Abstract
Total reflection X-ray fluorescence (TXRF) spectrometry is a non-destructive and surface sensitive multi-element analytical method based on energy dispersive X-ray fluorescence spectrometry with detection limits in the lower picogram range. It utilizes the total reflection of the primary X-ray beam at or below the critical angle of incidence. At this angle, the fluorescence intensity is substantially enhanced for samples present as small granular residue or as thin homogenous layer deposited at the surface of a thick substrate. Generally, two types of application exist: micro- and trace-analysis as well as surface and thin-layer analysis. For micro- and trace-analysis, a small amount of the solid or liquid sample is deposited on an optically flat substrate, typically quartz or polycarbonate. The dried residue is analyzed at a fixed angle setting slightly below the critical angle. Quantification is carried out by means of internal standardization. For surface and thin-layer analysis, the surface of an optically flat substrate is scanned. Variations of the incident angle of the primary X-ray beam provide information about the type and sometimes also the amount of material present at or slightly below the surface of the substrate. Major fields of application are environmental samples, biological tissues, objects of cultural heritage, semiconductors and thin-layered materials and films.
References
[1] Yoneda Y, Horiuchi T. Optical flats for use of X-ray spectrochemical micro analysis. Rev Sci Instrum. 1971;42:1069–70.10.1063/1.1685282Suche in Google Scholar
[2] Telgmann L, Holtkamp M, Künnemeyer J, Gelhard C, Hartmann M, Klose A, et al. Simple and rapid quantification of Gd in urine and blood plasma samples by means of total reflection X-ray fluorescence (TXRF). Metallomics. 2011;3:1035–2213.10.1039/c1mt00054cSuche in Google Scholar PubMed
[3] Vazquez C, Custo G, Barrio N, Burucua J, Boeykens MF. Inorganic pigment study of the San Pedro Gonzalez Telmo Sibyls using total reflection X-ray fluorescence. Spectrochim Acta. 2010;B65:852–8.10.1016/j.sab.2010.06.007Suche in Google Scholar
[4] Detcheva AK, Velinova RH, Manoylova AK, Ivanova EH. Study on the colouration of Bulgarian late-antique and medieval archaeological glass finds by a validated total reflection X-ray fluorescence procedure. Phys Chem Glasses: Eur J Glass SciTechnol. 2017;B58:217–25.10.13036/17533562.58.5.014Suche in Google Scholar
[5] Von Bohlen A. Quantitative analysis of minor and trace elements in historical varnishes using total reflection X-ray fluorescence. Anal Lett. 2004;37:491–8.10.1081/AL-120028621Suche in Google Scholar
[6] Hernandez-Caraballo EA, Marco-Parra LM. Direct analysis of blood serum by total reflection X-ray spectrometry and application of an artificial neural network approach for cancer diagnosis. Spectrochim Acta. 2003;B58:2205–13.10.1016/j.sab.2003.07.003Suche in Google Scholar
[7] Sparks CM, Lanee S, Beebe M, Page M. Photovoltaic substrates and hafnium based gate dielectrics characterized with total reflection X-ray fluorescence. Spectrochim Acta. 2008;B63:1351–4.10.1016/j.sab.2008.10.032Suche in Google Scholar
[8] Hellin D, de Gendt S, Valckx N, Mertens PW, Vinckier C. Trends in total reflection X-ray fluorescence spectrometry for metallic contamination control in semiconductor nanotechnology. Spectrochim Acta. 2006;B61:496–514.10.1016/j.sab.2006.03.008Suche in Google Scholar
[9] Pahlke S, Fabry L, Kotz L, Mantler C, Ehmann T. Determination of ultratrace contaminants on silicon wafer surfaces using total reflection X-ray fluorescence TXRF ‘state-of-the-art’. Spectrochim Acta. 2001;B56:2261–74.10.1016/S0584-8547(01)00312-3Suche in Google Scholar
[10] Iida A, Yoshinaga A, Sakurai K, Gohshi Y. Synchrotron radiation excited X-ray fluorescence analysis using total reflection of X-rays. Anal Chem. 1986;58:394–7.10.1021/ac00293a029Suche in Google Scholar
[11] Jenkins R. X-ray fluorescence spectrometry. 2nd ed. New York: Wiley and Sons; 1999.10.1002/9781118521014Suche in Google Scholar
[12] Klockenkämper R, von Bohlen A. Total reflection X-ray fluorescence analysis and related methods. 2nd ed. Hoboken: Wiley and Sons; 2015.10.1002/9781118985953Suche in Google Scholar
