Startseite Reagents that Contain Se-H or Te-H Bonds
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Reagents that Contain Se-H or Te-H Bonds

  • Peter C. Ho , Jin Wang und Ignacio Vargas-Baca EMAIL logo
Veröffentlicht/Copyright: 14. September 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Species that contain bonds between hydrogen and selenium or tellurium have a characteristic high reactivity, which can be harnessed in the synthesis of valuable organic compounds. This overview includes the synthesis of dihydrides, alkali metal hydrochalcogenides, chalcogenols, chalcogenocarboxylic and chalcogenocarbamic acids, and their application in reactions of reduction, addition to unsaturated compounds, and nucleophilic substitution.

References

[1] Ho PC, Szydlowski P, Sinclair J, Kübel J, Gendy C, Lee LM, et al. Supramolecular macrocycles reversibly assembled by TeO chalcogen bonding. Nat Commun. 2016;7:1129910.1038/ncomms11299Suche in Google Scholar PubMed PubMed Central

[2] Manna D, Mugesh G. Regioselective deiodination of thyroxine by iodothyronine deiodinase mimics: an unusual mechanistic pathway involving cooperative chalcogen and halogen bonding. J Am Chem Soc. 2012;134:4269–79.10.1021/ja210478kSuche in Google Scholar PubMed

[3] Carrera EI, Seferos DS. Semiconducting polymers containing tellurium: perspectives toward obtaining high-performance materials. Macromolecules. 2015;48:297–308.10.1021/ma502307bSuche in Google Scholar

[4] Plano D, Karelia DN, Pandey MK, Spallholz JE, Amin S, Sharma AK, et al. Biological evaluation of novel selenium (Se-NSAID) molecules as anticancer agents. J Med Chem. 2016;59:1946–59.10.1021/acs.jmedchem.5b01503Suche in Google Scholar PubMed

[5] Edgar LJ, Vellanki RN, Halupa A, Hedley D, Wouters BG, Nitz M. Identification of hypoxic cells using an organotellurium tag compatible with mass cytometry. Angew Chem Int Ed. 2014;53:11473–77.10.1002/anie.201405233Suche in Google Scholar PubMed

[6] Jache AW, Moser PW, Gordy W. Millimeter wave spectrum, molecular structure, and dipole moment of hydrogen Selenide. J Chem Phys. 1956;25:209–10.10.1063/1.1742855Suche in Google Scholar

[7] Gibson ST, Greene JP, Berkowitz J. A photoionization study of SeH and H2Se. J Chem Phys. 1986;85:4815–24.10.1063/1.451715Suche in Google Scholar

[8] Underwood J, Chastaing D, Lee S, Wittig C. Heavy hydrides: H2Te ultraviolet photochemistry. J Chem Phys. 2005;123:084312.10.1063/1.2008261Suche in Google Scholar PubMed

[9] Douglas B, McDaniel DH, Alexander JJ. Concepts and models of inorganic chemistry. 3rd ed. New York: Wiley; 1994.Suche in Google Scholar

[10] Barin I, Knacke O, Kubaschewski O. Thermochemical properties of inorganic substances [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1977.10.1007/978-3-662-02293-1Suche in Google Scholar

[11] Wagman DD, Evans WH, Parker VB, Halow I, Bailey SM, et al. NBS technical note . 1968: 270–73.Suche in Google Scholar

[12] Gunn SR. The heats of formation of H2Se and H2Te. Correlations of simple covalent hydrides 1. J Phys Chem. 1964;68:949–52.10.1021/j100786a502Suche in Google Scholar

[13] Schröke H. Die Entstehung der endogenen Erzlagerstätten. Berlin: deGruyter, 1986:597.10.1515/9783110859478Suche in Google Scholar

[14] Dyachenko IV, Dyachenko VD. Ethyl 3-amino-3-selenoxopropanoate as a new reagent for the synthesis of selenium-containing heterocycles. Russ J Gen Chem. 2015;85:1673–76.10.1134/S1070363215070178Suche in Google Scholar

[15] Kroulík J, Čejka J, Böhm S, et al. Substituted 2,4,4,6-tetraphenyl-4H-selenopyrans: preparation, photocolouration and 4H-selenopyran ring geometry; an X-ray and DFT calculation study. J Chem Soc. 2002;0:1909–16. Perkin Trans 2.10.1039/B204976GSuche in Google Scholar

