Xin S, Yin YX, Guo YG, Wan LJ. A high-energy room-temperature sodium-sulphur battery. Adv Mater. 2014;26:1261. 10.1002/adma.201304126.Search in Google Scholar

[62] Tudron FB, Akridge JR, Puglisi VJ. Lithium-sulphur rechargeable batteries: Characteristics, state of development, and applicability to powering portable electronics. Sion Power Corporation. 2004. http://www.sionpower.com/pdf/articles/PowerSources2004.pdf.Search in Google Scholar

[63] Nazar LF, Cuisinier M, Pang Q. Lithium-sulphur batteries. Lithium Batteries Beyond. 2014;39:436. 10.1557/mrs.2014.86.Search in Google Scholar

[64] Kopera J. Sion Power’s lithium-sulphur batteries power high altitude pseudo-satellite flight. Sion Power Company Press Release. 2014. http://www.sionpower.com/pdf/articles/Sion_Power_Zephyr_Flight_Press_Release_2014.pdf.Search in Google Scholar

[65] Reddy MA, Fichtner M. Batteries based on fluoride shuttle. J Mater Chem. 2011;21:17059. 10.1039/C1JM13535J.Search in Google Scholar

[66] Katsoulis EG, Prescia JJ. Metal/air battery. United States Patent, No. 3518123. 1970. https://www.google.com/patents/US3518123.Search in Google Scholar

[67] Moos AM. Metal/air batteries. United States Patent, No. 3531327 1970. https://www.google.com/patents/US3531327.Search in Google Scholar

[68] Landi HP, Voorhies JD. Metal-air battery including fibrillated cathode. United States Patent, No. 3462307. 1969. https://www.google.com/patents/US3462307.Search in Google Scholar

[69] Shao Y, Ding v, Xiao J, Zhang J, Xu W, Park S, et al. Making Li-air batteries rechargeable: Material challenges. Adv Funct Mater. 2013;23:987. 10.1002/adfm.201200688.Search in Google Scholar

[70] Abraham KM, Jiang Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc. 1996;143:1. 10.1149/1.1836378.Search in Google Scholar

[71] Clarke CL. Galvanic battery. United States Patent, No. 298175. 1884. https://www.google.com/patents/US298175.Search in Google Scholar

[72] Fowler G. Samuel Ruben, 88, an inventor noted for electrochemical work. New York Times. 20 July 1988. http://www.nytimes.com/1988/07/20/obituaries/samuel-ruben-88-an-inventor-noted-for-electrochemical-work.html.Search in Google Scholar

[73] Richtlinie 91/157/EWG des Rates vom 18. März 1991 über gefährliche Stoffe enthaltende Batterien und Akkumulatoren. EU Directive 91/157/EEC. 1991. http://eur-lex.europa.eu/legal-content/DE/TXT/HTML/?uri=CELEX:31991L0157&from=EN.Search in Google Scholar

[74] Coetzer J, Galloway RC, Bones RJ, Teagle DA, Moseley PT. Electrochemical cell. United States Patent, No. 4546055. 1985. https://www.google.com/patents/US4546055.Search in Google Scholar

[75] Coetzer J. A new high energy density battery system, J Power Sources 1986;18:377. 10.1016/0378-7753(86)80093-3.Search in Google Scholar

[76] Bones RJ, Galloway RC, Coetzer J, Teagle DA. Electrochemical cell. United States Patent, No. 4612266. 1986. https://www.google.com/patents/US4612266.Search in Google Scholar

[77] Moseley PT, Bones RJ, Teagle DA, Bellamy BA, Hawes RW. Stability of beta alumina electrolyte in socium/FeCl2 (zebra) cells. J Electrochem Soc 1989;136:1361. 10.1149/1.2096922.Search in Google Scholar

[78] Rummich E. Energiespeicher: Grundlagen, Komponenten, Systeme und Anwendungen. Renningen: Expert-Verlag. 2011. 978-381-692736-5.Search in Google Scholar