[13] Beckhoff B, Kanngiesser B, Langhoff N, Wedell R, Wolff H, editors. Handbook of practical X-ray fluorescence analysis. Berlin, Heidelberg: Springer; 2006.10.1007/978-3-540-36722-2Suche in Google Scholar
[14] Dhara S, Misra NL, Aggarwal SK, Ingerle D, Wobrauschek P, Streli C. Determination of low atomic number elements in real uranium oxide samples using vacuum chamber total reflection X-ray fluorescence. X-ray Spectrom. 2014;43:108–11.10.1002/xrs.2523Suche in Google Scholar
[15] Maderitsch A, Smolek S, Wobrauschek P, Streli C, Takman P. Feasibility study of total reflection X-ray fluorescence analysis using a liquid metal jet X-ray tube. Spectrochim Acta. 2014;B99:67–9.10.1016/j.sab.2014.06.003Suche in Google Scholar
[16] Maderitsch A, Ingerle D, Bretschneider T, Rauwolf M, Pflumm C, Buchholz H, et al. Analysis of organic multilayer structures using a combined grazing incidence X-ray fluorescence/X-ray reflectivity approach. Spectrochim Acta. 2018;B148:188–92.10.1016/j.sab.2018.07.006Suche in Google Scholar
[17] Rauwolf M, Vanhoof C, Tirez K, Maes E, Ingerle D, Wobrauschek P, et al. Total reflection X-ray fluorescence measurements of S and P in proteins using vacuum chamber specially designed for low Z elements. Spectrochim Acta. 2014;B101:118–22.10.1016/j.sab.2014.07.022Suche in Google Scholar
[18] Sanyal K, Dhara S, Misra NL. Improved approach for the determination of low Z elements in uranium samples using a vacuum chamber TXRF. X-ray Spectrom. 2017;46:442–7.10.1002/xrs.2793Suche in Google Scholar
[19] Horntrich C, Smolek S, Maderitsch A, Simon R, Kregsamer P, Streli C. Investigation of elemental distribution and homogeneity of TXRF samples using SR-micro-XRF to validate the use of an internal standard and improve external standard quantification. Anal Bioanal Chem. 2011;400:2649–54.10.1007/s00216-010-4592-9Suche in Google Scholar PubMed
[20] Beckhoff B, Fliegauf R, Kolbe M, Müller M, Weser J, Ulm G. Reference-free total reflection X-ray fluorescence analysis of semiconductor surfaces with synchrotron radiation. Anal Chem. 2007;79:7373–82.10.1021/ac071236pSuche in Google Scholar PubMed
[21] International Union of Pure and Applied Chemistry (IUPAC). Compendium of chemical technology, 2nd ed. McNaught A.D; Wilkinson, A. Ed., 1997 (ISBN 0-86542-684-8).Suche in Google Scholar
[22] Pianetta P, Baur K, Brennan S, Werho D, Wang J. Application of synchrotron radiation to TXRF of metal contamination on silicon wafer surfaces. Superficies Vacio. 1999;9:17–21.10.1016/S0040-6090(00)01139-1Suche in Google Scholar
[23] Wastl A, Stadlbauer F, Prost J, Horntrich C, Kregsamer P, Wobrauschek P, et al. Nanoliter deposition unit for pipetting droplets of small volumes for total reflection X-ray fluorescence applications. Spectrochim Acta. 2013;B82:71–5.10.1016/j.sab.2013.01.006Suche in Google Scholar
[24] Sparks CM, Fittschen UA, Havrilla GJ. Picoliter solution deposition for total reflection X-ray fluorescence analysis of semiconductor samples. Spectrochim Acta. 2010;B65:805–11.10.1016/j.sab.2010.07.003Suche in Google Scholar
[25] Rodriguez Castro MC, Vilches C, Torremorrell A, Vazquez C, Giorgi A. Total reflection X-ray fluorescence in environmental and geochemical studies: unveiling solute provenance in streams during rain episodes. X-ray Spectrom. 2016;45:225–32.10.1002/xrs.2694Suche in Google Scholar
[26] Borgese L, Dalipi R, Riboldi A, Bilo F, Zacco A, Federici S, et al. Comprehensive approach to the validation of the standard method for total reflection X-ray fluorescence analysis of water. Talanta. 2018;181:165–71.10.1016/j.talanta.2017.12.087Suche in Google Scholar PubMed
[27] Sitko R, Janik P, Zawisza B, Talik E, Margui E, Queralt I. Green approach for ultratrace determination of divalent metal ions and arsenic species using total reflection X-ray fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent. Anal Chem. 2015;87:3535–42.10.1021/acs.analchem.5b00283Suche in Google Scholar PubMed
[28] Bahadir Z, Bulut VN, Hidalgo M, Soylak M, Margui E. Cr speciation in water samples by dispersive liquid-liquid micro extraction combined with total reflection X-ray fluorescence spectrometry. Spectrochim Acta. 2016;B115:46–51.10.1016/j.sab.2015.11.001Suche in Google Scholar
