Startseite Homogeneous visible light mediated transition metal catalysis other than Ruthenium and Iridium
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Homogeneous visible light mediated transition metal catalysis other than Ruthenium and Iridium

  • Lukas Traub und Oliver Reiser ORCID logo EMAIL logo
Veröffentlicht/Copyright: 30. März 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The field of photoredox chemistry is dominated by ruthenium- or iridium based metal complexes or organic dyes that are employed as catalysts. Other metal based coordination compounds provide a cost efficient alternative, however, the much shorter excited lifetimes generally observed for such complexes make their application more challenging. Nevertheless, a growing number of successful examples with metal complexes based on chromium, iron, nickel, zirconium, cerium, rhenium, platinum, uranium, and especially on copper exist, which is being reviewed in this chapter.

Acknowledgements

Contributions by Georgiy Kachkovskyi, Viktor Kais, Paul Kohls, Suva Paria, Michael Pirtsch, Daniel Rackl and Hana Seo towards the first version of this chapter are gratefully acknowledged.

The GRK 1626 (“Photocatalysis”) of the German Research Foundation (DFG) is gratefully acknowledged for funding.

References

[1] Tucker JW, Stephenson CR. Shining light on photoredox catalysis. Theory and synthetic applications. J Org Chem. 2012;77:1617–22.10.1021/jo202538xSuche in Google Scholar PubMed

[2] Balzani V, Campagna S, Accorsi G, editors. Photochemistry and photophysics of coordination compounds I: overview and general concepts. Berlin, Heidelberg: Springer, 2007.Suche in Google Scholar

[3] Leading reviews: a) Marzo L, Pagire SK, Reiser O, König B. Visible-light photocatalysis: does it make a difference in organic synthesis? Angew Chem Int Ed. 2018;57:10034–72; b) Romero NA, Nicewicz DA. Organic photoredox catalysis. Chem Rev. 2016;116:10075–166; c) Skubi KL, Blum TR, Yoon TP. Dual Catalysis Strategies in Photochemical Synthesis. Chem Rev. 2016;116:10035–74; d) Shaw MH, Twilton J, MacMillan DW. Photoredox catalysis in organic chemistry. J Org Chem. 2016;81:6898–926; a) Narayanam JM, Stephenson CR. Visible light photoredox catalysis. Applications in organic synthesis. Chem Soc Rev. 2011;40:102–13; b) Zeitler K. Photoredox catalysis with visible light. Angew Chem Int Ed. 2009;48:9785–9.10.1002/anie.201709766Suche in Google Scholar

[4] a) Mitani M, Nakayama M, Koyama K. The cuprous chloride catalyzed addition of halogen compounds to olefins under photo-irradiation. Tetrahedron Lett. 1980;21:4457–60; b) Mitani M, Kato I, Koyama K. Photoaddition of alkyl halides to olefins catalyzed by copper(I) complexes. J Am Chem Soc. 1983;105:6719–21.10.1016/S0040-4039(00)92199-3Suche in Google Scholar

[5] Kern J-M, Sauvage J-P. Photoassisted C–C coupling via electron transfer to benzylic halides by a bis(di-imine) copper(I) complex. Chem Commun. 1987:546–8.10.1039/C39870000546Suche in Google Scholar

[6] Flamigni L, Barbieri A, Sabatini C, Ventura B, Barigelletti F. Photochemistry and Photophysics of Coordination Compounds: Iridium. In: Balzani V, Campagna S, Barbieri A, editor(s). Photochemistry and photophysics of coordination compounds II, Topics in current chemistry Vol. 281. Berlin, Heidelberg: Springer, 2007:143–203.Suche in Google Scholar

[7] Pirtsch M, Paria S, Matsuno T, Isobe H, Reiser O. Cu(dap)2Cl as an efficient visible-light-driven photoredox catalyst in carbon-carbon bond-forming reactions. Chem Eur J. 2012;18:7336–40.10.1002/chem.201200967Suche in Google Scholar PubMed

[8] Bagal DB, Kachkovskyi G, Knorn M, Rawner T, Bhanage BM, Reiser O. Trifluoromethylchlorosulfonylation of alkenes. Evidence for an inner-sphere mechanism by a copper phenanthroline photoredox catalyst. Angew Chem Int Ed. 2015;54:6999–7002.10.1002/anie.201501880Suche in Google Scholar PubMed