[79] Europäisches Parlament. Sammlung, Behandlung und Recycling von Altbatterien und Altakkumulatoren. 2006. http://www.europarl.europa.eu/sides/getDoc.do?language=de&type=IM-PRESS&reference=20060628BRI09328&secondRef=ITEM-003-de.Search in Google Scholar

[80] Beccu K. Accumulator electrode with capacity for storing hydrogen and method of manufacturing said electrode, United States Patent, No. 3669745 1972. https://www.google.com/patents/US3669745.Search in Google Scholar

[81] Beccu K. Negative electrode of titanium-nickel alloy hydride phases. United States Patent, No. 3824131 1974. https://www.google.com/patents/US3824131.Search in Google Scholar

[82] Energizer. Nickel metal hydride (NiMH) – Handbook and application manual. http://data.energizer.com/pdfs/nickelmetalhydride_appman.pdf.Search in Google Scholar

[83] Duracell. Silver oxide. Datasheet. 2009. https://web.archive.org/web/20091220201115/http://www.duracell.com/ procell/chemistries/silver.asp.Search in Google Scholar

[84] DiCicco M. NASA research helps take silver-zinc batteries from idea to the shelf. NASA press release, 2016. https://www.nasa.gov/directorates/spacetech/spinoff/feature/Silver-Zinc_BatteriesSearch in Google Scholar

[85] Glover D, Kozawa A, Schumm B. Handbook of manganese dioxides, battery grade. Int Battery Mater Asso. IC Sample Office, 1989.Search in Google Scholar

[86] Crowley CA, Langdon WM, Louzos DV. Battery cells. United States Patent, No. 2921110. https://www.google.com/patents/US2921110.Search in Google Scholar

[87] Mehta SA, Bonakdarpour A, Wilkinson DP. Impact of cathode additives on the cycling performance of rechargeable alkaline manganese dioxide-zinc batteries for energy storage applications. J Appl Elecrochem. 2017;47:167. 10.1007/s10800-016-1034-1.Search in Google Scholar

[88] Whitlock M. Panasonic oxyride editorial review – The revolution in battery power. On: Techlore.com, http://techlore.com/article/panasonic-oxyride-editorial-review-revolution-battery-power.Search in Google Scholar

[89] AccuCell. Der Aufbau der neuen AccuCell Batterien, http://cdn-reichelt.de/documents/datenblatt/D400/AccuCell_Datenblatt.pdfSearch in Google Scholar

[90] Muldoon J, Bucur CB, Gregory T. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev. 2014;114:11683. 10.1021/cr500049y.Search in Google Scholar

[91] Nishi Y. Lithium ion secondary batteries; past 10 years and the future. J Power Sources. 2001;100:101. 10.1016/S0378-7753(01)00887-4.Search in Google Scholar

[92] Mayers MZ, Kaminski JW, Miller III TF. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. J Phys Chem C. 2012;116:26214. 10.1021/jp309321w.Search in Google Scholar

[93] Aurbach D, Zinigrad E, Teller H, Dan dP. Factors which limit the cycle life of rechargeable lithium (metal) batteries. J Electrochem Soc. 2000;147:1274. 10.1149/1.1393349.Search in Google Scholar

[94] de Jongh PE, Blanchard D, Matsuo M, Udovic TJ, Orimo S. Complex hydrides as room-temperature solid electrolytes for rechargeable batteries. Appl Physics A. 2016;122:1. 10.1007/s00339-016-9807-2.Search in Google Scholar

[95] Kharton VV. Solid state electrochemistry I: Fundamentals, materials and their applications. John Wiley & Sons, 2009. 978-3-527-32318-0.10.1002/9783527627868Search in Google Scholar

[96] Guduru RK, Icaza JC. A brief review on multivalent intercalation batteries with aqueous electrolytes. Nanomater 2016;6:41. 10.3390/nano6030041.Search in Google Scholar PubMed PubMed Central

[97] Muldoon J, Bucur CB, Oliver AG, Sugimoto T, Matsui M, Kim HS, et al. Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ Sci. 2012;5:5941. 10.1039/C2EE03029B.Search in Google Scholar