[16] Blum T, Ermert J, Coenen HH. Synthesis of asymmetric [75Se]selenoethers via carbodiimides. J Label Compd Radiopharm. 2001;44:587–601.10.1002/jlcr.488Suche in Google Scholar

[17] Kambe N, Inagaki T, Miyoshi N, Ogawa A, Sonoda N, New A. Reduction with hydrogen telluride TI. Nippon Kagaku Kaishi. 1987;1987:1152–62.10.1246/nikkashi.1987.1152Suche in Google Scholar

[18] Teichert VW, Klemm W. Zur kenntnis der hydrosulfide und hydroselenide der alkalimetalle. Z Anorg Allg Chem. 1939;243:86–98.10.1002/zaac.19392430108Suche in Google Scholar

[19] Huffman JC, Haushalter RC. The tellurium analogue of the hydroxide ion: syntheses and structure of (PPh4)TeH. Polyhedron. 1989;8:531–32.10.1016/S0277-5387(00)80752-4Suche in Google Scholar

[20] Lewicki JW, Gunther WHH, Chu JYC. Synthesis of symmetrical diselenides from aliphatic and aromatic aldehydes. J Org Chem. 1978;43:2672–76.10.1021/jo00407a025Suche in Google Scholar

[21] Iwaoka M, Kumakura F. Applications of water-soluble selenides and selenoxides to protein chemistry. Phosphorus Sulfur Silicon Relat Elem. 2008;183:1009–17.10.1080/10426500801901038Suche in Google Scholar

[22] Sørensen A, Rasmussen B, Agarwal S, Schau-Magnussen M, Sølling TI, Pittelkow M. Conversion of phenols into selenophenols: seleno Newman–Kwart rearrangement. Angew Chem Int Ed. 2013;52:12346–49.10.1002/anie.201303773Suche in Google Scholar PubMed

[23] Bartos P, Maciaszek A, Rosinska A, Sochacka E, Nawrot B. Transformation of a wobble 2-thiouridine to 2-selenouridine via S-geranyl-2-thiouridine as a possible cellular pathway. Bioorg Chem. 2014;56:49–53.10.1016/j.bioorg.2014.05.012Suche in Google Scholar

[24] Arca M, Demartin F, Devillanova FA, Isaia F, Lelj F, Lippolis V, et al. An experimental and theoretical approach to the study of the properties of parabanic acid and related compounds: synthesis and crystal structure of diethylimidazolidine-2-selone-4,5-dione. Can J Chem. 2000;78:1147–57.10.1139/v00-117Suche in Google Scholar

[25] Chiang L-Y, Poehler TO, Bloch AN, Cowan DO. A modified synthesis of tetraselenafulvalenes. J Chem Soc, Chem Commun. 1980;0:866b–867.10.1039/c3980000866bSuche in Google Scholar

[26] Jigami T, Takimiya K, Otsubo T, Novel Selenocycle-Fused AY. TTF-Type of Electron Donors Forming Conducting Molecular Complexes: bis(ethyleneseleno)tetrathiafulvalene (BES-TTF), Diselenolotetrathiafulvalene (DS-TTF), and Bis(ethyleneseleno)tetraselenafulvalene (BES-TSF). J Org Chem. 1998;63:8865–72.10.1021/jo981024fSuche in Google Scholar

[27] Barton DHR, Bohé L, Lusinchi X. Sodium hydrogen telluride: a mechanistic chameleon. Tetrahedron Lett. 1987;28:6609–12.10.1142/9789812795984_0098Suche in Google Scholar

[28] Barton DHR, Bohé L, Lusinchi X. The action of sodium hydrogen telluride on olefins. Tetrahedron. 1990;46:5273–84.10.1016/S0040-4020(01)87834-0Suche in Google Scholar

[29] Yamashita M, Tanaka Y, Arita A, Nishida M. The reaction of sodium hydrogentelluride with α,β-unsaturated carbonyl compounds. J Org Chem. 1994;59:3500–02.10.1021/jo00091a050Suche in Google Scholar