[9] Tang X-J, Dolbier WR. Efficient Cu-catalyzed Atom Transfer Radical Addition Reactions of Fluoroalkylsulfonyl Chlorides with Electron-deficient Alkenes Induced by Visible Light. Angew Chem. 2015;127:4320–3.10.1002/ange.201412199Suche in Google Scholar

[10] Oh SH, Malpani YR, Ha N, Jung Y-S, Han SB. Vicinal difunctionalization of alkenes. Chlorotrifluoromethylation with CF3SO2Cl by photoredox catalysis. Org Lett. 2014;16:1310–3.10.1021/ol403716tSuche in Google Scholar PubMed

[11] Beniazza R, Molton F, Duboc C, Tron A, McClenaghan ND, Lastécouères D, et al. Copper(I)-photocatalyzed trifluoromethylation of alkenes. Chem Commun. 2015;51:9571–4.10.1039/C5CC01923KSuche in Google Scholar

[12] a) Rawner T, Lutsker E, Kaiser CA, Reiser O. The different faces of photoredox catalysts. Visible-light-mediated atom transfer radical addition (ATRA) reactions of perfluoroalkyl iodides with styrenes and phenylacetylenes. ACS Catal. 2018;8:3950–6; b) Hossain A, Engl S, Lutsker E, Reiser O. Visible-light-mediated regioselective chlorosulfonylation of alkenes and alkynes. Introducing the Cu(II) complex [Cu(dap)Cl 2] to photochemical ATRA reactions. ACS Catal. 2019:1103–9.10.1021/acscatal.8b00847Suche in Google Scholar

[13] Rawner T, Knorn M, Lutsker E, Hossain A, Reiser O. Synthesis of trifluoromethylated sultones from alkenols using a copper photoredox catalyst. J Org Chem. 2016;81:7139–47.10.1021/acs.joc.6b01001Suche in Google Scholar PubMed

[14] Cuttell DG, Kuang S-M, Fanwick PE, McMillin DR, Walton RA. Simple Cu(I) complexes with unprecedented excited-state lifetimes. J Am Chem Soc. 2002;124:6–7.10.1021/ja012247hSuche in Google Scholar PubMed

[15] Smith CS, Mann KR. Exceptionally long-lived luminescence from Cu(I)(isocyanide)2(phen)+ complexes in nanoporous crystals enables remarkable oxygen gas sensing. J Am Chem Soc. 2012;134:8786–9.10.1021/ja302807sSuche in Google Scholar PubMed

[16] Knorn M, Rawner T, Czerwieniec R, Reiser O. [Copper(phenanthroline)(bisisonitrile)] + -complexes for the visible-light-mediated atom transfer radical addition and allylation reactions. ACS Catal. 2015;5:5186–93.10.1021/acscatal.5b01071Suche in Google Scholar

[17] Minozzi C, Caron A, Grenier-Petel J-C, Santandrea J, Collins SK. Heteroleptic copper(I)-based complexes for photocatalysis. Combinatorial assembly, discovery, and optimization. Angew Chem Int Ed. 2018;57:5477–81.10.1002/anie.201800144Suche in Google Scholar PubMed

[18] Hernandez-Perez AC, Vlassova A, Collins SK. Toward a visible light mediated photocyclization. Cu-based sensitizers for the synthesis of 5helicene. Org Lett. 2012;14:2988–91.10.1021/ol300983bSuche in Google Scholar PubMed

[19] Yang J, Zhang J, Qi L, Hu C, Chen Y. Visible-light-induced chemoselective reductive decarboxylative alkynylation under biomolecule-compatible conditions. Chem Commun. 2015;51:5275–8.10.1039/C4CC06344ASuche in Google Scholar PubMed

[20] Tarantino KT, Liu P, Knowles RR. Catalytic ketyl-olefin cyclizations enabled by proton-coupled electron transfer. J Am Chem Soc. 2013;135:10022–5.10.1021/ja404342jSuche in Google Scholar PubMed

[21] Farney EP, Yoon TP. Visible-light sensitization of vinyl azides by transition-metal photocatalysis. Angew Chem Int Ed. 2014;53:793–7.10.1002/anie.201308820Suche in Google Scholar PubMed PubMed Central

[22] Fumagalli G, Rabet PTG, Boyd S, Greaney MF. Three-component azidation of styrene-type double bonds. Light-switchable behavior of a copper photoredox catalyst. Angew Chem Int Ed. 2015;54:11481–4.10.1002/anie.201502980Suche in Google Scholar PubMed PubMed Central