[98] Lapidus SH, Rajput NN, Qu X, Chapman KW, Persson KA, Chupas PJ. Solvation structure and energetics of electrolytes for multivalent energy storage. Phys Chem Chem Phys. 2014;16:21941. 10.1039/C4CP03015J.Search in Google Scholar

[99] Liu M, Rong Z, Malik R, Canepa P, Jain A, Ceder G, et al. Spinel compounds as multivalent battery cathodes: A systematic evaluation based on ab initio calculations. Energy Environ Sci. 2015;8:964. 10.1039/C4EE03389B.Search in Google Scholar

[100] Li Q, Chen J, Fan L, Kong X, Lu Y. Progress in electrolytes for rechargeable Li-based batteries and beyond, Green Energy & Environ. 2016;1:18. 10.1016/j.gee.2016.04.006.Search in Google Scholar

[101] Anantharamulu N, Koteswara Rao K, Rambabu G, Vijaya Kumar B, Radha V, Vithal M. A wide-ranging review on NASICON type materials. J Mater Sci. 2011;46:2821. 10.1007/s10853-011-5302-5.Search in Google Scholar

[102] Smart LE, Moore EA. Solid state chemistry: An introduction. CRC press, 2005. 978-1-4398-4790-9.Search in Google Scholar

[103] Alamo J, Roy R. Crystal chemistry of the NaZr2(PO4)3, NZP or CTP, structure family. J of Mater Sci. 1986;21:444. 10.1007/BF01145507Search in Google Scholar

[104] Alamo J. Chemistry and properties of solids with the [NZP] skeleton. Solid State Ionics. 1993:63:547. 10.1016/0167-2738(93)90158-Y.Search in Google Scholar

[105] Ellis BL, Nazar LF. Sodium and sodium-ion energy storage batteries, Curr Opin Solid State Mater Sci. 2012;16:168. 10.1016/j.cossms.2012.04.002.Search in Google Scholar

[106] Hong HY. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3–xO12. Mater Res Bull. 1976;11:173. DOI: 10.1016/0025-5408(76)90073-8.Search in Google Scholar

[107] Sun K, Wei T-S, Ahn BY, Seo JY, Dillon SJ, Lewis JA. 3D printing of interdigitated Li-ion microbattery architectures. Adv Mater. 2013;25:4539. 10.1002/adma.201301036Search in Google Scholar PubMed

[108] Lewis J, Dillon S, Sun K, Ahn BY, Wei T-S. Three-dimensional (3d) electrode architecture for a microbattery. United States Patent Nr. 20160126558. https://www.google.com/patents/US20160126558Search in Google Scholar

[109] Zhao B, Ran R, Liu M, Shao Z. A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives. Mater Sci Eng R. 2015;98:1. DOI: 10.1016/j.mser.2015.10.001.Search in Google Scholar

[110] Human JP. Fuel cell. United States Patent No. 2012/0208104. 2012. https://www.google.com/patents/US20120208104Search in Google Scholar

[111] Agruss B. Regenerative Battery. United States Patent No. 3245836. 1966. https://www.google.com/patents/US3245836Search in Google Scholar

[112] Shen Y, Zikanov O. Thermal convection in a liquid metal battery. Theor Comput Fluid Dyn. 2015;30:275. 10.1007/s00162-015-0378-1Search in Google Scholar

[113] Bradwell DJ, Kim J, Sirk AHC, Sadoway DR. Magnesium-antimony liquid metal battery for stationary energy storage. J Am Chem Soc. 2012;134:1895. 10.1021/ja209759sSearch in Google Scholar PubMed

[114] Leung P, Heck SC, Arnietszajew T, Mohamed MR, Conde MB, Dashwood RJ, et al. Performance and polarization studies of the magnesium-antimony liquid metal battery with the use of in-situ reference electrode. RSC Adv. 2015;5:83096. 10.1039/C5RA08606JSearch in Google Scholar