[30] Zeng P, Hu Y, Hu H, Convenient Reduction A. Of N-(2-Substituted-1-cyanoethenyl) acetamides with NaTeH. Synth Commun. 1997;27:939–44.10.1080/00397919708004213Suche in Google Scholar

[31] Yamashita M, Tanaka Y. Organic reactions using sodium hydrogentelluride: part 4. The selective reduction of aromatic aldehydes or ketones with electron‐withdrawing groups on the benzene ring by sodium hydrogentelluride. Appl Organomet Chem. 1996;10:791–94.10.1002/(SICI)1099-0739(199612)10:10<791::AID-AOC515>3.0.CO;2-ZSuche in Google Scholar

[32] Barton DHR, Bohé L, Lusinchi X. A mechanistic approach to the reaction between imines and sodium hydrogen telluride. Tetrahedron Lett. 1988;29:2571–74.10.1016/S0040-4039(00)86114-6Suche in Google Scholar

[33] Ye Y, Velten RF. Semi-syntheses of new stemofoline derivatives. Tetrahedron Lett. 2003;44:7171–73.10.1016/S0040-4039(03)01802-1Suche in Google Scholar

[34] Huang X, Pi J-H, Huang -Z-Z. Stereoselective synthesis of (2Z)-αβ-unsaturated nitriles via tandem condensation-desulfonylation of α-cyanosulfones with aldehydes. Phosphorus Sulfur Silicon Relat Elem. 2006;67:177–82.10.1080/10426509208045836Suche in Google Scholar

[35] Osuka A, Taka-Oka K, Suzuki H. Chemo- and regioselective reduction of α,β-epoxy ketones to β-hydroxy ketones by sodium hydrogentelluride. Chem Lett. 1984;13:271–72.10.1246/cl.1984.271Suche in Google Scholar

[36] Anderson DA, Hwu JR Synthesis and application of tertiary allylic nitro compounds. J Org Chem. 1990;55:511–16.10.1021/jo00289a024Suche in Google Scholar

[37] Barton DHR, Bohé L, Lusinchi X. The addition of sodium hydrogen telluride to unactivated carbon-carbon double bonds. Tetrahedron Lett. 1990;31:93–96.10.1016/S0040-4039(00)94342-9Suche in Google Scholar

[38] Lue P, Fan W-Q, Zhou X-J, Novel A. Cleavage of five-membered cyclic acetals using sodium hydrogen telluride. Synthesis (Mass). 1989;1989:692–93.10.1055/s-1989-27361Suche in Google Scholar

[39] Liu J, Qiu M, Zhou X. Direct synthesis of some oiaryl ditellurides from aryl halides. Synth Commun. 1990;20:2759–67.10.1080/00397919008051487Suche in Google Scholar

[40] Sweat DP, Stephens CE. A modified synthesis of tellurophene using NaBH4 to generate sodium telluride. J Organomet Chem. 2008;693:2463–64.10.1016/j.jorganchem.2008.04.022Suche in Google Scholar

[41] Reddy DB, Reddy AS, Padmavathi V. 1,4-pentadien-3-ones. A source for selenano 1,2,3- selena and thiadiazoles. Synth Commun. 2006;31:3429–37.10.1081/SCC-100106201Suche in Google Scholar

[42] Reddy DB, Babu NC, Padmavathi V, Padmaja A. 2-arylethenyl-2″-arylethynyl sulfones: a potential source for new heterocycles. Phosphorus Sulfur Silicon Relat Elem. 2000;165:237–42.10.1080/10426500008076342Suche in Google Scholar

[43] Iwaoka M, Tomoda S. trans-3,4-dihydroxy-1-selenolane oxide: a new reagent for rapid and quantitative formation of disulfide bonds in polypeptides. Chem Lett. 2000;29:1400–01.10.1246/cl.2000.1400Suche in Google Scholar

[44] Sashida H, Kaname M, Nakayama A, Suzuki H, Minoura M. A straightforward double intramolecular cyclization of dibenzyl dichalcogenols into a triple bond. Tetrahedron. 2010;66:5149–57.10.1016/j.tet.2010.04.101Suche in Google Scholar

[45] Ishihara H, Koketsu M, Fukuta Y, Nada F. Reaction of lithium aluminum hydride with elemental selenium: its application as a selenating reagent into organic molecules. J Am Chem Soc. 2001;123:8408–09.10.1021/ja005800oSuche in Google Scholar