[23] Rabet PT, Fumagalli G, Boyd S, Greaney MF. Benzylic C-H azidation using the zhdankin reagent and a copper photoredox catalyst. Org Lett. 2016;18:1646–9.10.1021/acs.orglett.6b00512Suche in Google Scholar PubMed

[24] Hossain A, Vidyasagar A, Eichinger C, Lankes C, Phan J, Rehbein J, et al. Visible-light-accelerated copper(II)-catalyzed regio- and chemoselective oxo-azidation of vinyl arenes. Angew Chem Int Ed. 2018;57:8288–92.10.1002/anie.201801678Suche in Google Scholar PubMed

[25] a) Kainz QM, Matier CS, Bartoszewicz A, Zultanski SK, Peters JC, Fu GC. Asymmetric copper-catalyzed C-N cross-couplings induced by visible light. Science. 2016;351:681–4; b) Ahn JM, Peters JC, Fu GC. Design of a photoredox catalyst that enables the direct synthesis of carbamate-protected primary amines via photoinduced, copper-catalyzed N-alkylation reactions of unactivated secondary halides. J Am Chem Soc. 2017;139:18101–6; c) Matier CD, Schwaben J, Peters JC, Fu GC. Copper-catalyzed alkylation of aliphatic amines induced by visible light. J Am Chem Soc. 2017;139:17707–10.10.1126/science.aad8313Suche in Google Scholar PubMed PubMed Central

[26] Li Y, Zhou K, Wen Z, Cao S, Shen X, Lei M, et al. Copper(II)-catalyzed asymmetric photoredox reactions: enantioselective alkylation of imines driven by visible light. J Am Chem Soc. 2018;140:15850–8.10.1021/jacs.8b09251Suche in Google Scholar PubMed

[27] a) Kirk AD, Porter GB. Luminescence of chromium(III) complexes. J Phys Chem. 1980;84:887–91; b) Serpone N, Jamieson MA, Henry MS, Hoffman MZ, Bolletta F, Maestri M. Excited-state behavior of polypyridyl complexes of chromium(III). J Am Chem Soc. 1979;101:2907–16.10.1021/j100445a020Suche in Google Scholar

[28] a) Stevenson SM, Shores MP, Ferreira EM. Photooxidizing chromium catalysts for promoting radical cation cycloadditions. Angew Chem Int Ed. 2015;54:6506–10; b) Higgins RF, Fatur SM, Shepard SG, Stevenson SM, Boston DJ, Ferreira EM, Damrauer NH, Rappé AK, Shores MP. Uncovering the roles of oxygen in cr(III) photoredox catalysis. J Am Chem Soc. 2016;138:5451–64; c) Stevenson SM, Higgins RF, Shores MP, Ferreira EM. Chromium photocatalysis. Accessing structural complements to Diels-Alder adducts with electron-deficient dienophiles. Chem Sci. 2017;8:654–60.10.1002/anie.201501220Suche in Google Scholar PubMed

[29] a) Otto S, Grabolle M, Förster C, Kreitner C, Resch-Genger U, Heinze K. [Cr(ddpd) 2] 3+. Ein molekulares, wasserlösliches, hoch NIR-lumineszentes Rubin-Analogon. Angew Chem. 2015;127:11735–9; b) Otto S, Scholz N, Behnke T, Resch-Genger U, Heinze K. Thermo-Chromium. A contactless optical molecular thermometer. Chem Eur J. 2017;23:12131–5.10.1002/ange.201504894Suche in Google Scholar

[30] Otto S, Nauth AM, Ermilov E, Scholz N, Friedrich A, Resch-Genger U, et al. Photo-Chromium. Sensitizer for Visible-Light-Induced Oxidative C−H Bond Functionalization-Electron or Energy Transfer? ChemPhotoChem. 2017;1:344–9.10.1002/cptc.201700077Suche in Google Scholar