[29] Oskolok KV, Monogarova OV, Alov NV. Total reflection X-ray fluorescence determination of rare earth elements in mineral waters using combined preconcentration techniques. Anal Lett. 2017;50:2900–7.10.1080/00032719.2017.1324468Suche in Google Scholar
[30] Romero V, Costas-Mora I, Lavilla I, Bendicho C. Headspace thin-film microextraction onto graphene membranes for specific detection of methyl(cyclopentadienyl)-tricarbonyl manganese in water samples by total reflection X-ray fluorescence. Spectrochim Acta. 2016;B126:65–70.10.1016/j.sab.2016.10.011Suche in Google Scholar
[31] Mihucz VG, Enesei D, Veszely A, Bencs L, Pap-Balasz T, Ovari M, et al. A simple method for monitoring of removal of arsenic species from drinking water applying on-site separation with solid phase extraction and detection by atomic absorption and X-ray fluorescence based techniques. Microchem J. 2017;135:105–13.10.1016/j.microc.2017.08.006Suche in Google Scholar
[32] Margui E, Hidalgo M. Analytical capabilities of two-phase hollow-fiber liquid phase microextraction for trace multi element determination in aqueous samples by means of portable total reflection X-ray instrumentations. Turk J Chem. 2016;40:1002–11.10.3906/kim-1605-61Suche in Google Scholar
[33] Floor G, Margui E, Hidalgo M, Queralt I, Kregsamer P, Streli C, et al. Study of selenium sorption processes in volcanic ash using total reflection X-ray fluorescence (TXRF). Chem Geol. 2013;352:19–26.10.1016/j.chemgeo.2013.05.034Suche in Google Scholar
[34] Holtkamp M, Elseberg T, Wehe CA, Sperling M, Karst U. Complexation and oxidation strategies for improved TXRF determination of mercury in vaccines. J Atomic Anal Spectrom. 2013;28:719–23.10.1039/c3ja00002hSuche in Google Scholar
[35] Schmeling M. Characterization of urban air pollution by total reflection X-ray fluorescence. Spectrochim Acta. 2004;B59:1165–71.10.1016/j.sab.2004.01.009Suche in Google Scholar
[36] Klockenkämper R, Bayer H, von Bohlen A. Total reflection X-ray fluorescence analysis of airborne particulate matter. Adv X-Ray Anal Jpn. 1995;26s:41–6.Suche in Google Scholar
[37] Prost J, Wobrauschek P, Streli C. Quantitative total reflection X-ray fluorescence analysis of directly collected aerosol samples. X-ray Spectrom. 2017;46:454–60.10.1002/xrs.2752Suche in Google Scholar
[38] Towett EK, Sheperd KD, Cadisch G. Quantification of total environmental concentrations in soils using total reflection X-ray fluorescence spectroscopu (TXRF). Sci Total Environ. 2013;463/464:374–88.10.1016/j.scitotenv.2013.05.068Suche in Google Scholar PubMed
[39] Torrent L, Iglesias M, Hidalgo M, Margui E. Analytical capabilities of total reflection X-ray fluorescence spectrometry for silver nanoparticles determination in soil adsorption studies. Spectrochim Acta. 2016;B126:71–8.10.1016/j.sab.2016.10.019Suche in Google Scholar
[40] Alov N, Sharanov P. Elemental analysis fo copper-zinc ores by total reflection X-ray fluorescence using non-aqueous suspensions. Anal Lett. 2018;51:1789–95.10.1080/00032719.2017.1390758Suche in Google Scholar
[41] Bilo F, Borgese L, Cazzago D, Zacco A, Bontempi E, Guarneri R, et al. TXRF analysis of soils and sediments to assess environmental contamination. Environ Sci Pollut Res. 2014;21:13208–14.10.1007/s11356-013-2203-ySuche in Google Scholar PubMed
[42] Margui E, Ricketts P, Fletcher H, Karydas AG, Migliori A, Leani JJ, et al. Total reflection X-ray fluorescence as a fast multi element technique for human placenta sample analysis. Spectrochim Acta. 2017;B130:53–9.10.1016/j.sab.2017.02.008Suche in Google Scholar
[43] Fiedor J, Ostachowicz B, Baster M,, Lankosz M, Burda K. Quantification of purple non-sulfur phototrophic bacteria and their photosynthetic structures by means of total reflection X-ray fluorescence spectrometry. J Atomic Anal Spectrom. 2016;31:2078–88.10.1039/C6JA00207BSuche in Google Scholar
[44] Wrobel PM, Bala S, Czyzychi M, Golasik M, Librowski T, Ostachowicz B, et al. Combined micro-XRF and TXRF methodology for quantitative elemental imaging of tissue samples. Talanta. 2017;162:654–9.10.1016/j.talanta.2016.10.043Suche in Google Scholar PubMed