[46] Ohira N, Aso Y, Otsubo T, Ogura F. Reduction of aromatic nitro compounds to amines by benzenetellurol. Chem Lett. 2006;13:853–54.10.1246/cl.1984.853Suche in Google Scholar

[47] Fujimori K, Yoshimoto H, Oae S. Reduction with organic selenium compounds II. reduction of schiff bases with selenophenol reductive alkylation of amines with carbonyl compounds. Tetrahedron Lett. 1980;21:3385–88.10.1016/S0040-4039(00)78695-3Suche in Google Scholar

[48] Dos Santos AA, Castelani P, Bassora BK, Fogo Junior JC, Costa CE, Comasseto JV. Chemoselective reduction of β-butyltellanyl α,β-unsaturated carbonyl compounds to allylic alcohols. Tetrahedron. 2005;61:9173–79.10.1016/j.tet.2005.06.090Suche in Google Scholar

[49] Kawaguchi S-I, Kotani M, Atobe S, Nomoto A, Sonoda M, Ogawa A. Rhodium-catalyzed highly stereoselective hydroselenation of internal alkynes bearing an electron-withdrawing group. Organometallics. 2011;30:6766–69.10.1021/om200663kSuche in Google Scholar

[50] Comasetto JV, Brandt CA. ChemInform abstract: selenium in organic synthesis: a novel route to 1‐phenylselenobutadienes and 1,4‐dicarbonyl compounds. Synythesis. 1987;1987:146–49.10.1002/chin.198727107Suche in Google Scholar

[51] Huang X, Liang C-G, Xu Q, He Q-W. Alkyne-based, highly stereo- and regioselective synthesis of stereodefined functionalized vinyl tellurides. J Org Chem. 2001;66:74–80.10.1021/jo001026bSuche in Google Scholar

[52] Dabdoub MJ, Baroni ACM, Lenardão EJ, Gianeti TR, Hurtado GR. Synthesis of (Z)-1-phenylseleno-1,4-diorganyl-1-buten-3-ynes: hydroselenation of symmetrical and unsymmetrical 1,4-diorganyl-1,3-butadiynes. Tetrahedron. 2001;57:4271–76.10.1016/S0040-4020(01)00337-4Suche in Google Scholar

[53] Ds M, Simpkins NS, J Begley M, K Terrett N. Synthesis of spiroethers using radical cyclisations. Tetrahedron. 1990;46:545–64.10.1016/S0040-4020(01)85436-3Suche in Google Scholar

[54] Middleton DS, Simpkins NS, Terrett NK. Synthesis of N-protected spiroamines related to natural products using radical cyclisations. Tetrahedron Lett. 1989;30:3865–68.10.1016/S0040-4039(01)80679-1Suche in Google Scholar

[55] Marino JP, Nguyen HN. Electrotelluration: a new approach to Tri- and Tetrasubstituted alkenes. J Org Chem. 2002;67:6291–96.10.1021/jo0110146Suche in Google Scholar

[56] Barrientos-Astigarraga RE, Castelani P, Sumida CY, Zukerman-Schpector J, Comasseto JV. A general method of synthesis of functionalized Z-vinylic tellurides starting from β-dicarbonyl compounds. Tetrahedron. 2002;58:1051–59.10.1016/S0040-4020(01)01204-2Suche in Google Scholar

[57] Petragnani N, Stefani HA. Advances in organic tellurium chemistry. Tetrahedron. 2005;61:1613–79.10.1016/j.tet.2004.11.076Suche in Google Scholar

[58] Cox DJ, Singh GP, Watson AJA, Fairbanks AJ. Neighbouring group participation during glycosylation: do 2‐substituted ethyl ethers participate?. Eur J Org Chem. 2014;2014:4624–42.10.1002/ejoc.201402260Suche in Google Scholar

[59] Kobayashi S, Kinoshita T, Kawamoto T, Wada M, Kuroda H, Masuyama A, et al. Stereocontrolled synthesis of substituted bicyclic ethers through Oxy-Favorskii rearrangement: total synthesis of (±)-communiol E. J Org Chem. 2011;76:7096–103.10.1021/jo201064hSuche in Google Scholar