[31] a) Latos-Grazynski L, Cheng RJ, La Mar GN, Balch AL. Oxygenation patterns for substituted meso-tetraphenylporphyrin complexes of iron(II). Spectroscopic detection of dioxygen complexes in the absence of amines. J Am Chem Soc. 1982;104:5992–6000; b) Balch AL, Chan YW, Cheng RJ, La Mar GN, Latos-Grazynski L, Renner MW. Oxygenation patterns for iron(II) porphyrins. Peroxo and ferryl (FeIVO) intermediates detected by proton nuclear magnetic resonance spectroscopy during the oxygenation of (tetramesitylporphyrin)iron(II). J Am Chem Soc. 1984;106:7779–85; c) Balch AL. The reactivity of spectroscopically detected peroxy complexes of iron porphyrins. Inorg Chim Acta. 1992;198–200:297–307; d) Rosenthal J, Luckett TD, Hodgkiss JM, Nocera DG. Photocatalytic oxidation of hydrocarbons by a bis-iron(III)-mu-oxo Pacman porphyrin using O2 and visible light. J Am Chem Soc. 2006;128:6546–7.10.1021/ja00386a027Suche in Google Scholar

[32] a) Gilbert BC, Hodges GR, Smith JR, MacFaul P. The photoreactions of the carboxylate complexes of 5,10,15,20-tetrad 2-N-methylpyridyl) porphyrin. J Mol Catal A Chem. 249–57; b) Gilbert BC, Smith JR, MacFaul P, Taylor P. Reactions of carboxyl radicals generated by the photocleavage of complexes of iron(III) tetra(2-N-methylpyridyl)porphyrin with unsaturated and aromatic carboxylic acids in aqueous solution. Perkin Trans. 1996:511.10.1039/p29960000511Suche in Google Scholar

[33] Legrini O, Oliveros E, Braun AM. Photochemical processes for water treatment. Chem Rev. 1993;93:671–98.10.1021/cr00018a003Suche in Google Scholar

[34] Chen X, Ma W, Li J, Wang Z, Chen C, Ji H, et al. Photocatalytic Oxidation of Organic Pollutants Catalyzed by an Iron Complex at Biocompatible pH Values. Using O 2 as Main Oxidant in a Fenton-like Reaction. J Phys Chem. 2011;115:4089–95.10.1021/jp110277kSuche in Google Scholar

[35] Tao X, Ma W, Zhang T, Zhao J. A novel approach for the oxidative degradation of organic pollutants in aqueous solutions mediated by iron tetrasulfophthalocyanine under visible light radiation. Chem Eur J. 2002;8:1321–6.10.1002/1521-3765(20020315)8:6<1321::AID-CHEM1321>3.0.CO;2-MSuche in Google Scholar

[36] a) Schroeder MA, Wrighton MS. Pentacarbonyliron(0) photocatalyzed hydrogenation and isomerization of olefins. J Am Chem Soc. 1976;98:551–8; b) Swartz GL, Clark RJ. Iron carbonyl-trifluorophosphine compounds as photocatalytic precursors in isomerization studies. Inorg Chem. 1980;19:3191–5.10.1021/ja00418a039Suche in Google Scholar

[37] a) Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. Dual catalysis. Merging photoredox with nickel catalysis. Coupling of α-carboxyl sp3-carbons with aryl halides. Science. 2014;345:437–40; b) Welin ER, Le C, Arias-Rotondo DM, McCusker JK, MacMillan DW. Photosensitized, energy transfer-mediated organometallic catalysis through electronically excited nickel(II). Science (New York, N.Y.) 2017;355:380–5; c) Ding W, Lu L-Q, Zhou Q-Q, Wei Y, Chen J-R, Xiao W-J. Bifunctional photocatalysts for enantioselective aerobic oxidation of β-ketoesters. J Am Chem Soc. 2017;139:63–6.10.1126/science.1255525Suche in Google Scholar

[38] Büldt LA, Larsen CB, Wenger OS. Luminescent Ni0 diisocyanide chelates as analogues of cui diimine complexes. Chemistry. 2017;23:8577–80.10.1002/chem.201700103Suche in Google Scholar PubMed

[39] Grübel M, Bosque I, Altmann PJ, Bach T, Hess CR. Redox and photocatalytic properties of a NiII complex with a macrocyclic biquinazoline (Mabiq) ligand. Chem Sci. 2018;9:3313–17.10.1039/C7SC05320GSuche in Google Scholar PubMed

[40] Shields BJ, Kudisch B, Scholes GD, Doyle AG. Long-lived charge-transfer states of nickel(II) aryl halide complexes facilitate bimolecular photoinduced electron transfer. J Am Chem Soc. 2018;140:3035–9.10.1021/jacs.7b13281Suche in Google Scholar PubMed