[45] Bilo F, Moscoso S, Borgese L, Delbarba MV, Zacco A, Bosio A, et al. Total reflection X-ray fluorescence spectroscopy to study lead and zinc accumulation in zebrafish embryos. X-ray Spectrom. 2015;44:124–8.10.1002/xrs.2588Suche in Google Scholar
[46] Allegretta I, Porfido C, Panzarino O, Fontanella MC, Beone GM, Spagnuolo M, et al. Determination of As concentration in Earthworm coelomic fluid extracts by total reflection X-ray fluorescence spectrometry. Spectrochim Acta. 2017;B130:21–5.10.1016/j.sab.2017.02.003Suche in Google Scholar
[47] Heroes E, Rip J, Beullens M, Van Meerveld L, deGendt S, Bollen M. Metals in active site of native protein phosphatase-1. J Inorganic Biochem. 2015;149:1–5.10.1016/j.jinorgbio.2015.03.012Suche in Google Scholar PubMed
[48] Kubala-Kukus A, Arabeski M, Stabrowa I, Bana D, Rozanski W, Lipinski M, et al. Application of TXRF and XRPD techniques for analysis of elemental and chemical composition of human kidney stones. X-ray Spectrom. 2017;46:412–20.10.1002/xrs.2778Suche in Google Scholar
[49] Fernandez-Ruiz R, Redrejo MJ, Friedrich EJ, Ramos M, Fernandez T. Evaluation of bioaccumulation kinetics of gold nanorods in vital mammalian organs by means of total reflection X-ray fluorescence spectrometry. Anal Chem. 2014;86:7383–90.10.1021/ac5006475Suche in Google Scholar PubMed
[50] Lankosz MW, Grzelak M, Ostachowicz B, Wandzilak A, Szczerbowska-Boruchoswka M, Wrobel P, et al. Application of the total reflection X-ray fluorescence method to the elemental analysis of brain tumors of different types and grades of malignancy. Spectrochim Acta. 2014;B101:98–105.10.1016/j.sab.2014.07.019Suche in Google Scholar
[51] Magalhaes T, von Bohlen A, Carvalho ML, Becker M. Trace elements in human cancerous and health tissues from the same individual: A comparative study by TXRF and EDXRF. Spectrochim Acta. 2006;B61:1185–93.10.1016/j.sab.2006.06.002Suche in Google Scholar
[52] Fernandez-Ruiz R. TXRF spectrometry as a powerful tool for the study of metallic traces in biological systems. Dev Anal Chem. 2014a;1:1–14.Suche in Google Scholar
[53] Von Bohlen A, Klockenkämper R, Tölg G, Wiecken B. Microtome sections of biomaterials for trace analysis by TXRF. Fresenius Zeitschrift für Analytische Chemie. 1988;331:454–8.10.1007/BF00481926Suche in Google Scholar
[54] Majewska U, Lyzwa P, Lyzwa K, Banes D, Kubala-Kukus A, Wudarczyk- Mocho J, et al. Determination of element levels in human serum: total reflection X-ray fluorescence applications. Spectrochim Acta. 2016;B122:56–61.10.1016/j.sab.2016.05.001Suche in Google Scholar
[55] Jablan J, Inic S, Stosnach H, Hadziabdic MO, Vujic L, Domijan A-M. Level of minerals and trace elements in the urine of the participants of mountain ultra-marathon race. J Trace Elem Med Biol. 2017;41:54–9.10.1016/j.jtemb.2017.02.004Suche in Google Scholar PubMed
[56] Bilo F, Borgese L, Dalipi R, Zacco A, Ferici S, Masperi M, et al. Elemental analysis of tree leaves by total reflection X-ray fluorescence: new approaches for air quality monitoring. Chemosphere. 2017;178:504–12.10.1016/j.chemosphere.2017.03.090Suche in Google Scholar PubMed
[57] Woelfl S, Ovari M, Nimtsch J, Neu TR, Mages M. Determination of trace elements in fresh water rotifers and ciliates by total reflection X-ray fluorescence spectrometry. Spectrochim Acta. 2016;B116:28–33.10.1016/j.sab.2015.12.001Suche in Google Scholar
[58] Hoehner R, Tabatabaei S, Kunz -H-H, Fittschen U. A rapid total reflection X-ray fluorescence protocol for microanalysis of ion profiles in Arabidopsis thaliana. Spectrochim Acta. 2016;B125:159–67.10.1016/j.sab.2016.09.013Suche in Google Scholar
[59] Stosnach H. Analytical determination of selenium in medical samples, staple food, and dietary supplements by means of total reflection X-ray fluorescence spectroscopy. Spectrochim Acta. 2010;B65:859–63.10.1016/j.sab.2010.07.001Suche in Google Scholar
[60] Bilo F, Lodolo M, Borgese L, Bosio A, Benassi L, Depero LE, et al. Evaluation of heavy metal contamination from environmental to food matrix by TXRF: the case of rice and rice husk. J Chem. 2015a. doi:10.1155/2015/274340.Suche in Google Scholar