[60] Horning BD, MacMillan DWC. Nine-step enantioselective total synthesis of (−)-vincorine. J Am Chem Soc. 2013;135:6442–45.10.1021/ja402933sSuche in Google Scholar

[61] Fukui H, Shiina I. Asymmetric total synthesis of botcinins C, D, and F. Org Lett. 2008;10:3153–56.10.1021/ol801066ySuche in Google Scholar

[62] Lambert C, Christiaens L. Stabilisation of condensed selenium heterocycles by a nitro group in the ortho-position to the chalcogen. Tetrahedron. 1991;47:9053–60.10.1016/S0040-4020(01)86508-XSuche in Google Scholar

[63] Chan S-C, Jang J-P, Cherng Y-J. Microwave-assisted synthesis of substituted phenanthrenes, anthracenes, acenaphthenes, and fluorenes. Tetrahedron. 2009;65:1977–81.10.1016/j.tet.2009.01.029Suche in Google Scholar

[64] Fang W-P, Cheng Y-T, Cheng Y-R, Cherng Y-J. Synthesis of substituted uracils by the reactions of halouracils with selenium, sulfur, oxygen and nitrogen nucleophiles under focused microwave irradiation. Tetrahedron. 2005;61:3107–13.10.1016/j.tet.2005.01.085Suche in Google Scholar

[65] Wang Y, Bekolo H, Howell AR. Ring opening reactions of 2-methyleneoxetanes. Tetrahedron. 2002;58:7101–07.10.1016/S0040-4020(02)00724-XSuche in Google Scholar

[66] Mori T, Tohmiya H, Satouchi Y, Higashibayashi S, Hashimoto K, Nakata M. Synthetic studies on thiostrepton family of peptide antibiotics: synthesis of the cyclic core portion containing the dehydropiperidine, dihydroquinoline, l-valine, and masked dehydroalanine segments. Tetrahedron Lett. 2005;46:6423–27.10.1016/j.tetlet.2005.07.122Suche in Google Scholar

[67] Günther WHH, Acid H. A novel reagent for the reduction of diselenides and the selenol-catalyzed reduction of disulfides. J Org Chem. 1966;31:1202–05.10.1021/jo01342a052Suche in Google Scholar

[68] Ericsson C, Microwave-Assisted Group-Transfer EL. Cyclization of organotellurium compounds. J Org Chem. 2004;69:5143–46.10.1021/jo040155fSuche in Google Scholar PubMed

[69] Jung ME, Sun DL. Trapping of Payne rearrangement intermediates with arylselenide anions. Tetrahedron Lett. 2015;56:3082–85.10.1016/j.tetlet.2014.11.103Suche in Google Scholar

[70] Tschöp A, Nandakumar MV, Pavlyuk O, Schneider C. Scandium–bipyridine-catalyzed, enantioselective selenol addition to aromatic meso-epoxides. Tetrahedron Lett. 2008;49:1030–33.10.1016/j.tetlet.2007.12.006Suche in Google Scholar

[71] Besev M, Engman L. Diastereocontrol by a hydroxyl auxiliary in the synthesis of pyrrolidines via radical cyclization. Org Lett. 2002;4:3023–25.10.1021/ol026038tSuche in Google Scholar PubMed

[72] Kanda T, Engman L, Cotgreave IA, Novel Water-Soluble PG. Diorganyl tellurides with thiol peroxidase and antioxidant activity. J Org Chem. 1999;64:8161–69.10.1021/jo990842kSuche in Google Scholar PubMed

[73] Martins MAP, Bastos GP, Sinhorin AP, Zimmermann NEK, Bonacorso HG, Zanatta N, et al. Preparation of 4-methyl- and 4-phenylseleno-1,1,1-trihalo-3-alken-2-ones and their usefulness in the synthesis of 3-trihalomethyl­isoselenazoles. Synthesis (Mass). 2002;2002:2220–24.10.1055/s-2002-34854Suche in Google Scholar

[74] Viso A, Poopeiko N, Castillón S. Stereoselective synthesis of nucleosides from 1-thio and 1-seleno glycosides through consecutive 1,2-migration and glycosylation under Mitsunobu conditions. Tetrahedron Lett. 2000;41:407–11.10.1016/S0040-4039(99)02071-7Suche in Google Scholar