[41] Shen X, Li Y, Wen Z, Cao S, Hou X, Gong L. A chiral nickel DBFOX complex as a bifunctional catalyst for visible-light-promoted asymmetric photoredox reactions. Chem Sci. 2018;9:4562–8.10.1039/C8SC01219ASuche in Google Scholar PubMed

[42] Zhang Y, Petersen JL, Milsmann C. A luminescent zirconium(IV) complex as a molecular photosensitizer for visible light photoredox catalysis. J Am Chem Soc. 2016;138:13115–8.10.1021/jacs.6b05934Suche in Google Scholar PubMed

[43] Büldt LA, Guo X, Prescimone A, Wenger OS. A molybdenum(0) isocyanide analogue of Ru(2,2-Bipyridine)3 (2+). A strong reductant for photoredox catalysis. Angew Chem Int Ed. 2016;55:11247–50.10.1002/anie.201605571Suche in Google Scholar PubMed

[44] Büldt LA, Wenger OS. Luminescent complexes made from chelating isocyanide ligands and earth-abundant metals. Dalton Trans. 2017;46:15175–7.10.1039/C7DT03620ESuche in Google Scholar PubMed

[45] Vogler A, Kunkely H. Excited state properties of lanthanide complexes. Beyond ff states. Inorg Chim Acta. 2006;359:4130–8.10.1016/j.ica.2006.05.025Suche in Google Scholar

[46] Yin H, Carroll PJ, Anna JM, Schelter EJ. Luminescent ce(III) complexes as stoichiometric and catalytic photoreductants for halogen atom abstraction reactions. J Am Chem Soc. 2015;137:9234–7.10.1021/jacs.5b05411Suche in Google Scholar PubMed

[47] Guo J-J, Hu A, Chen Y, Sun J, Tang H, Zuo Z. Photocatalytic C-C bond cleavage and amination of cycloalkanols by cerium(III) chloride complex. Angew Chem Int Ed. 2016;55:15319–22.10.1002/anie.201609035Suche in Google Scholar PubMed

[48] Hu A, Guo J-J, Pan H, Tang H, Gao Z, Zuo Z. δ-Selective functionalization of alkanols enabled by visible-light-induced ligand-to-metal charge transfer. J Am Chem Soc. 2018;140:1612–6.10.1021/jacs.7b13131Suche in Google Scholar PubMed

[49] Hu A, Guo J-J, Pan H, Zuo Z. Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis. Science. 2018;361:668–72.10.1126/science.aat9750Suche in Google Scholar PubMed

[50] Takeda H, Koike K, Morimoto T, Hiroki I, Ishitani O. Photochemistry and photocatalysis of rhenium(I) diimine complexes. Adv Inorg Chem. 2011;63:137–86.10.1016/B978-0-12-385904-4.00007-XSuche in Google Scholar

[51] Kou Y, Nabetani Y, Masui D, Shimada T, Takagi S, Tachibana H, et al. Direct detection of key reaction intermediates in photochemical CO2 reduction sensitized by a rhenium bipyridine complex. J Am Chem Soc. 2014;136:6021–30.10.1021/ja500403eSuche in Google Scholar PubMed

[52] Kumar A, Sun S-S, Lees AJ. In: Lees AJ, Castellano FN, editors. Photophysics of organometallics, topics in organometallic chemistry, vol. 29. Berlin Heidelberg, Berlin, Heidelberg: Springer-Verlag, 2010:37–71.10.1007/3418_2009_2Suche in Google Scholar

[53] Larsen CB, Wenger OS. Photophysics and photoredox catalysis of a homoleptic rhenium(I) tris(diisocyanide) complex. Inorg Chem. 2018;57:2965–8.10.1021/acs.inorgchem.7b03258Suche in Google Scholar PubMed

[54] Hawecker J, Lehn J-M, Ziessel R. Photochemical and electrochemical reduction of carbon dioxide to carbon monoxide mediated by (2,2? -Bipyridine)tricarbonylchlororhenium(I) and related complexes as homogeneous catalysts. Helv Chim Acta. 1986;69:1990–2012.10.1002/hlca.19860690824Suche in Google Scholar

[55] Bruckmeier C, Lehenmeier MW, Reithmeier R, Rieger B, Herranz J, Kavakli C. Binuclear rhenium(I) complexes for the photocatalytic reduction of CO2. Dalton Trans. 2012;41:5026–37.10.1039/c2dt30273jSuche in Google Scholar PubMed