[61] Borgese L, Bilo F, Dalipi R, Bontempi E, Depero LE. Total reflection X-ray fluorescence as a tool for food screening. Spectrochim Acta. 2015;B 113:1–15.10.1016/j.sab.2015.08.001Suche in Google Scholar
[62] Dalipi R, Margui E, Borgese L, Depero L. Multielement analysis of vegetal food stuff by means of low power total reflection X-ray fluorescence spectrometry. Food Chem. 2017;218:348–55.10.1016/j.foodchem.2016.09.022Suche in Google Scholar PubMed
[63] Margui E, Marquez AF, Prisal ML, Hidalgo M, Queralt I, Carvalho ML. Total reflection X-ray spectrometry for trace elements assessment in edible clams. Appl Spectrosc. 2014;68:1241–6.10.1366/13-07364Suche in Google Scholar PubMed
[64] Monticelli D, Cinosi A, Siviero G, Seralessandirni L. Trace element determination in soy sauce: A novel total reflection X-ray fluorescence procedure and comparison with inductively coupled plasma mass-spectrometry. Spectrochim Acta. 2018;B146:16–20.10.1016/j.sab.2018.04.022Suche in Google Scholar
[65] Dalipi R, Margui E, Borgese L, Bilo F, Depero LE. Analytical performance of benchtop total reflection X-ray fluorescence instrumentation for multi element analysis of wine samples. Spectrochim Acta. 2016;B120:37–43.10.1016/j.sab.2016.04.001Suche in Google Scholar
[66] Dalipi R, Borgese L, Tsuji K, Bontempi E, Depero LE. Elemental analysis of teas, herbs and their infusions by means of total reflection X-ray fluorescence. J Food Compos Anal. 2018;67:128–34.10.1016/j.jfca.2018.01.010Suche in Google Scholar
[67] Shand CA, Wendler R, Dawson L, Yates K, Stephenson H. Multivariate analysis of Scotch whisky by total reflection X-ray fluorescence and chemometric methods: a potential tool in the identification of counterfeits. Anal Chim Acta. 2017;976:14–24.10.1016/j.aca.2017.04.041Suche in Google Scholar PubMed
[68] Gama EM, Nascentes CC, Matos RP, Rodrigues GC. A simple method for the multi-elemental analysis of beer using total reflection X-ray fluorescence. Talanta. 2017;174:274–8.10.1016/j.talanta.2017.05.059Suche in Google Scholar PubMed
[69] Schmeling M. Analysis of beverages by total reflection X-ray fluorescence. Spectroscopy. 2017;23:28–9.Suche in Google Scholar
[70] Crina Anca Sandu I, Helena de Sa M, Pereira Costa M. Ancient gilded art objects from European cultural heritage: a review on different scales of characterization. Surf Interface Sci. 2011. doi:10.1002/sia3740.Suche in Google Scholar
[71] Lyubomirova V, Djingova R, Kuleff I. Comparison of analytical techniques for analysis of archeological bronze. Archeometry. 2015;57:677–86.10.1111/arcm.12138Suche in Google Scholar
[72] Vazquez C, Maier MS, Parera SD, Yacobaccio H, Sola P. Combining TXRF, FT-IR, and GC-MS information for identification of inorganic and organic components in black pigments of rock art from Alero Hornillos 2 (JuJuy, Argentina). Anal Bioanal Chem. 2008;391:1381–7.10.1007/s00216-008-2038-4Suche in Google Scholar PubMed
[73] Ardid M, Ferrero JL, Juanes D, Lluch JL, Roldan C. Comparison of total reflection X-ray fluorescence spectrometers for art and archeometric studies. Spectrochim Acta. 2004;B59:1581–6.10.1016/j.sab.2004.03.013Suche in Google Scholar
[74] Cariati F, Fermo P, Gilardoni S, Galli A, Milazzo M. A new approach for archeological ceramics analysis using total reflection X-ray fluorescence spectrometry. Spectrochim Acta. 2003;B58:177–85.10.1016/S0584-8547(02)00253-7Suche in Google Scholar
[75] Bonizzoni L, Galli A, Gondola M, Martini M. Comparison between XRF, TXRF and PXRF analyses for provenance classification of archeological bricks. X-ray Spectrom. 2013;42:262–7.10.1002/xrs.2465Suche in Google Scholar
[76] Fernandez-Ruiz R, Garcia-Heras M. Analysis of archeological ceramics by total reflection X-ray fluorescence: quantitative approaches. Spectrochim Acta. 2008;B63:975–9.10.1016/j.sab.2008.06.004Suche in Google Scholar
[77] Fernandez-Ruiz R, Cabello Galisteo F, Larese C, Lopez-Granados M, Mariscal R, Fierro JL. TXRF analysis of aged three way catalysts. Analyst. 2006;131:590–4.10.1039/b513508gSuche in Google Scholar PubMed
[78] Nowak S, Winter M. Elemental analysis of lithium ion batteries. J Atomic Anal Spectrom. 2017;32:1833–47.10.1039/C7JA00073ASuche in Google Scholar