[75] Nicolaou KC, Mitchell HJ, Fylaktakidou KC, Suzuki H, Rodríguez RM. 1,2-Seleno migrations in carbohydrate chemistry: solution and solid-phase synthesis of 2-deoxy glycosides, orthoesters, and allyl orthoesters. Angew Chem Int Ed. 2000;39:1089–93.10.1002/(SICI)1521-3773(20000317)39:6<1089::AID-ANIE1089>3.0.CO;2-VSuche in Google Scholar

[76] Rigby JH, Danca DM, Horner JH. Carbamoyl radicals from Se-phenylselenocarbamates: intramolecular additions to alkenes. Tetrahedron Lett. 1998;39:8413–16.10.1016/S0040-4039(98)01830-9Suche in Google Scholar

[77] Evans PA, Murthy VS. Enantioselective synthesis of the 4-hydroxy buteneolide terminus of mucocin and related annonaceous acetogenins. Tetrahedron Lett. 1998;39:9627–28.10.1016/S0040-4039(98)02206-0Suche in Google Scholar

[78] Álvarez C, Peláez R, Medarde M. New dicyclopentadiene-based scaffolds. Tetrahedron. 2007;63:2132–41.10.1016/j.tet.2007.01.001Suche in Google Scholar

[79] Singh R, Singh GC, Ghosh SK, Novel Approach A. Towards dibenzylbutyrolactone lignans involving heck and radical reactions: application to (±)‐matairesinol synthesis. Eur J Org Chem. 2007;2007:5376–85.10.1002/ejoc.200700440Suche in Google Scholar

[80] Chen C, Crich D, Papadatos A. The chemistry of acyl tellurides: generation and trapping of acyl radicals, including aryltellurium group transfer. J Am Chem Soc. 1992;114:8313–14.10.1021/ja00047a066Suche in Google Scholar

[81] Kanda T, Aoki H, Mizoguchi K, Shiraishi S, Murai T, Kato S. Selenotellurocarbamic acid Te-Alkyl Esters: first isolation and characterization. Organometallics. 1996;15:5753–55.10.1021/om960770cSuche in Google Scholar

[82] Kageyama H, Murai T, Kanda T, Kato S. Tautomeric equilibrium between selenol and selenoxo forms of selenocarboxylic acids. J Am Chem Soc. 1994;116:2195–96.10.1021/ja00084a090Suche in Google Scholar

[83] Knapp S, Darout E. New reactions of selenocarboxylates. Org Lett. 2005;7:203–06.10.1021/ol047889zSuche in Google Scholar

[84] Kato S, Kawahara Y, Kageyama H, Yamada R, Niyomura O, Murai T, et al. Thion (RCSOH), selenon (RCSeOH), and Telluron (RCTeOH) acids as predominant species. J Am Chem Soc. 1996;118:1262–67.10.1021/ja953035lSuche in Google Scholar

[85] Kageyama H, Tani K, Kato S, Kanda T. Acyl carbamoyl selenides and related sulfur isologues: synthesis and X-Ray structural analyses. Heteroatom Chem. 2001;12:250–58.10.1002/hc.1040Suche in Google Scholar

[86] Ibi K, Kawai K, Kato S, Ando F, Koketsu J. O-Triorganosilyl carbamoselenoates – synthesis and Reactions. Z Anorg Allg Chem. 2007;633:621–24.10.1002/zaac.200600368Suche in Google Scholar

[87] Shimada K, Moro-Oka A, Maruyama A, Fujisawa H, Saito T, Kawamura R, et al. Synthesis of isochalcogenazole rings by treating β-(N,N-Dimethylcarbamoylchalcogenenyl)alkenyl ketones with hydroxylamine-O-sulfonic Acid. Bull Chem Soc Jpn. 2007;80:567–77.10.1246/bcsj.80.567Suche in Google Scholar

[88] Zingaro RA, Herrera C, Meyers EA. Isolation and crystal structure of an unusual ditelluride: bis(N,N-dimethylaminoformyl) ditelluride. J Organomet Chem. 1986;306:C36–C40.10.1016/S0022-328X(00)99716-XSuche in Google Scholar

Published Online: 2018-09-14

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2017-0130/pdf
Button zum nach oben scrollen