[115] Wang K, Jiang K, Chung B, Ouchi T, Burke PJ, Boysen DA, et al. Lithium-antimony-lead liquid metal battery for grid-level energy storage. Nature. 2014;514:348. 10.1038/nature13700Search in Google Scholar PubMed

[116] Abraham KM. Solid polymer electrolyte-based oxygen batteries. United States Patent No. 5510209. 1996. https://www.google.com/patents/US5510209Search in Google Scholar

[117] Liu T, Leskes M, Yu W, Moore AJ, Zhou L, Bayley PM, et al. Cycling Li-O2 batteries via LiOH formation and decomposition. Science. 2015;350:530. 10.1126/science.aac7730Search in Google Scholar PubMed

[118] Wang J, Li Y, Sun Y. Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries. Nano Energy. 2015;2:443. 10.1016/j.nanoen.2012.11.014Search in Google Scholar

[119] Hartmann P, Bender CL, Vračar MS, Dürr AK, Garsuch A, Janek J, et al. A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat Mater. 2013;12:228. 10.1038/nmat3486Search in Google Scholar PubMed

[120] Sun W, Yang Y, Fu Z-W. Electrochemical properties of room temperature sodium air batteries with nonaqueous electrolyte. Electrochem Commun. 2012;16:22. 10.1016/j.elecom.2011.12.019Search in Google Scholar

[121] Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulphur batteries. Beilstein J Nanotechnol. 2015;6:1016. 10.3762/bjnano.6.105Search in Google Scholar PubMed PubMed Central

[122] Singh N, Galande C, Miranda A, Mathkar A, Gao W, Reddy ALM,et al. Paintable battery. Sci Rep. 2012;2:481. 10.1038/srep00481Search in Google Scholar PubMed PubMed Central

[123] Licht S., Wang B, Ghosh S. Energetic Iron(VI) Chemistry: The Super-Iron Battery. Science 1999:1039–42. DOI: 10.1126/science.285.5430.1039.285.Search in Google Scholar

[124] Licht S, Tel-Vered R. Rechargeable Fe(III/VI) super-iron cathodes. Chem Commun. 2004;0:628. 10.1039/B400251BSearch in Google Scholar

[125] Hassoun J, Scrosati B. A high performance polymer tin sulphur lithium ion battery. Angewandte Chem. 2010;49:2371. 10.1002/anie.200907324Search in Google Scholar PubMed

[126] Hassoun J, Fernicola A, Navarra MA, Panero S, Scrosati B. An advanced lithium-ion battery based on a nanostructured Sn/C anode and an electrochemically stable LiTFSi-Py24TFSI ionic liquid electrolyte. J Power Sources. 2010;185:574. 10.1016/j.jpowsour.2009.07.046Search in Google Scholar

[127] Hassoun J, Sun Y-K, Scrosati B. Rechargeable lithium sulphide electrode for a polymer tin/sulphur lithium-ion battery. J Power Sources. 2011;196:343. 10.1016/j.jpowsour.2010.06.093Search in Google Scholar

[128] Nam KT, Kim D-W, Yoo PJ, Chiang C-Y, Meethong N, Hammond PT, et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science. 2006;312:885. 10.1126/science.1122716Search in Google Scholar PubMed

[129] Lee YJ, Lee Y, Oh D, Chen T, Cede G, et al. Biologically activated noble metal alloys at the nanoscale: For lithium ion battery anodes. Nano Lett. 2010;10:2433. 10.1021/nl1005993Search in Google Scholar PubMed

[130] Cabana J, Monconduit L, Larcher D, Palacín MR. Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Advanced Materials 2010:E170–E192. DOI: 10.1002/adma.201000717 22.Search in Google Scholar PubMed

[131] Japan Trend Shop. NoPoPo eco water-powered AA batteries. http://www.japantrendshop.com/nopopo-eco-waterpowered-aa-batteries-p-546.htmlSearch in Google Scholar

Published Online: 2018-09-19

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2018-0038/html
Scroll to top button