[79] Kasnatscheew J, Evertz M, Streipert B, Wagner R, Nowak S, Laskovic IC, et al. Changing established belief on capacity fade mechanisms: thorough investigation of LiNi1/3Co1/3Mn1/3O2 (NCMIII) under high voltage conditions. J Phys Chem. 2017;C121:1521–9. DOI: 10.102/acs.jpcc.6b11746.Suche in Google Scholar
[80] Evertz M, Kroeger T-N, Winter M, Nowak S. Total reflection X-ray fluorescence in the field of lithium ion batteries- Elemental detection in lithium containing electrolytes using nanoliter droplets. Spectrochim Acta. 2018;B149:118–23.10.1016/j.sab.2018.07.027Suche in Google Scholar
[81] Regadio M, Riano S, Binnemans K, van der Hoogenstraete T. Direct analysis of metal ions in solutions with high salt concentrations by total reflection X-ray fluorescence. Anal Chem. 2017;89:4595–603.10.1021/acs.analchem.7b00097Suche in Google Scholar PubMed
[82] Dhara S, Sanjay SK, Misra NL. TXRF determination of indium at ultra-trace levels in heavy water using In Kα as analytical line and continuum excitation. J Radioanal Nucl Chem. 2015;306:231–5.10.1007/s10967-015-4180-8Suche in Google Scholar
[83] Van der Hoogenstraete T, Jamar S, Wellens S, Binnemans K. Determination of halide impurities in ionic liquids by total reflection X-ray fluorescence spectrometry. Anal Chem. 2014;86:3931–8.10.1021/ac5000812Suche in Google Scholar PubMed
[84] De la Calle I, Quade M, Krugmann T, Fittschen UA. Determination of residual metal concentration in metallurgical slag after acid extraction using total reflection X-ray fluorescence spectrometry. X-ray Spectrom. 2014;43:345–52.10.1002/xrs.2561Suche in Google Scholar
[85] Antosz FJ, Xiang Y, Diaz AR, Jensen AJ. The use of total reflectance X-ray fluorescence for the determination of metals in the pharmaceutical industry. J Pharm Biomed Anal. 2012;62:17–22.10.1016/j.jpba.2011.12.020Suche in Google Scholar PubMed
[86] Shaw BJ, Semin DJ, Rider ME, Beebe MR. Applicability of total reflection X-ray fluorescence (TXRF) as a screening platform for pharmaceutical inorganic impurity analysis. J Pharm Biomed Anal. 2012;63:151–9.10.1016/j.jpba.2012.01.037Suche in Google Scholar PubMed
[87] Polignaro ML, Borionetti G, Galbiati A, Grasso S, Mica I, Nutsch A. Comparison of techniques for detecting metal contamination in silicon wafers. Spectrochim Acta. 2018;B149:313–21.10.1016/j.sab.2018.09.001Suche in Google Scholar
[88] Pei L, Dascher G, Steen C, Pichler P, Ryssel H, Napolitani E, et al. Detailed Arsenic concentration profiles at Si/SiO2 interfaces. J Appl Phys. 2008;104:043507.10.1063/1.2967713Suche in Google Scholar
[89] Krzyzanowska H, von Bohlen A, Klockenkämper R. Depth profiles of shallow implanted layers by soft ion sputtering and total reflection X-ray fluorescence. Spectrochim Acta. 2003;B58:2059–67.10.1016/j.sab.2003.05.002Suche in Google Scholar
[90] Steen C, Martinez-Limia A, Pichler P, Ryssel H, Pau; S, Lerch W, et al. Distribution and segregation of arsenic at the SiO2/Si interface. J Appl Phys. 2008;104:023518. DOI: 10.1063/1.2956700.Suche in Google Scholar
[91] Sekowski M, Steen C, Nutsch A, Birnbaum E, Burenkov A, Pichler P. Total reflection X-ray fluorescence as a sensitive analysis method for the investigation of sputtering processes. Spectrochim Acta. 2008;B63:1382–6.10.1016/j.sab.2008.10.003Suche in Google Scholar
[92] Lee JS, Lim HB. Thickness monitoring of sub-nanometer scale La2O3 films using total X-ray reflection spectrometry. J Anal Atom Spectrom. 2009;24:1681–3.10.1039/b908021jSuche in Google Scholar
[93] Prange A, Reus U, Schwenke H, Knoth J. Optimization of TXRF measurements by variable incident angles. Spectrochim Acta. 1999;B54:1505–11.10.1016/S0584-8547(99)00106-8Suche in Google Scholar
[94] Ingerle D, Meirer F, Pepponi G, Demenev E, Giubertoni D, Wobrauschek P, et al. Combined evaluation of grazing incidence X-ray fluorescence and X-ray reflectivity data improved profiling of ultra-shallow depth distribution. Spectrochim Acta. 2014;B99:121–8.10.1016/j.sab.2014.06.019Suche in Google Scholar PubMed PubMed Central
[95] Pepponi G, Guibertoni D, Bersani M, Meirer F, Ingerle D, Steinhauser G, et al. Grazing incidence X-ray fluorescence and secondary ion mass spectrometry combined approach for the characterization of ultrashallow arsenic distribution in silicon. J Vac Sci Technol. 2010;B28:C1C59.10.1116/1.3292647Suche in Google Scholar