[56] Rohacova J, Ishitani O. Rhenium(i) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO2 reduction. Chem Sci. 2016;7:6728–39.10.1039/C6SC01913GSuche in Google Scholar PubMed

[57] Windle CD, George MW, Perutz RN, Summers PA, Sun XZ, Whitwood AC. Comparison of rhenium-porphyrin dyads for CO2 photoreduction. Photocatalytic studies and charge separation dynamics studied by time-resolved IR spectroscopy. Chem Sci. 2015;6:6847–64.10.1039/C5SC02099ASuche in Google Scholar PubMed

[58] Liu Q, Li Y-N, Zhang H-H, Chen B, Tung C-H, Wu L-Z. Photochemical preparation of pyrimidin-2(1 H)-ones by rhenium(I) complexes with visible light. J Org Chem. 2011;76:1444–7.10.1021/jo102062uSuche in Google Scholar PubMed

[59] Zhang D, Wu L-Z, Zhou L, Han X, Yang Q-Z, Zhang L-P, et al. Photocatalytic hydrogen production from hantzsch 1,4-dihydropyridines by platinum(II) terpyridyl complexes in homogeneous solution. J Am Chem Soc. 2004;126:3440–1.10.1021/ja037631oSuche in Google Scholar PubMed

[60] Wang D-H, Peng M-L, Han Y, Chen B, Tung C-H, Wu L-Z. Facile preparation of 3,4-diarylpyrroles and hydrogen by a platinum(II) terpyridyl complex. Inorg Chem. 2009;48:9995–7.10.1021/ic901666jSuche in Google Scholar PubMed

[61] Choi WJ, Choi S, Ohkubo K, Fukuzumi S, Cho EJ, You Y. Mechanisms and applications of cyclometalated Pt(ii) complexes in photoredox catalytic trifluoromethylation. Chem Sci. 2015;6:1454–64.10.1039/C4SC02537GSuche in Google Scholar PubMed PubMed Central

[62] Lide DR. CRC handbook of chemistry and physics: A ready-reference book of chemical and physical data. Boca Raton: CRC Press, 2001.Suche in Google Scholar

[63] Liddle ST. The renaissance of non-aqueous uranium chemistry. Angew Chem Int Ed. 2015;54:8604–41.10.1002/anie.201412168Suche in Google Scholar PubMed

[64] Matsushima R. Mechanism of quenching of the uranyl fluorescence by organic compounds. J Am Chem Soc. 1972;94:6010–6.10.1021/ja00772a012Suche in Google Scholar

[65] a) Wang W-D, Bakac A, Espenson JH. Uranium(VI)-catalyzed photooxidation of hydrocarbons with molecular oxygen. Inorg Chem. 1995;34:6034–9; b) Murayama E, Sato T. Metal-catalyzed organic photoreactions. The photooxidation of olefins in the presence of uranyl acetate. Bull Chem Soc Jpn. 1978;51:3022–6; c) Mao Y, Bakac A. Uranyl-sensitized photochemical oxidation of naphthalene by molecular oxygen. Role of electron transfer. J Phys Chem. 1997;101:7929–33.10.1021/ic00128a014Suche in Google Scholar

[66] West JG, Bedell TA, Sorensen EJ. The uranyl cation as a visible-light photocatalyst for C(sp(3))-H fluorination. Angew Chem Int Ed. 2016;55:8923–7.10.1002/anie.201603149Suche in Google Scholar PubMed PubMed Central

[67] Larsen CB, Wenger OS. Photoredox catalysis with metal complexes made from earth-abundant elements. Chem Eur J. 2018;24:2039–58.10.1002/chem.201703602Suche in Google Scholar PubMed

[68] a) Paria S, Reiser O. Copper in Photocatalysis. ChemCatChem. 2014;6:2477–83.; b) Reiser O. Shining light on copper. Unique opportunities for visible-light-catalyzed atom transfer radical addition reactions and related processes. Acc Chem Res. 2016;49:1990–6; c) Hernandez-Perez AC, Collins SK. Heteroleptic Cu-based sensitizers in photoredox catalysis. Acc Chem Res. 2016;49:1557–65.10.1002/cctc.201402237Suche in Google Scholar

Published Online: 2019-03-30

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2017-0172/pdf
Button zum nach oben scrollen