[96] Brücher M, von Bohlen A, Becker M, Hergenroeder R. Investigation of nanoscale element distributions at surfaces with grazing incidence X-ray spectroscopy techniques- an instrumentation study. X-ray Spectrom. 2014;43:269–77.10.1002/xrs.2549Suche in Google Scholar
[97] Frost MR, French M, Harris W. Application of TXRF for ion implantation dose matching experiments. Appl Surf Sci. 2004;231–232:734–7.10.1016/j.apsusc.2004.03.037Suche in Google Scholar
[98] Weiss C, Knoth J, Schwenke H, Geisler H, Lerche J, Schulz R, et al. Potential of total reflection and grazing incidence XRF for contamination and process control in semiconductor fabrication. Mikrochim Acta. 2000;133:65–8.10.1007/s006040070073Suche in Google Scholar
[99] Schwenke H, Knoth J, Fabry L, Pahlke S, Scholz R, Frey L. Measurement of shallow arsenic impurity profiles in semiconductor silicon using time-of-flight secondary ion mass spectrometry and total reflection X-ray fluorescence spectrometry. J Electrochem Soc. 1997;144:3979–83.10.1149/1.1838122Suche in Google Scholar
[100] Yamada T, Takahara H, Ohbuchi A, Matsuda W, Shimizu Y. Observation of Au-Cu alloying by grazing incidence X-ray fluorescence. Spectrochim Acta. 2018;B149:256–60.10.1016/j.sab.2018.08.013Suche in Google Scholar
[101] Mori Y, Uemara K, Iizuka Y. Whole surface analysis of semiconductor wafers by accumulating short-time mapping data of total reflection X-ray fluorescence spectrometry. Anal Chem. 2002;74:1104–10.10.1021/ac0112061Suche in Google Scholar PubMed
[102] Klockenkämper R, von Bohlen A. A new method for depth-profiling of shallow layers in silicon wafers by repeated chemical etching and total reflection X-ray fluorescence analysis. Spectrochim Acta. 1999;B54:1385–92.10.1016/S0584-8547(99)00066-XSuche in Google Scholar
[103] Wiener G, Michaelsen C, Knoth J, Schwenke H, Bormann R. Concentration-depth profiling using total reflection X-ray fluorescence spectrometry in combination with ion-beam microsectioning techniques. Rev Sci Instrum. 1995;66:20–4.10.1063/1.1145260Suche in Google Scholar
[104] Schwenke H, Knoth J, Günther R, Wiener G, Bormann R. Depth profiling using total reflection X-ray fluorescence spectrometry alone and in combination with ion beam sputtering. Spectrochim Acta. 1997a;B52:795–803.10.1016/S0584-8547(96)01647-3Suche in Google Scholar
[105] Brennan S, Ishii HA, Luening K, Pianetta P, Burnett DS. Synchrotron total-reflection X-ray fluorescence (SR-TXRF) of Genesis return samples. Lunar Planet Sci. 2006;XXXVII:2029.Suche in Google Scholar
[106] Steeves-Lloyd K, Bolotin IL, Schmeling M, Hanley L, Veryovkin IV. Metal impurity assisted formation of nanocone arrays on Si by low energy ion-beam irradiation. Surf Sci. 2016;652:334–43.10.1016/j.susc.2016.03.016Suche in Google Scholar
[107] Schmeling M, Burnett DS, Jurewicz AJ, Veryovkin IV. Steps towards accurate large area analyzes of Genesis solar wind samples: evaluation of surface cleaning methods using total reflection X-ray fluorescence spectrometry. Powder Diffr. 2012;27:75–8.10.1017/S0885715612000346Suche in Google Scholar
[108] Müller M, Hoenicke P, Detlefs B, Fleischmann C. Characterization of high-k nanolayers by grazing incidence X-ray fluorescence spectrometry. Materials. 2014;7:3147–59.10.3390/ma7043147Suche in Google Scholar PubMed PubMed Central
[109] Choi Y, Eng PJ, Stubbs JE, Sutton SR, Schmeling M, Veryovkin IV, et al. Discrimination and quantification of Genesis implanted solar wind Fe and Ni abundances using X-ray standing wave fluorescence yield depth profiling with internal referencing. Chem Geol. 2016;441:246–55.10.1016/j.chemgeo.2016.08.025Suche in Google Scholar
[110] Pianetta P, Singh A, Luening K, Brennan S, Homma T, Kubo N, et al. Characterization of silicon wafer surfaces with SR-TXRF. The Rigaku J. 2003;19/20:36–44.Suche in Google Scholar
[111] Caby B, Brigidi F, Ingerle D, Nolot E, Pepponi G, Streli C, et al. Study of annealing induced interdiffusion in In2O3/Ag/In2O3 structures by a combined X-ray reflectivity and grazing incidence X-ray fluorescence analysis. Spectrochim Acta. 2015;B113:132–7.10.1016/j.sab.2015.09.008Suche in Google Scholar
[112] Hoenicke P, Beckhoff B,, Kolbe M, Giubertoni D, van Den Berg J, Pepponi G. Depth profile characterization of ultrashallow junction implants. Anal Bioanal Chem. 2010;396:2825–32.10.1007/s00216-009-3266-ySuche in Google Scholar PubMed
[113] Hoenicke P, Kraemer M, Luehl L, Andrianov K, Beckhoff B, Dietsch R, et al. Development and characterization of sub-monolayer coatings as novel calibration samples for X-ray spectroscopy. Spectrochim Acta. 2018;B145:36–42.10.1016/j.sab.2018.04.001Suche in Google Scholar
[114] Kayser Y, Szlachetko J, Banas D, Cao W, Dousse JC, Hoszowska J, et al. High energy-resolution grazing emission X-ray fluorescence applied to the characterization of thin films on Si. Spectrochim Acta. 2013;B88:136–49.10.1016/j.sab.2013.06.011Suche in Google Scholar
[115] Korytowski A, Abuillan W, Makky A, Konovalov O, Tanaka M. Impact of lipid oxidation on vertical structures and electrostatics od phospholipid monolayers revealed by combination of specular X-ray reflectivity and grazing X-ray fluorescence. J Phys Chem. 2015;119:9787–94.10.1021/acs.jpcb.5b04451Suche in Google Scholar PubMed
[116] Nolot E, Caby B, Gassiloud R, Veilerot M, Eichert D. X-ray reflectometry and grazing-incidence X-ray fluorescence characterization of innovative electrodes for tantalum-based resistive random access memories. Spectrochim Acta. 2018;B149:71–5.10.1016/j.sab.2018.07.017Suche in Google Scholar
[117] Nowak SH, Banas D, Blchuki W, Cao W, Dousse J-C, Hoenicke P, et al. Grazing X-ray fluorescence from periodic structures on silicon and silica surfaces. Spectrochim Acta. 2014;B98:65–75.10.1016/j.sab.2014.03.015Suche in Google Scholar
[118] Pessoa W, Roule A, Nolot E, Mazel Y, Bernard M, Lepy M-C, et al. Grazing incident X-ray fluorescence combined with X-ray reflectometry metrology protocol of telluride-based films using in-lab and synchrotron instruments. Spectrochim Acta. 2018;B149:143–9.10.1016/j.sab.2018.07.003Suche in Google Scholar
[119] Pollakowski B, Beckhoff B. Nanostructure speciation depth profiling of complex TiOx nanolayer structures by a combined X-ray reflectivity and grazing incidence X-ray fluorescence analysis. Spectrochim Acta. 2015;B113:132–7.Suche in Google Scholar
[120] Rotella H, Caby B, Menesguen Y, Mazel Y, Valla A, Ingerle D, et al. Elemental depth profiling in transparent conducting oxide thin films by X-ray reflectivity and grazing incident X-ray fluorescence combined analysis. Spectrochimica Aca. 2017;B135:22–8.10.1016/j.sab.2017.06.011Suche in Google Scholar
[121] Das G, Khooha A, Singh AK, Tiwari MK. Probing nanostructures materials using X-ray fluorescence analysis. X-ray Spectrom. 2017;46:448–53.10.1002/xrs.2777Suche in Google Scholar
[122] Almeida DS, Santos RS, Anjos MJ, Ferreira ST, Souza AS, Lopes RT. Multi element concentration analysis of Swiss mice brains on experimental model of Alzheimer’s disease induced by beta-amyloid oligomeres. X-ray Spectrom. 2017;46:397–402.10.1002/xrs.2753Suche in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Disappearing ink! Unraveling the fading of a contemporary design object
- Laser-induced breakdown spectroscopy in heritage science
- Mechanistic role of plant-based bitter principles and bitterness prediction for natural product studies I: Database and methods
- Homogeneous visible light mediated transition metal catalysis other than Ruthenium and Iridium
- Total reflection X-ray fluorescence
- Cheminformatics techniques in antimalarial drug discovery and development from natural products 1: basic concepts
Artikel in diesem Heft
- Disappearing ink! Unraveling the fading of a contemporary design object
- Laser-induced breakdown spectroscopy in heritage science
- Mechanistic role of plant-based bitter principles and bitterness prediction for natural product studies I: Database and methods
- Homogeneous visible light mediated transition metal catalysis other than Ruthenium and Iridium
- Total reflection X-ray fluorescence
- Cheminformatics techniques in antimalarial drug discovery and development from natural products 1: basic concepts